
 6

Chapter 2

1. DIGITAL LOGIC

 A manufactured article’s condition may change or be changed, and then the article

may be classified either as Discrete-State or as a Continuous-State System.

 System: Describes the article as a whole.

 Continuous-State System: When the variable condition, i.e., the state of the system,

is able to take any value between certain limits.

 For example, the sound output from a radio receiver may be adjusted by the listener

to any level from inaudible to the maximum output possible.

Similarly, a car driver can select any engine speed required by use of the accelerator

control.

 In contrast, to the wide range of states (conditions) possible in a Continuous-State

System, a conventional electric light switch allows only on or off settings of the light;

similarly, a car driver can use the gear lever to select one of the small number of gear

rations available.

 Discrete-State System: Only a finite, usually fixed, number of different states are

allowed.

 Both the lighting system with an on-off switch and the car gearbox are examples of

Discrete-State System.

Two-State Systems

 Discrete-State Systems which have only two possible states e.g., simple on-off light

switch are Logic Systems, Logic Circuits or Logic networks which are synonymously

referred to as Logic function or Logic gate.

 Modern computers use digital circuitry with voltages all at one of two values called

logic 0 and logic 1 representing Off/False/No state and On/True/Yes state respectively.

 Logic gates are the most basic and the important component of any digital system

including computers. It is a piece of hardware or an electronic circuit that can be used to

implement the most basic logic expressions (referred t as the Boolean expression). Three

basic logic functions are the OR-Gate, the AND-Gate and the NOT-Gate.

Commonly used Logic Gates

 All digital devices can be boiled down to the three elementary Boolean functions

commonly known as AND, OR and NOT.

 7

 These three elementary functions can be further combined to produce other

functions: NAND (NOT of AND), NOR (NOT of OR) and the more complicated Ex-OR

and Ex-NOR functions.

Truth Table

 A truth table is a table representing the results of logical operations on all possible

combinations of logical values. A truth table for a logical circuit shows the outputs for all

possible combinations of inputs.

1. AND Gate

 AND gate is a logic circuit having two or more than two inputs and one output. The

output of an AND gate is logic “1” only when all of its inputs are in logic “1” state. In all

other cases, the output is logic “0”.

Logic Diagram Electrical Diagram

CELL

INPUT A INPUT B

S1 S2

BULB

A

B

OUTPUT

0

0

1

0

B

CELL

INPUT A INPUT B

S1 S2

BULB

A

OUTPUT

0

1

1

0

CELL

INPUT A INPUT B

S1 S2

BULB

A

B

OUTPUT

1

0

0

A

B

OUTPUT

1

1

1
CELL

INPUT A INPUT B

S1 S2

BULB

 8

 In above electrical analogue of an AND gate if one of the switches is ON or “1” the

circuit remains open, hence the voltage in the output is “0” (i.e., bulb does not glow).

Both the switches must be closed in order to give an output voltage (i.e., to glow the

bulb).

Truth Table for AND Gate (with two inputs)

No. of inputs = 2, hence input combinations = 22 = 4

Operation Symbol for AND gate is represented by a dot “.”, and Boolean Expression for

AND function is f = A B.

2. OR Gate

 The OR gate is a logic circuit with two or more than two inputs and one output. The

output of an OR gate is logic “1” when any one of its inputs are at logic “1” state. Only

when both the inputs are at logic “0” the output of an OR gate is logic “0”.

Logic Diagram Electrical Diagram

Input A Input B Output

A AND B

0 0 0

0 1 0

1 0 0

1 1 1

Switch

S1

Switch

S2

Bulb

Glow

OFF OFF OFF

OFF ON OFF

ON OFF OFF

ON ON ON

A

B

0

0
0

OUTPUT

INPUT A

INPUT B

S1

S2

CELL BULB

A

B

0

1
1

OUTPUT

INPUT A

INPUT B

S1

S2

CELL BULB

 9

 In above electrical analogue of an OR gate if one of the switches or both the

switches are closed or ON or “1” the circuit remains closed, hence the voltage in the

output is “1” (i.e., bulb glows). In the case both the switches are open the output voltage

is “0” (i.e., bulb does not glow).

Truth Table for OR Gate (with two inputs)

No. of inputs = 2, hence input combinations = 22 = 4

Operation Symbol for OR gate is represented by a dot “+”, and Boolean Expression for

OR function is f = A + B.

3. NOT Gate (or Inverter)

 NOT gate is a logic circuit with one input one output logic gate whose output is

always the complement of the input. E.g., logic “0” at the input produces logic “1” at the

Input A Input B Output

A OR B

0 0 0

0 1 1

1 0 1

1 1 1

Switch S1 Switch S2 Bulb Glow

OFF OFF OFF

OFF ON ON

ON OFF ON

ON ON ON

A

B

1

0
1

OUTPUT

INPUT A

INPUT B

S1

S2

CELL BULB

A

B

1

1
1

OUTPUT

INPUT A

INPUT B

S1

S2

CELL BULB

 10

output and vice versa. It is also known as a Complementing Circuit or an Inverting

Circuit or a Negating Circuit.

Logic Diagram Electrical Diagram

Truth Table for NOT Gate (with two inputs)

No. of inputs = 1, hence input combinations = 21 = 2

Operation Symbol for NOT gate is represented by a bar “ ¯ “ , and Boolean Expression

for NOT function is f = Ā.

Input A Output

NOT A

0 1

1 0

Switch

S1

Bulb

Glow

OFF ON

ON OFF

OUTPUT

Ā A
1 0

CELL

INPUT A

S1
BULB

Ā A

0

1
CELL

INPUT A

S1
BULB OUTPUT

 11

4. NAND Gate

 NAND gate is obtained by complementing the output of an AND gate. It stands for

NOT – AND. The truth table of NAND gate is obtained from the truth table of an AND

gate by complementing the output entries. The output of a NAND gate is logic “0” when

all its inputs are logic “1”. For all other cases the output is logic “1”.

Logic Diagram Electrical Diagram

OUTPUT

1

0

1

S2

CELL
S1

BULB

INPUT A

INPUT B

OUTPUT

0

1

1

S2

CELL
S1

BULB

INPUT A

INPUT B

OUTPUT

0

0

1

S2

CELL
S1

BULB

INPUT A

INPUT B

OUTPUT

1

1

0

S2

CELL
S1

BULB

INPUT A

INPUT B

 12

A

B

0

1

0

OUTPUT

INPUT B

S2

CELL

INPUT A
S1 BULB

 The NAND logic diagram can also be constructed with the combination of NOT

and OR logic circuits as below.

Truth Table for NAND Gate (with two inputs)

No. of inputs = 2, hence input combinations = 22 = 4

Boolean Expression for NAND function is f = .

5. NOR Gate

 NOR gate is obtained by complementing the output of an OR gate. It stands for

NOT – OR. The truth table of NOR gate is obtained from the truth table of an OR gate by

complementing the output entries. The output of a NOR gate is logic “1” when all its

inputs are logic “0”. For all other cases the output is logic “0”.

Logic Diagram Electrical Diagram

Switch

S1

Switch

S2

Bulb

Glow

OFF OFF ON

OFF ON ON

ON OFF ON

ON ON OFF

Input A Input B
Output

A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

A

B

0

0

1

OUTPUT

INPUT B

S2

CELL

INPUT A
S1 BULB

A

B
OUTPUT

 13

The NOR logic diagram can also be constructed with the combination of NOT and AND

logic circuits as below.

Truth Table for NOR Gate (with two inputs)

No. of inputs = 2, hence input combinations = 22 = 4

Boolean Expression for NOR function is f = .

B

B

0

A
1

0

0

OUTPUT

INPUT B

S2

CELL

INPUT A
S1 BULB

A
1

1 OUTPUT

INPUT B

S2

CELL

INPUT A
S1 BULB

Input A Input B Output

A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

Switch S1 Switch S2 Bulb Glow

OFF OFF ON

OFF ON OFF

ON OFF OFF

ON ON OFF

A

B

 14

6. Exclusive OR Gate (XOR)

 Exclusive OR gate is configured with two or more inputs. If we compare the truth

table for a 2 input OR and a 2 input Exclusive OR there is only one difference. The

output of an Exclusive OR gate when both its inputs are logic “1”, is logic “0” instead of

logic “1” as in the case of an OR gate.

Logic Diagram Electrical Diagram

 The XOR logic diagram can also be constructed with the combination of NOT,

AND and OR logic circuits as below.

1 1
CELL

INPUT A INPUT B

S1 S2

BULB

0 0

OUTPUT
0

B

A
0

0

1 1
CELL

INPUT A INPUT B

S1 S2

BULB

0 0

OUTPUT
1

B

A
0

1

B
1 1

CELL

INPUT A INPUT B

S1 S2

BULB

0 0

OUTPUT
0

A
1

1

B

1 1
CELL

INPUT A INPUT B

S1 S2

BULB

0 0

OUTPUT
1

A
1

0

A

B

 15

Truth Table for XOR Gate (with two inputs)

No. of inputs = 2, hence input combinations = 22 = 4

Operation Symbol for XOR gate is represented by an encircled plus , and Boolean

Expression for XOR function is f = A B.

7. XNOR Gate

 XNOR is obtained by complementing the output of XOR gate. It stands for NOT –

XOR. The truth table of XNOR gate is obtained from the truth table of an XOR gate by

complementing the output entries. The output of a XNOR gate is logic “1” when all its

inputs are equal or logic “1” when the inputs are unequal.

Truth Table for XNOR Gate (with two inputs)

No. of inputs = 2, hence input combinations = 22 = 4

Boolean Expression for XNOR function is f = .

Input A Input B Output

A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

Switch S1 Switch S2 Bulb Glow

OFF OFF OFF

OFF ON ON

ON OFF ON

ON ON OFF

B

OUTPUT
0

A
0

f

Input A Input B Output

A XNOR B

0 0 1

0 1 0

1 0 0

1 1 1

Switch S1 Switch S2 Bulb Glow

OFF OFF ON

OFF ON OFF

ON OFF OFF

ON ON ON

 16

8. Boolean Algebra

 British mathematician and logician George Boole developed Boolean algebra in

1854. In Boolean algebra, logical propositions are denoted by symbols and abstract

mathematical operators that correspond to the laws of logic can be applied. Boolean

algebra is of major importance in the study of pure mathematics and in the design of

modern computers.

 In simple terms Boolean algebra is a system of mathematical logic which differs

from both the conventional algebra and the binary arithmetic. For example, In Boolean

algebra

 1 + 1 = 1

 Where + is the logical operation OR and not the simple addition.

 In Boolean algebra the variables permitted to have two values “true” or “false”

usually written as 1 and 0 respectively. The Boolean operations on the variables are

limited to three basic logic operations AND, OR and NOT.

 Two states of Boolean variables i.e., true and false may be represented by ON and

OFF states of electronic switching circuits respectively. Hence, Boolean algebra is of

practical significance in implementing electronic logic circuits used in digital equipments.

 In the world of Boolean algebra, there are only two possible values for any quantity

and for any arithmetic operation: 1 or 0. There is no such thing as “2” within the scope of

Boolean values.

9. Boolean algebraic identities

 In mathematics, an identity is a statement true for all possible values of its variable

or variables. The algebraic identity of x + 0 = x tells us that anything (x) added to zero

equals the original "anything," no matter what value that "anything" (x) may be. Like

ordinary algebra, Boolean algebra has its own unique identities based on the bivalent

states of Boolean variables.

The first Boolean identity is that the sum of anything and zero is the same as the original

"anything." This identity is no different from its real-number algebraic equivalent:

A + 0 = A

 No matter what the value of A, the output will always be the same: when A=1, the

output will also be 1; when A=0, the output will also be 0.

 The next identity is most definitely different from any seen in normal algebra. Here

we discover that the sum of anything and one is one:

A + 1 = 1

 17

 No matter what the value of A, the sum of A and 1 will always be 1. In a sense, the

"1" signal overrides the effect of A on the logic circuit, leaving the output fixed at a logic

level of 1.

 Next, we examine the effect of adding A and A together, which is the same as

connecting both inputs of an OR gate to each other and activating them with the same

signal:

A + A = A

 In real-number algebra, the sum of two identical variables is twice the original

variable's value (x + x = 2x), but remember that there is no concept of "2" in the world of

Boolean math, only 1 and 0, so we cannot say that A + A = 2A. Thus, when we add a

Boolean quantity to itself, the sum is equal to the original quantity: 0+0 = 0, and 1+1= 1.

 Introducing the uniquely Boolean concept of complementation into an additive

identity, we find an interesting effect. Since there must be one "1" value between any

variable and its complement, and since the sum of any Boolean quantity and 1 is 1, the

sum of a

A + Ā = 1

 Just as there are four Boolean additive identities (A + 0, A + 1, A + A, and A + Ā),

so there are also four multiplicative identities: Ax0, Ax1, AxA, and AxA'. Of these, the

first two are no different from their equivalent expressions in regular algebra:

0 A = 0

1 A = A

 The third multiplicative identity expresses the result of a Boolean quantity

multiplied by itself. In normal algebra, the product of a variable and itself is the square of

that variable (3 x 3 = 32 = 9). However, the concept of "square" implies a quantity of 2,

which has no meaning in Boolean algebra, so we cannot say that A x A = A2. Instead, we

find that the product of a Boolean quantity and itself is the original quantity, since 0 x 0 =

0 and 1 x 1 = 1:

A A = A

 The fourth multiplicative identity has no equivalent in regular algebra because it

uses the complement of a variable, a concept unique to Boolean mathematics. Since there

must be one "0" value between any variable and its complement, and since the product of

any Boolean quantity and 0 is 0, the product of a variable and its complement must be 0:

A Ā = 0

 18

 To summarize, then, we have four basic Boolean identities for addition and four for

multiplication:

Another identity having to do with complementation is that of the double

complement: a variable inverted twice. Complementing a variable twice (or any even

number of times) results in the original Boolean value. This is analogous to negating

(multiplying by -1) in real-number algebra: an even number of negations cancel to leave

the original value:

A = A

10. Boolean Laws

10.1 AND Laws

 The Boolean expression with two inputs for AND function is: f = A AND B =

A B which implies that f is True only if A and B both are true.

10.2 OR Laws

 The Boolean expression with two inputs for OR function is: f = A OR B = A +

B which implies that f is True if any one of A or B or both are true.

10.3 NOT Laws

 The Boolean expression with one input for NOT function is: f = NOT A = Ā

which implies that f is True only if A is false.

10.4 Commutative Laws

 The commutative laws tell us we can reverse the order of variables that are

either added together or multiplied together without changing the truth of the

expression. It is expressed as:

A + B = B + A (Commutative property of addition)

A B = B A (Commutative property of multiplication)

 19

10.5 Associative Laws

 The associative laws tell us we can associate groups of added or multiplied

variables together with parentheses without altering the truth of the equations. It is

expressed as:

A + (B + C) = (A + B) + C (Associative property of addition)

A (BC) = (AB) C (Associative property of multiplication)

10.6 Distributive Laws

 The distributive property illustrates how to expand a Boolean expression

formed by the product of a sum, and in reverse shows us how terms may be factored

out of Boolean sums-of-products. It is expressed as:

A (B + C) = AB + AC

10.7 Idempotent Laws

 The effect of adding A and A together, which is the same as connecting both

inputs of an OR gate to each other and activating them with the same signal:

A + A = A

 In real-number algebra, the sum of two identical variables is twice the original

variable's value (x + x = 2x), but remember that there is no concept of "2" in the

world of Boolean math, only 1 and 0, so we cannot say that A + A = 2A. Thus,

when we add a Boolean quantity to it, the sum is equal to the original quantity: 0 +

0 = 0, and 1 + 1 = 1.

It can be extended to any number of input i.e.,

A + A + A + A … … … … … … + A = A

The result of a Boolean quantity multiplied by it is itself. In normal algebra, the

product of a variable and itself is the square of that variable (3 x 3 = 32 = 9).

However, the concept of "square" implies a quantity of 2, which has no meaning in

Boolean algebra, so we cannot say that A x A = A2. Instead, we find that the

product of a Boolean quantity and itself is the original quantity, since 0 x 0 = 0 and

1 x 1 = 1:

AA = A

 20

It can be extended to any number of input i.e,

A . A . A . A … … … … … … … … A = A

10.8 Absorption Laws

 The effect of Boolean quantity A multiplied with the addition of the same

Boolean quantity A and another quantity B together, is the Boolean quantity A

itself.

A . (A + B) = A

We can prove it as follows:

L.H.S. = A . (A + B)

 = A . A + A . B (Distributive Law)

 = A + A . B (Idempotent Law)

 = A (1 + B) (Distributive Law)

 = A. 1 (A + 1 = 1 then, 1 + B = 1)

 = A

 = R.H.S.

11. DeMorgan’s Theorem

 A mathematician named DeMorgan developed a pair of important rules regarding

group complementation in Boolean algebra. By group complementation, we are referring

to the complement of a group of terms, represented by a long bar over more than one

variable.

 You should recall from the logic gates that inverting all inputs to a gate reverses

that gate's essential function from AND to OR, or vice versa, and also inverts the output.

So, an OR gate with all inputs inverted (a Negative-OR gate) behaves the same as a

NAND gate, and an AND gate with all inputs inverted (a Negative-AND gate) behaves

the same as a NOR gate. DeMorgan's theorems state the same equivalence in "backward"

form: that inverting the output of any gate results in the same function as the opposite

type of gate (AND vs. OR) with inverted inputs:

 DeMorgan’s first theorem states that the complement of a sum equals the product

on the complements i.e.,

A + B = A . B

 DeMorgan’s second theorem states that, complements of a product equals sum of

complements i.e.,

A . B = A + B

 21

 A long bar extending over the term AB acts as a grouping symbol, and as such is

entirely different from the product of A and B independently inverted. In other words,

(AB)' is not equal to A'B'. Because the "prime" symbol (') cannot be stretched over two

variables like a bar can, we are forced to use parentheses to make it apply to the whole

term AB in the previous sentence. A bar, however, acts as its own grouping symbol when

stretched over more than one variable. This has profound impact on how Boolean

expressions are evaluated and reduced, as we shall see.

In general, if X1, X2, X3, X4 … … Xn are binary variables.

DeMorgan’s first theorem can be generalized as :

X1 + X2 + X3 + X4 … … + Xn = X1 . X2 . X3 . X4 … …Xn

DeMorgan’s second theorem can be generalized as :

X1 . X2 . X3 . X4 … … … . Xn = X1 + X2 + X3 + X4 … … +Xn

 22

 The following truth table proves the two DeMorgan’s theorems. The truth table is

very simple to understand.

A B A + B

NOR

A . B

NAND

A B A . B A + B

0 0 1 1 1 1 1 1

0 1 0 1 1 0 0 1

1 0 0 1 0 1 0 1

1 1 0 0 0 0 0 0

 DeMorgan's theorem may be thought of in terms of breaking a long bar symbol.

When a long bar is broken, the operation directly underneath the break changes from

addition to multiplication, or vice versa, and the broken bar pieces remain over the

individual variables. To illustrate:

 When multiple "layers" of bars exist in an expression, you may only break one bar

at a time, and it is generally easier to begin simplification by breaking the longest

 23

(uppermost) bar first. To illustrate, let's take the expression (A + (BC)')' and reduce it

using DeMorgan's Theorems:

Following the advice of breaking the longest (uppermost) bar first, We will begin

by breaking the bar covering the entire expression as a first step:

 As a result, the original circuit is reduced to a three-input AND gate with the A

input inverted:

 24

You should never break more than one bar in a single step, as illustrated here:

 As tempting as it may be to conserve steps and break more than one bar at a time, it

often leads to an incorrect result, so don't do it!

 It is possible to properly reduce this expression by breaking the short bar first,

rather than the long bar first:

 The end result is the same, but more steps are required compared to using the first

method, where the longest bar was broken first. Note how in the third step we broke the

long bar in two places. This is a legitimate mathematical operation, and not the same as

breaking two bars in one step! The prohibition against breaking more than one bar in one

step is not a prohibition against breaking a bar in more than one place. Breaking in more

than one place in a single step is okay; breaking more than one bar in a single step is not.

 25

 You might be wondering why parentheses were placed around the sub-expression

B' + C', considering the fact that I just removed them in the next step. I did this to

emphasize an important but easily neglected aspect of DeMorgan's theorem. Since a long

bar functions as a grouping symbol, the variables formerly grouped by a broken bar must

remain grouped lest proper precedence (order of operation) be lost. In this example, it

really wouldn't matter if I forgot to put parentheses in after breaking the short bar, but in

other cases it might. Consider this example, starting with a different expression:

 As you can see, maintaining the grouping implied by the complementation bars for

this expression is crucial to obtaining the correct answer.

 Let's apply the principles of DeMorgan's theorems to the simplification of a gate

circuit:

 26

 As always, our first step in simplifying this circuit must be to generate an equivalent

Boolean expression. We can do this by placing a sub-expression label at the output of

each gate, as the inputs become known. Here's the first step in this process:

 Next, we can label the outputs of the first NOR gate and the NAND gate. When

dealing with inverted-output gates, I find it easier to write an expression for the gate's

output without the final inversion, with an arrow pointing to just before the inversion

bubble. Then, at the wire leading out of the gate (after the bubble), I write the full,

complemented expression. This helps ensure I don't forget a complementing bar in the

sub-expression, by forcing myself to split the expression-writing task into two steps:

Finally, we write an expression (or pair of expressions) for the last NOR gate:

 27

 Now, we reduce this expression using the identities, properties, rules, and theorems

(DeMorgan's) of Boolean algebra:

 28

The equivalent gate circuit for this much-simplified expression is as follows:

12. Karnaugh Maps

 Karnaugh Maps are used for Logic Simplification. We saw that any logic function

can be obtained directly from the truth table. The obvious method is to give the logic

function in terms of each row in the truth table for which the output function f is a 1.

Each row is the "product" of the input variables (A if the entry is a 1 and ~A if the entry

is a 0).

Example of Logic Simplification:

 AB | S T

 00 | 1 1 S = ~A*~B + ~A*B + A*~B (5 gates)

 01 | 1 1 = ~A*(~B+B) + ~B*(~A+A)

 10 | 1 0 = ~A*1 + ~B*1

 11 | 0 1 = ~A + ~B (1 gate)

In the above example, the direct method gives us

 S = ~A*~B + ~A*B + A*~B

 The above logic function is correct, but it requires 5 gates (AND,OR) to implement,

not counting NOT gates. We can simplify it to S = ~A + ~B as shown above and it will

take only 1 gate to implement.

 29

Applying this simplification process to T, we have:

 T = ~A*~B + ~A*B + A*B (5 gates)

 = ~A*(~B+B) + B*(~A+A)

 = ~A + B (1 gate)

 The above simplification process can also be applied to functions of more inputs,

but it will be tedious. There is better way to do it.

 One technique developed by computer scientists and engineers to help the logic

simplification process is to use something called Karnaugh Maps. Karnaugh Maps is a

way to represent the entries of the truth table in a special way so that the simplification

process is made easy.

 For two variables, the Karnaugh Map (called K-Map for short) is drawn as shown

below. Each cell in the K-Map represents a row in the truth table and is labelled by its

corresponding binary code for the input variables.

 A \B 0 1

 +------+------+

 0 | 00 | 01 | Top Row: 00+01 = 0X Logic Function: ~A

 | | | Bottom Row: 10+11 = 1X Logic Function: A

 +------+------+ Left Column: 00+10 = X0 Logic Function: ~B

 | 10 | 11 | Right Column:01+11 = X1 Logic Function: B

 1 | | | ("X" to indicate variable that was "dropped")

 +------+------+

 In the Karnaugh Map above, if we group together the two cells of the top row,

namely the ones labeled 00 and 01, it is equivalent to saying

 ~A~B + ~AB = ~A*(~B+B) = ~A*1 = ~A.

Equivalently, we represent that as

 (00+01) = 0X

Where we use the "X" to indicate that the variable B has "dropped off".

Similarly, combining any other two adjacent cells will give us:

 eg: 10+11 = 1X or A~B + AB = A

 00+10 = X0 or ~A~B + A~B = ~B

 01+11 = X1 or ~AB + AB = B

 To use K-Maps to aid in logic simplification, we first fill the K-Map: for each row

with a 1 in the truth table, we label the corresponding cell in the K-Map with a "Y". Of

course, we also label all the cells with a "N" to correspond to those rows in the truth table

with a "0". We illustrate for the function T above.

 30

 \ K-Map for function T

 A \B 0 1

 +------+------+

 0 | 00 | 01 | To simplify,

 | Y | Y | we can combine 00 and 01 --> 0X (~A)

 +------+------+ we can combine 01 and 11 --> X1 (B)

 | 10 | 11 | So, the function is simplified to

 1 | N | Y | T = ~A + B

 +------+------+

 After filling up the K-map, we have completely described the function T (look at all

the squares labelled with "Y"'s.)

To simplify, we now look for some adjacent cells with a 1 to combine.

Thus,

 we can combine 00 and 01 --> 0X (~A)

 we can combine 01 and 11 --> X1 (B)

 T = ~A + B.

 The advantage of K-maps is that simplification of the logic circuits or functions can

be done by looking for neighboring squares to combine.

This is a lot easier than looking at the Boolean functions!!

13. Venn Diagram

 This diagram is named after the British logician John Venn. It is a diagram

representing a set or sets in mathematics and the logical relationships between them. The

sets are drawn as circles. An area overlap between two circles (sets) contains elements

that are common to both sets, and thus represents a third set. Circles that do not overlap

represents sets with no elements in common (disjoint sets).

 31

 Venn diagrams are diagrams in which AREAS represent OPERATIONS or

PROPOSITIONS. For example, the area within the rectangle represents the proposition

under consideration. In these examples a letter within a circle refers to the whole circle.

If two operations have the same Venn diagram they are equivalent. This fact is used to

show equivalence.

d

f

A

Ā

A

Ā

a b

c

e

The

Shaded

area is

A

A ^ B

Also

written

as

A B

A v B

Also

written

as

A + B

A ^ B

Also

written

as

A B

A v B

Also

written

as

A + B

A Ā

Also

written

as

A + Ā

 32

Exercises

1. What is Logic Gate? Explain giving example.

2. What is Truth table? Explain with examples.

3. Briefly explain about NOT, OR, AND, NOR, XOR and NAND operations.

4. What is Boolean algebra? Describe in brief how it differs from conventional

algebra.

5. What is Karnaugh Map? For what purpose it is used? Describe with examples.

6. Describe DeMorgan’s Theorms with examples.

7. What is Venn diagram? Explain with examples.

8. Use Truth table to find which of the following relations are true.

a. A . (A + B) = A + AB

b. A = Ā . B = A . B

c. A . (Ā + B) = A . B

d. B . (A + 1) = B . (B + B)

 33

Experiment no: 1

Familiarization with AND, OR and INVENTOR Gates.

OBJECTIVES:

1. Investigate the relationship between the inputs and outputs of AND gate.

2. Building a 4 input AND from three 2 input AND gates.

3. Investigate the relationship between the inputs and outputs of OR gate.

4. Building a 3 input OR gate from two 2 input OR gates

5. Examine the input and output of inverter.

OBJECTIVE NO: 1

Related Theory:
In our everyday processes, we often use logic. We draw logical conclusions from known facts.

When using logic, a statement must be either true or false. There are no shades of opinion. Logic

systems are therefore, essentially switching circuits. In the first electrical logic systems relay

operated contacts were used. These switches routed electrical current through the circuit in the

desired manner.

Take, for example, the logic function AND. This means that the conclusion (called f) is truly if

both statement A and statement B are true. If either A or B is false, then f is false. To accomplish

this electromechanically, a lamp is used to indicate f. True means that the lamp is lighted. False

means the lamp is off. The circuit looks like this:

If we let 1= closed and 0= open for A and B; 1 = lighted and 0 = off for f, we can construct a truth

table as follows:

A B f

0 0 0

0 1 0

1 0 0

1 1 1

When using integrated circuits logic gates, we take a slightly different approach. The 1’s and 0’s

represent a voltage (or no voltage) appearing a specific points of a circuit. Positive logic means

that 5volts = 1 and 0 volts = 0. Negative logic means that 5 volts = 0 and 0 volts = 1. All of the

circuits in this manual will define conditions in terms of positive logic.

 f

B A
L1

L2

 34

EQUIPMENT REQUIRED:

Power supply, switch module, Led module, Quad 2 – input AND (7408) .

PROCEDURE:

Step 1. Connect the circuit of figure 1-1.

 +5v

 Fig. 1-1

 Note that the output must have over 2.4 volts to be logic 1: less than 0.4 volts for logic 0.

Step 2. With Switch A in the LO position, put switch B in the LO position.

Step 3. Note the condition of the light emitting Diode f, and record in table 1.1

A B f

Table 1.1

Step 4. Move Switch B to the H1 position . Repeat Step 3.

Step 5. Move Switch A to the H1 position and put Switch B in the L0 position. Repeat Step 3.

Step 6. Repeat Step 4.

In your report, describe the operation of the AND gate in the words and compare the results you

recorded in table 1-1 with expected results. How many H I – LO combinations are possible with

two inputs?

f

3

H I

L0

2

1

B H I

L0

7 – GND

14 - Vcc

A

7408

 35

OBJECTIVE NO: 3

RELATED THEORY:
Very often, when a task is to be performed, there is more than one way of obtaining the same

result. Suppose you had a light f, which could be turned on from two switches in parallel.

Your logic statement would read: If switch A is closed or Switch B is closed, lamp f will be

lighted. There will be a logic 1 at the output of the OR gate if there is a logic 1 at either input (or

both inputs). There will be logic 0 at the output only when there is logic 0 at both inputs.

EQUIPMENT REQUIRED:
Power supply, Switch module, LED module, Quad 2 – input OR (7432).

PROCEDURE:
Step 1. Connect the circuit of figure 1–3

+5v

Figure 1- 2

Step 2. Observe the condition of LED for all possible combinations of switch A & B and note

down on the table 1-2

A B fe f

f

H I

L0

2

1

B H I

A

L 1

L 2

B

L0

3

f

7 – GND

14 - Vcc

A

 7432

Table 1-2

 36

In your report, describe the operation of the OR gate in words and compare the results you

recorded in table 1-3 with the expected results (Fe). Assume you defined this system in terms of

negative logic (H I = 0 and LO = 1; lighted = 0 and off = 1). Construct a negative logic truth table

and compare it with Table 1-1 and draw the conclusion.

OBJECTIVE NO: 5

RELATED THEORY:
The logic function known as NOT is perhaps the simplest and, at the same time, most difficult of

the logic concept.

The simple part is that NOT applies to two statements that cannot both be true at the same time. It

“A” is true, then “X” must be false. What makes the NOT function difficult is the concept of

complementary signals. To illustrate, let’s take the complementary statement: “The switch is not

closed”. To indicate that this is a complementary statement, we put a bar or ‘ above the symbol”

A. (This is read A – not). Now, if logic 1 means A, a logic 0 means A’.

An inverter is simply a gate whose output is the inversion of its input. If logic 1 is present at the

input, logic 0 is present at the output. Also, if logic 0 is present at the input, logic 1 is present at

the output.

EQUIPMENT REQUIRED:
Power supply, Switch module, LED module, Hex Inverter (7404).

PROCEDURE:
Step 1. Connect the circuit of figure 1–3

+5v

Figure 1-3

Step 2. Note the condition of the Light – Emitting Diode, f, for both H1 & L0 condition (1 =

lighted, 0 = off) in Table 1-3.

Step 3. Add another inverter as shown in Figure 1–4 and note the output in table 1–4.

2
H I

L0

A 1

7404
7 – GND

14 - Vcc

f

 37

+5v

Figure 1-4

Step 4. Add a third inverter as shown in Figure 1–5 and note the output in table 1–5.

+5v

Figure 1-5

In your report, discuss the effect on a logic 1 passing through an odd number of inverters (1, 3, 5,

etc.) and passing through an even number of inverters (2, 4, etc.)

A f

7404 7404 7404

Table 1-3

7 – GND

14 - Vcc

f 1

f 2

3 2
H I

L0

A 1

7404 7404

4

7 – GND

14 - Vcc

f 1

f 3

3 2

L0

1 4
H I

A 5 6

F2

 38

A f1 f2

A f1 f2 f3

Table 1-4

Table 1-5

 39

Experiment no: 2

Verification of deMorgan’s Laws and familiarization with NAND and NOR gates.

OBJECTIVES:

1. Verify deMorgan’s first law.

2. Verify deMorgan’s second law.

3. Investigate the operation of NAND gate.

4. Investigate the operation of NOR gate.

OBJECTIVE NO: 1

Related Theory:
Thus far, we have examined the three basic logic gates, namely, AND, OR and the inverter.

Because of the nature of logic (If a statement is not true, then it must be false). We can (in theory,

at least) reduce the number of basic gates to two, one of which is the inverter.

For example, we saw that, in order for a logic 1 to be present at the output of an AND gate, logic

1’s had to be at all inputs. For an OR gate, a logic 0 was present at the output only when all inputs

were at logic 0.

Now, let us invert the output of the AND. The new statement is: A logic 0 output occurs only

when all inputs are logic 1. Similarly, let us invert the inputs of the OR. The new statement is: A

logic 0 output occurs only when all inputs are logic 1.

EQUIPMENT REQUIRED:
Power supply, Switch module, LED module, Quad 2-input AND (7408), Quad 2-input OR

(7432), Hex Inverter (7404).

PROCEDURE:
Step 1. Connect the circuit of figure 2–1.

Step 2. This is a 2 – input AND gate with an inverted output. Operate the switches (H1 = 1; L0 =

0) and complete the truth table of Table 2-1.

Step 3. Connect the circuit of Figure 2-2.

Step 4. This is a 2 – input OR gate with inverted inputs. Operate the switches (H1 = 1; L0 = 0)

and complete the truth table of Table 2.2.

+5v

Figure 2-1

7404

2

1

3
7408

H I

L0

2

1

B H I

L0

f

7 – GND

14 - Vcc

A

 40

+5v

Figure 2-2

A B f

A B f

In your report, describe how you could make an AND gate using OR’s and inverters.

OBJECTIVE NO: 2

Verify deMorgan’s second law.

Related Theory:
The logic statement for the OR gate is: A logic 0 is present at the output only when all of the

inputs are a logic 0.

The logic statement for the AND gate is: A logic 1 is present at the output only when all of the

inputs are logic 1.

If we invert the output of the OR, we have: A logic 1 is present at the output only when all of the
inputs are logic 0.

If we invert the output of the AND, we have: A logic 1 is present at the output only when all of

the inputs are logic 0.

7404

7404

3

2 1

H I

L0

2

1

B H I

L0

3

f

7 – GND

14 - Vcc

A

 7432

4

Table 2-1

Table 2-2

 41

EQUIPMENT REQUIRED:
Power supply, Switch module, LED module, Quad 2-input AND (7408), Quad 2-input OR

(7432), Hex Inverter (7404).

PROCEDURE:
Step 1. Connect the circuit of figure 2–3.

Step 2. Operate Switches A and B (H1 = 1; L0 = 0) and complete the truth table of Table 2-3 for

the condition of the LED, f(1 = lighted; 0 = off).

+5v

Step 3. Connect the circuit of figure 2–4.

+5v

Step 4. Repeat Step for Table 2-4.

7404

2

1

3

H I

L0

2

1

B H I

L0

f

7 – GND

14 - Vcc

A

Figure 2-3

 7432

7404

7404

3

2 1

H I

L0

2

1

B H I

L0

3

f

7 – GND

14 - Vcc

A

4

Figure 2-4

7408

 42

In your report, show how you could make an OR gate using AND gates and inverters.

A B f

A B f

OBJECTIVE NO: 3

Investigate the operation of NAND gate.

Related Theory:
The NAND gate is simply an AND with a built-in inverter on the output. Therefore, a logic 0 is

present at the output only when a logic 1 appears at all inputs. A logic 1 is present at the output if

nay input has a logic 0. A NAND should always be thought of as AND – NOT.

The NAND is perhaps the most popular gate. You will note that its symbol is very similar to the

AND except for the circle (called a bubble) at the output. The bubble shows that the normal AND

output is inverted.

The NAND has many uses in digital circuits. It can also be used in combination with an inverter

to produce an AND. Several NAND’s can be combined to produce an OR gate. They are also

used in memory (Flip-flop) circuits.

EQUIPMENT REQUIRED:
Power supply, Switch module, LED module, Quad 2-input NAND (7400), Hex Inverter (7404).

Table 2-3

Table 2-4

 43

PROCEDURE:
Step 1. Connect the circuit of figure 2–5.

Step 2. Operate Switches A and B (H1 = 1; L0 = 0) and complete the truth table for the condition

of LED f. (1 = lighted; 0 = Off) in Table 2-5.

+5v

Step 3: Connect the circuit of figure 2-6.

Step 4: Repeat Step 2 for Table 2-6.

+5v

Step 5: Connect the circuit of figure 2-7.

Step 6: Repeat Step 2 for Table 2-7.

2 1

Figure 2-5

H I

L0

2

1

B H I

L0

3

f

7 – GND

14 - Vcc

A

7400

Figure 2-6

H I

L0

2

1

B H I

L0

3

f

7 – GND

14 - Vcc

A

7400

7404

 44

+5v

In your report, describe how you could make an AND gate using NAND gates only. Compare

truth table 2.6 and 2.7 with truth table of other gates.

OBJECTIVE NO: 4

Investigate the operation of NOR gate.

Related Theory:
Like the NAND, the NOR gate is extremely popular. Also like the NAND, the NOR gate is

derived from other gates. It is OR gate with a built-in inverter on the output. It should be thought

of as an OR – NOT.

A logic 1 is present at the output of a NOR gate only when all inputs are logic 1. A logic 1 at any

one or more inputs will produce a logic 0 at the output.

All you have t do to use a NOR as an OR is to add an inverter at its output. If you wanted t use a

NOR as a NOT, you could tie the unused input or inputs to ground (logic 0). Then when input A

is logic 0 (all inputs are logic 0), the output is logic 1. If input A goes to logic 1, the output goes

to logic 0. Three NOR gates can be combined to produce an AND gate. NOR’s can also be used

in memory (Flip-flop) circuits.

A B f

A B f

A B f

NAND

5

4

2

1

Figure 2-6

H I

L0

8

7

B H I

L0

9

f

7 – GND

14 - Vcc

A

7400

7404
7400

7400

+5v

3

6

Table 2-5 Table 2-6 Table 2-7

AND OR

 45

EQUIPMENT REQUIRED:
Power supply, Switch module, LED module, Quad 2-input NOR (7402), Hex Inverter (7404).

PROCEDURE:
Step 1. Connect the circuit of figure 2–8.

+5v

Step 2. Operate Switches A and B (H1 = 1; L0 = 0) and complete the truth table for the condition

of LED f (1 = lighted; 0 = off) in Table 2-8.

Step 3. Connect the OR circuit of Figure 2-9.

+5v

2 1

H I

L0

2

1

B H I

L0

3

f

7 – GND

14 - Vcc

A

7402

Figure 2-8

H I

L0

2

1

B H I

L0

3

f

7 – GND

14 - Vcc

A

7402

Figure 2-9

7404

 46

Step 4. Repeat Step 2 for Table 2-9.

Step 5. Connect the AND circuit of Figure 2-10.

Step 6. Repeat Step 2 for Table 2-10.

A B f

A B f

A B f

5

4

2

1

Figure 2-10

H I

L0

8

7

B H I

L0

9

f

7 – GND

14 - Vcc

A 3

6

7402

7402

7402

NOR

Table 2-8 Table 2-9 Table 2-10

OR AND

