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Preface

Digital electronics is essential to understanding the design and working of a wide range of applications,
from consumer and industrial electronics to communications; from embedded systems, and computers
to security and military equipment. As the devices used in these applications decrease in size and
employ more complex technology, it is essential for engineers and students to fully understand both
the fundamentals and also the implementation and application principles of digital electronics, devices
and integrated circuits, thus enabling them to use the most appropriate and effective technique to suit
their technical needs.

Digital Electronics: Principles, Devices and Applications is a comprehensive book covering, in
one volume, both the fundamentals of digital electronics and the applications of digital devices and
integrated circuits. It is different from similar books on the subject in more than one way. Each chapter
in the book, whether it is related to operational fundamentals or applications, is amply illustrated
with diagrams and design examples. In addition, the book covers several new topics, which are of
relevance to any one having an interest in digital electronics and not covered in the books already in
print on the subject. These include digital troubleshooting, digital instrumentation, programmable logic
devices, microprocessors and microcontrollers. While the book covers in entirety what is required by
undergraduate and graduate level students of engineering in electrical, electronics, computer science and
information technology disciplines, it is intended to be a very useful reference book for professionals,
R&D scientists and students at post graduate level.

The book is divided into sixteen chapters covering seven major topics. These are: digital electronics
fundamentals (chapters 1 to 6), combinational logic circuits (chapters 7 and 8), programmable logic
devices (chapter 9), sequential logic circuits (chapters 10 and 11), data conversion devices and circuits
(chapter 12), microprocessors, microcontrollers and microcomputers (chapters 13 to 15) and digital
troubleshooting and instrumentation (chapter 16). The contents of each of the sixteen chapters are
briefly described in the following paragraphs.

The first six chapters deal with the fundamental topics of digital electronics. These include different
number systems that can be used to represent data and binary codes used for representing numeric and
alphanumeric data. Conversion from one number system to another and similarly conversion from one
code to another is discussed at length in these chapters. Binary arithmetic, covering different methods
of performing arithmetic operations on binary numbers is discussed next. Chapters four and five cover
logic gates and logic families. The main topics covered in these two chapters are various logic gates
and related devices, different logic families used to hardware implement digital integrated circuits, the
interface between digital ICs belonging to different logic families and application information such
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as guidelines for using logic devices of different families. Boolean algebra and its various postulates
and theorems and minimization techniques, providing exhaustive coverage of both Karnaugh mapping
and Quine-McCluskey techniques, are discussed in chapter six. The discussion includes application of
these minimization techniques for multi-output Boolean functions and Boolean functions with larger
number of variables. The concepts underlying different fundamental topics of digital electronics and
discussed in first six chapters have been amply illustrated with solved examples.

As a follow-up to logic gates — the most basic building block of combinational logic — chapters
7 and 8 are devoted to more complex combinational logic circuits. While chapter seven covers
arithmetic circuits, including different types of adders and subtractors, such as half and full adder and
subtractor, adder-subtractor, larger bit adders and subtractors, multipliers, look ahead carry generator,
magnitude comparator, and arithmetic logic unit, chapter eight covers multiplexers, de-multiplexers,
encoders and decoders. This is followed by a detailed account of programmable logic devices in
chapter nine. Simple programmable logic devices (SPLDs) such as PAL, PLA, GAL and HAL devices,
complex programmable logic devices (CPLDs) and field programmable gate arrays (FPGAs) have been
exhaustively treated in terms of their architecture, features and applications. Popular devices, from
various international manufacturers, in the three above-mentioned categories of programmable logic
devices are also covered with regard to their architecture, features and facilities.

The next two chapters, 10 and 11, cover the sequential logic circuits. Discussion begins with the
most fundamental building block of sequential logic, that is, flip flop. Different types of flip flops
are covered in detail with regard to their operational fundamentals, different varieties in each of
the categories of flip flops and their applications. Multivibrator circuits, being operationally similar
to flip flops, are also covered at length in this chapter. Counters and registers are the other very
important building blocks of sequential logic with enormous application potential. These are covered
in chapter 11. Particular emphasis is given to timing requirements and design of counters with varying
count sequence requirements. The chapter also includes a detailed description of the design principles
of counters with arbitrary count sequences. Different types of shift registers and some special counters
that have evolved out of shift registers have been covered in detail.

Chapter 12 covers data conversion circuits including digital-to-analogue and analogue-to-digital
converters. Topics covered in this chapter include operational basics, characteristic parameters, types
and applications. Emphasis is given to definition and interpretation of the terminology and the
performance parameters that characterize these devices. Different types of digital-to-analogue and
analogue-to-digital converters, together with their merits and drawbacks are also addressed. Particular
attention is given to their applications. Towards the end of the chapter, application oriented information
in the form of popular type numbers along with their major performance specifications, pin connection
diagrams etc. is presented. Another highlight of the chapter is the inclusion of detailed descriptions of
newer types of converters, such as quad slope and sigma-delta types of analogue-to-digital converters.

Chapters 13 and 14 discuss microprocessors and microcontrollers — the two versatile devices that
have revolutionized the application potential of digital devices and integrated circuits. The entire
range of microprocessors and microcontrollers along with their salient features, operational aspects
and application guidelines are covered in detail. As a natural follow-up to these, microcomputer
fundamentals, with regard to their architecture, input/output devices and memory devices, are discussed
in chapter 15.

The last chapter covers digital troubleshooting techniques and digital instrumentation.
Troubleshooting guidelines for various categories of digital electronics circuits are discussed. These will
particularly benefit practising engineers and electronics enthusiasts. The concepts are illustrated with
the help of a large number of troubleshooting case studies pertaining to combinational, sequential and
memory devices. A wide range of digital instruments is covered after a discussion on troubleshooting
guidelines. The instruments covered include digital multimeters, digital oscilloscopes, logic probes,
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logic analysers, frequency synthesizers, and synthesized function generators. Computer-instrument
interface standards and the concept of virtual instrumentation are also discussed at length towards the
end of the chapter.

As an extra resource, a companion website for my book contains lot of additional application
relevant information on digital devices and integrated circuits. The information on this website includes
numerical and functional indices of digital integrated circuits belonging to different logic families,
pin connection diagrams and functional tables of different categories of general purpose digital
integrated circuits and application relevant information on microprocessors, peripheral devices and
microcontrollers. Please go to URL http://www.wiley.com/go/maini_digital.

The motivation to write this book and the selection of topics to be covered were driven mainly by
the absence a book, which, in one volume, covers all the important aspects of digital technology. A
large number of books in print on the subject cover all the routine topics of digital electronics in a
conventional way with total disregard to the needs of application engineers and professionals. As the
author, I have made an honest attempt to cover the subject in entirety by including comprehensive
treatment of newer topics that are either ignored or inadequately covered in the available books on the
subject of digital electronics. This is done keeping in view the changed requirements of my intended
audience, which includes undergraduate and graduate level students, R&D scientists, professionals and
application engineers.

Anil K. Maini



Number Systems

The study of number systems is important from the viewpoint of understanding how data are represented
before they can be processed by any digital system including a digital computer. It is one of the
most basic topics in digital electronics. In this chapter we will discuss different number systems
commonly used to represent data. We will begin the discussion with the decimal number system.
Although it is not important from the viewpoint of digital electronics, a brief outline of this will be
given to explain some of the underlying concepts used in other number systems. This will then be
followed by the more commonly used number systems such as the binary, octal and hexadecimal
number systems.

1.1 Analogue Versus Digital

There are two basic ways of representing the numerical values of the various physical quantities with
which we constantly deal in our day-to-day lives. One of the ways, referred to as analogue, is to
express the numerical value of the quantity as a continuous range of values between the two expected
extreme values. For example, the temperature of an oven settable anywhere from 0 to 100 °C may be
measured to be 65 °C or 64.96 °C or 64.958 °C or even 64.9579 °C and so on, depending upon the
accuracy of the measuring instrument. Similarly, voltage across a certain component in an electronic
circuit may be measured as 6.5 V or 6.49 V or 6.487 V or 6.4869 V. The underlying concept in this
mode of representation is that variation in the numerical value of the quantity is continuous and could
have any of the infinite theoretically possible values between the two extremes.

The other possible way, referred to as digital, represents the numerical value of the quantity in steps
of discrete values. The numerical values are mostly represented using binary numbers. For example,
the temperature of the oven may be represented in steps of 1°C as 64 °C, 65°C, 66 °C and so on.
To summarize, while an analogue representation gives a continuous output, a digital representation
produces a discrete output. Analogue systems contain devices that process or work on various physical
quantities represented in analogue form. Digital systems contain devices that process the physical
quantities represented in digital form.

Digital Electronics: Principles, Devices and Applications ~Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5
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Digital techniques and systems have the advantages of being relatively much easier to design and
having higher accuracy, programmability, noise immunity, easier storage of data and ease of fabrication
in integrated circuit form, leading to availability of more complex functions in a smaller size. The
real world, however, is analogue. Most physical quantities — position, velocity, acceleration, force,
pressure, temperature and flowrate, for example — are analogue in nature. That is why analogue
variables representing these quantities need to be digitized or discretized at the input if we want to
benefit from the features and facilities that come with the use of digital techniques. In a typical system
dealing with analogue inputs and outputs, analogue variables are digitized at the input with the help
of an analogue-to-digital converter block and reconverted back to analogue form at the output using a
digital-to-analogue converter block. Analogue-to-digital and digital-to-analogue converter circuits are
discussed at length in the latter part of the book. In the following sections we will discuss various
number systems commonly used for digital representation of data.

1.2 Introduction to Number Systems

We will begin our discussion on various number systems by briefly describing the parameters that are
common to all number systems. An understanding of these parameters and their relevance to number
systems is fundamental to the understanding of how various systems operate. Different characteristics
that define a number system include the number of independent digits used in the number system,
the place values of the different digits constituting the number and the maximum numbers that can
be written with the given number of digits. Among the three characteristic parameters, the most
fundamental is the number of independent digits or symbols used in the number system. It is known as
the radix or base of the number system. The decimal number system with which we are all so familiar
can be said to have a radix of 10 as it has 10 independent digits, i.e. 0, 1, 2, 3,4, 5, 6, 7, 8 and 9.
Similarly, the binary number system with only two independent digits, O and 1, is a radix-2 number
system. The octal and hexadecimal number systems have a radix (or base) of 8 and 16 respectively.
We will see in the following sections that the radix of the number system also determines the other
two characteristics. The place values of different digits in the integer part of the number are given by
O, r', 2, r* and so on, starting with the digit adjacent to the radix point. For the fractional part, these
are r~', r=2, r=* and so on, again starting with the digit next to the radix point. Here, r is the radix
of the number system. Also, maximum numbers that can be written with n digits in a given number
system are equal to r".

1.3 Decimal Number System

The decimal number system is a radix-10 number system and therefore has 10 different digits or
symbols. These are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. All higher numbers after ‘9’ are represented in terms
of these 10 digits only. The process of writing higher-order numbers after ‘9’ consists in writing the
second digit (i.e. ‘1) first, followed by the other digits, one by one, to obtain the next 10 numbers
from ‘10’ to ‘19’. The next 10 numbers from 20’ to ‘29’ are obtained by writing the third digit (i.e.
2’) first, followed by digits ‘0’ to ‘9°, one by one. The process continues until we have exhausted all
possible two-digit combinations and reached ‘99’. Then we begin with three-digit combinations. The
first three-digit number consists of the lowest two-digit number followed by ‘0’ (i.e. 100), and the
process goes on endlessly.

The place values of different digits in a mixed decimal number, starting from the decimal point, are
10°, 10', 10% and so on (for the integer part) and 107!, 1072, 10~ and so on (for the fractional part).
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The value or magnitude of a given decimal number can be expressed as the sum of the various digits
multiplied by their place values or weights.

As an illustration, in the case of the decimal number 3586.263, the integer part (i.e. 3586) can be
expressed as

3586 =6 x 10°4+8 x 10" +5 x 10> +3 x 10* = 6 + 80+ 500 + 3000 = 3586
and the fractional part can be expressed as
265=2x10""+6x1072+5x 1073 =0.240.06 +0.005 = 0.265

We have seen that the place values are a function of the radix of the concerned number system and
the position of the digits. We will also discover in subsequent sections that the concept of each digit
having a place value depending upon the position of the digit and the radix of the number system is
equally valid for the other more relevant number systems.

1.4 Binary Number System

The binary number system is a radix-2 number system with ‘0’ and ‘1’ as the two independent digits.
All larger binary numbers are represented in terms of ‘0’ and ‘1°. The procedure for writing higher-
order binary numbers after ‘1’ is similar to the one explained in the case of the decimal number system.
For example, the first 16 numbers in the binary number system would be 0, 1, 10, 11, 100, 101, 110,
111, 1000, 1001, 1010, 1011, 1100, 1101, 1110 and 1111. The next number after 1111 is 10000, which
is the lowest binary number with five digits. This also proves the point made earlier that a maximum
of only 16 (= 2*) numbers could be written with four digits. Starting from the binary point, the place
values of different digits in a mixed binary number are 2°, 2!, 22 and so on (for the integer part) and
271,272,273 and so on (for the fractional part).

Example 1.1

Consider an arbitrary number system with the independent digits as 0, 1 and X. What is the radix of
this number system? List the first 10 numbers in this number system.

Solution
® The radix of the proposed number system is 3.
e The first 10 numbers in this number system would be 0, 1, X, 10, 11, 1X, X0, X1, XX and 100.

1.4.1 Advantages

Logic operations are the backbone of any digital computer, although solving a problem on computer
could involve an arithmetic operation too. The introduction of the mathematics of logic by George
Boole laid the foundation for the modern digital computer. He reduced the mathematics of logic to a
binary notation of ‘0’ and ‘1’. As the mathematics of logic was well established and had proved itself
to be quite useful in solving all kinds of logical problem, and also as the mathematics of logic (also
known as Boolean algebra) had been reduced to a binary notation, the binary number system had a
clear edge over other number systems for use in computer systems.
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Yet another significant advantage of this number system was that all kinds of data could be
conveniently represented in terms of Os and 1s. Also, basic electronic devices used for hardware
implementation could be conveniently and efficiently operated in two distinctly different modes. For
example, a bipolar transistor could be operated either in cut-off or in saturation very efficiently.

Lastly, the circuits required for performing arithmetic operations such as addition, subtraction,
multiplication, division, etc., become a simple affair when the data involved are represented in the
form of Os and Is.

1.5 Octal Number System

The octal number system has a radix of 8 and therefore has eight distinct digits. All higher-order
numbers are expressed as a combination of these on the same pattern as the one followed in the case
of the binary and decimal number systems described in Sections 1.3 and 1.4. The independent digits
are 0, 1, 2, 3,4, 5, 6 and 7. The next 10 numbers that follow ‘7’, for example, would be 10, 11, 12,
13, 14, 15, 16, 17, 20 and 21. In fact, if we omit all the numbers containing the digits 8 or 9, or both,
from the decimal number system, we end up with an octal number system. The place values for the
different digits in the octal number system are 8°, 8!, 82 and so on (for the integer part) and 87!, 872,
83 and so on (for the fractional part).

1.6 Hexadecimal Number System

The hexadecimal number system is a radix-16 number system and its 16 basic digits are 0, 1, 2, 3,
4,5,6,7,8, 9, A, B, C, D, E and F. The place values or weights of different digits in a mixed
hexadecimal number are 16°, 16!, 162 and so on (for the integer part) and 167!, 1672, 16~ and so on
(for the fractional part). The decimal equivalent of A, B, C, D, E and F are 10, 11, 12, 13, 14 and 15
respectively, for obvious reasons.

The hexadecimal number system provides a condensed way of representing large binary numbers
stored and processed inside the computer. One such example is in representing addresses of different
memory locations. Let us assume that a machine has 64K of memory. Such a memory has 64K (= 2'¢
= 65 536) memory locations and needs 65 536 different addresses. These addresses can be designated
as 0 to 65 535 in the decimal number system and 00000000 00000000 to 11111111 11111111 in the
binary number system. The decimal number system is not used in computers and the binary notation
here appears too cumbersome and inconvenient to handle. In the hexadecimal number system, 65 536
different addresses can be expressed with four digits from 0000 to FFFF. Similarly, the contents of the
memory when represented in hexadecimal form are very convenient to handle.

1.7 Number Systems — Some Common Terms

In this section we will describe some commonly used terms with reference to different number systems.

1.7.1 Binary Number System

Bit is an abbreviation of the term ‘binary digit’ and is the smallest unit of information. It is either ‘0
or ‘1’. A byte is a string of eight bits. The byte is the basic unit of data operated upon as a single unit
in computers. A computer word is again a string of bits whose size, called the ‘word length’ or ‘word
size’, is fixed for a specified computer, although it may vary from computer to computer. The word
length may equal one byte, two bytes, four bytes or be even larger.



Number Systems 5

The I’s complement of a binary number is obtained by complementing all its bits, i.e. by replacing
Os with Is and 1s with Os. For example, the 1’s complement of (10010110), is (01101001),. The 2’s
complement of a binary number is obtained by adding ‘1’ to its 1’s complement. The 2’s complement
of (10010110), is (01101010),.

1.7.2 Decimal Number System

Corresponding to the 1’s and 2’s complements in the binary system, in the decimal number system we
have the 9’s and 10’s complements. The 9’s complement of a given decimal number is obtained by
subtracting each digit from 9. For example, the 9°s complement of (2496),, would be (7503),,. The
10’s complement is obtained by adding ‘1’ to the 9°s complement. The 10’s complement of (2496),,
is (7504),.

1.7.3 Octal Number System

In the octal number system, we have the 7’s and 8’s complements. The 7’s complement of a given
octal number is obtained by subtracting each octal digit from 7. For example, the 7°s complement of
(562); would be (215);. The 8’s complement is obtained by adding ‘1’ to the 7’s complement. The 8’s
complement of (562)g would be (216)s.

1.7.4 Hexadecimal Number System

The 15’s and 16’s complements are defined with respect to the hexadecimal number system. The /5’s
complement is obtained by subtracting each hex digit from 15. For example, the 15’s complement of
(3BF),; would be (C40),,. The 16’s complement is obtained by adding ‘1’ to the 15’s complement.
The 16’s complement of (2AE),, would be (D52),6.

1.8 Number Representation in Binary

Different formats used for binary representation of both positive and negative decimal numbers include
the sign-bit magnitude method, the 1’s complement method and the 2’s complement method.

1.8.1 Sign-Bit Magnitude

In the sign-bit magnitude representation of positive and negative decimal numbers, the MSB represents
the ‘sign’, with a ‘0’ denoting a plus sign and a ‘1’ denoting a minus sign. The remaining bits represent
the magnitude. In eight-bit representation, while MSB represents the sign, the remaining seven bits
represent the magnitude. For example, the eight-bit representation of +9 would be 00001001, and that
for —9 would be 10001001. An n—bit binary representation can be used to represent decimal numbers
in the range of —(2"~! — 1) to +(2"~! —1). That is, eight-bit representation can be used to represent
decimal numbers in the range from —127 to +127 using the sign-bit magnitude format.
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1.8.2 1's Complement

In the 1’s complement format, the positive numbers remain unchanged. The negative numbers are
obtained by taking the 1’s complement of the positive counterparts. For example, +9 will be represented
as 00001001 in eight-bit notation, and —9 will be represented as 11110110, which is the 1’s complement
of 00001001. Again, n-bit notation can be used to represent numbers in the range from —(2"~! —1)
to +(2"~! — 1) using the 1’s complement format. The eight-bit representation of the 1’s complement
format can be used to represent decimal numbers in the range from —127 to +127.

1.8.3 2’s Complement

In the 2’s complement representation of binary numbers, the MSB represents the sign, with a ‘0’
used for a plus sign and a ‘1’ used for a minus sign. The remaining bits are used for representing
magnitude. Positive magnitudes are represented in the same way as in the case of sign-bit or 1°s
complement representation. Negative magnitudes are represented by the 2’s complement of their
positive counterparts. For example, +9 would be represented as 00001001, and —9 would be written
as 11110111. Please note that, if the 2’s complement of the magnitude of +9 gives a magnitude of —9,
then the reverse process will also be true, i.e. the 2’s complement of the magnitude of —9 will give a
magnitude of +9. The n-bit notation of the 2’s complement format can be used to represent all decimal
numbers in the range from +(2"~! — 1) to —(2"!). The 2’s complement format is very popular as it is
very easy to generate the 2’s complement of a binary number and also because arithmetic operations
are relatively easier to perform when the numbers are represented in the 2’s complement format.

1.9 Finding the Decimal Equivalent

The decimal equivalent of a given number in another number system is given by the sum of all
the digits multiplied by their respective place values. The integer and fractional parts of the given
number should be treated separately. Binary-to-decimal, octal-to-decimal and hexadecimal-to-decimal
conversions are illustrated below with the help of examples.

1.9.1 Binary-to-Decimal Conversion

The decimal equivalent of the binary number (1001.0101), is determined as follows:

® The integer part = 1001

® The decimal equivalent =1 x 2° + 0 x 2! + 0 x 22+ 1 x2*=1+0+0+8=9

® The fractional part = .0101

e Therefore, the decimal equivalent =0 x 27! + 1 x 22 4+0x 23 +1x2#=0+025+0
+ 0.0625 = 0.3125

Therefore, the decimal equivalent of (1001.0101), = 9.3125

1.9.2 Octal-to-Decimal Conversion

The decimal equivalent of the octal number (137.21), is determined as follows:

® The integer part = 137
e The decimal equivalent =7 x 8° +3 x 8' + 1 x 8 =7 +24 + 64 =95
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® The fractional part = .21
e The decimal equivalent =2 x 87! + 1 x 872 = 0.265
e Therefore, the decimal equivalent of (137.21)y = (95.265),,

1.9.3 Hexadecimal-to-Decimal Conversion

The decimal equivalent of the hexadecimal number (1E0.2A),¢ is determined as follows:

e The integer part = 1EO

e The decimal equivalent = 0 x 16° + 14 x 16" 4+ 1 x 167 = 0 + 224 + 256 = 480
® The fractional part = 2A

e The decimal equivalent =2 x 167! + 10 x 1672 = 0.164

e Therefore, the decimal equivalent of (1E0.2A),, = (480.164),,

Example 1.2

Find the decimal equivalent of the following binary numbers expressed in the 2’s complement format:

(a) 00001110;
(b) 10001110.

Solution
(a) The MSB bit is ‘0’, which indicates a plus sign.
The magnitude bits are 0001110.
The decimal equivalent =0x 2%+ 1 x 2! +1x224+1x 23 +0x2*+0x 25 +0 x 2°
=04+24+4+84+04+0+0=14

Therefore, 00001110 represents +14
(b) The MSB bit is ‘1°, which indicates a minus sign
The magnitude bits are therefore given by the 2’s complement of 0001110, i.e. 1110010
The decimal equivalent =0 x 2% 4+ 1 x 2" +0x22+0x 23 +1 x 24 4+ 1 x 23
+1x26
=04+24+0+0+164+32+64=114

Therefore, 10001110 represents —114

1.10 Decimal-to-Binary Conversion

As outlined earlier, the integer and fractional parts are worked on separately. For the integer part,
the binary equivalent can be found by successively dividing the integer part of the number by 2
and recording the remainders until the quotient becomes ‘0’. The remainders written in reverse order
constitute the binary equivalent. For the fractional part, it is found by successively multiplying the
fractional part of the decimal number by 2 and recording the carry until the result of multiplication
is ‘0’. The carry sequence written in forward order constitutes the binary equivalent of the fractional



8 Digital Electronics

part of the decimal number. If the result of multiplication does not seem to be heading towards zero in the
case of the fractional part, the process may be continued only until the requisite number of equivalent bits
has been obtained. This method of decimal-binary conversion is popularly known as the double-dabble
method. The process can be best illustrated with the help of an example.

Example 1.3
We will find the binary equivalent of (13.375),.

Solution
® The integer part = 13

Divisor Dividend Remainder

2 13 —
2 6 1
2 3 0
2 1 1
— 0 1

The binary equivalent of (13),, is therefore (1101),

The fractional part = .375

0.375 x 2 = 0.75 with a carry of 0

0.75 x 2 = 0.5 with a carry of 1

0.5 x 2 = 0 with a carry of 1

The binary equivalent of (0.375),, = (.011),

Therefore, the binary equivalent of (13.375),, = (1101.011),

1.11 Decimal-to-Octal Conversion

The process of decimal-to-octal conversion is similar to that of decimal-to-binary conversion. The
progressive division in the case of the integer part and the progressive multiplication while working
on the fractional part here are by ‘8’ which is the radix of the octal number system. Again, the integer
and fractional parts of the decimal number are treated separately. The process can be best illustrated
with the help of an example.

Example 1.4
We will find the octal equivalent of (73.75),,.

Solution
e The integer part = 73

Divisor Dividend Remainder
8 73

8 9

8 1
0

1
1
1
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e The octal equivalent of (73),, = (111)g

e The fractional part = 0.75

® (.75 x 8 = 0 with a carry of 6

e The octal equivalent of (0.75),, = (.6),

e Therefore, the octal equivalent of (73.75),,= (111.6),

1.12 Decimal-to-Hexadecimal Conversion

The process of decimal-to-hexadecimal conversion is also similar. Since the hexadecimal number
system has a base of 16, the progressive division and multiplication factor in this case is 16. The
process is illustrated further with the help of an example.

Example 1.5

Let us determine the hexadecimal equivalent of (82.25),,.

Solution
e The integer part = 82

Divisor Dividend Remainder

16 82 —
16 5 2
— 0 5

e The hexadecimal equivalent of (82),, = (52)4

® The fractional part = 0.25

® (0.25 x 16 = 0 with a carry of 4

e Therefore, the hexadecimal equivalent of (82.25),, = (52.4)4

1.13 Binary-Octal and Octal-Binary Conversions

An octal number can be converted into its binary equivalent by replacing each octal digit with its
three-bit binary equivalent. We take the three-bit equivalent because the base of the octal number
system is 8 and it is the third power of the base of the binary number system, i.e. 2. All we have then
to remember is the three-bit binary equivalents of the basic digits of the octal number system. A binary
number can be converted into an equivalent octal number by splitting the integer and fractional parts
into groups of three bits, starting from the binary point on both sides. The Os can be added to complete
the outside groups if needed.

Example 1.6
Let us find the binary equivalent of (374.26)g and the octal equivalent of (1110100.0100111),.
Solution

e The given octal number = (374.26),
e The binary equivalent = (011 111 100.010 110),= (011111100.010110),
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e Any Os on the extreme left of the integer part and extreme right of the fractional part of the equivalent
binary number should be omitted. Therefore, (011111100.010110),= (11111100.01011),
e The given binary number = (1110100.0100111),
e (1110100.0100111), = (1 110 100.010 011 1),
= (001 110 100.010 011 100), = (164.234),

1.14 Hex-Binary and Binary—Hex Conversions

A hexadecimal number can be converted into its binary equivalent by replacing each hex digit with its
four-bit binary equivalent. We take the four-bit equivalent because the base of the hexadecimal number
system is 16 and it is the fourth power of the base of the binary number system. All we have then to
remember is the four-bit binary equivalents of the basic digits of the hexadecimal number system. A
given binary number can be converted into an equivalent hexadecimal number by splitting the integer
and fractional parts into groups of four bits, starting from the binary point on both sides. The Os can
be added to complete the outside groups if needed.

Example 1.7
Let us find the binary equivalent of (17E.F6),s and the hex equivalent of (1011001110.011011101),.

Solution
e The given hex number = (17E.F6),,
e The binary equivalent = (0001 0111 1110.1111 0110),

= (000101111110.11110110),

= (101111110.1111011),
e The Os on the extreme left of the integer part and on the extreme right of the fractional part have

been omitted.
e The given binary number = (1011001110.011011101),
= (10 1100 1110.0110 1110 1),

e The hex equivalent = (0010 1100 1110.0110 1110 1000), = (2CE.6ER),,

1.15 Hex-Octal and Octal-Hex Conversions

For hexadecimal—octal conversion, the given hex number is firstly converted into its binary equivalent
which is further converted into its octal equivalent. An alternative approach is firstly to convert the
given hexadecimal number into its decimal equivalent and then convert the decimal number into an
equivalent octal number. The former method is definitely more convenient and straightforward. For
octal-hexadecimal conversion, the octal number may first be converted into an equivalent binary
number and then the binary number transformed into its hex equivalent. The other option is firstly to
convert the given octal number into its decimal equivalent and then convert the decimal number into
its hex equivalent. The former approach is definitely the preferred one. Two types of conversion are
illustrated in the following example.

Example 1.8
Let us find the octal equivalent of (2F.C4),s and the hex equivalent of (762.013)g.
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Solution
e The given hex number = (2F.C4),,.
e The binary equivalent = (0010 1111.1100 0100), = (00101111.11000100),

= (101111.110001), = (101 111.110 001), = (57.61)s.

e The given octal number = (762.013);.
e The octal number = (762.013); = (111 110 010.000 001 011),

= (111110010.000001011),
= (0001 1111 0010.0000 0101 1000), = (1F2.058),c.

1.16 The Four Axioms

Conversion of a given number in one number system to its equivalent in another system has been discussed
at length in the preceding sections. The methodology has been illustrated with solved examples. The
complete methodology can be summarized as four axioms or principles, which, if understood properly,
would make it possible to solve any problem related to conversion of a given number in one number system
to its equivalent in another number system. These principles are as follows:

1.

Whenever it is desired to find the decimal equivalent of a given number in another number system,
it is given by the sum of all the digits multiplied by their weights or place values. The integer and
fractional parts should be handled separately. Starting from the radix point, the weights of different
digits are r°, r!, r? for the integer part and r~!, r=2, r=* for the fractional part, where r is the radix
of the number system whose decimal equivalent needs to be determined.

. To convert a given mixed decimal number into an equivalent in another number system, the integer

part is progressively divided by r and the remainders noted until the result of division yields a
zero quotient. The remainders written in reverse order constitute the equivalent. r is the radix of
the transformed number system. The fractional part is progressively multiplied by r and the carry
recorded until the result of multiplication yields a zero or when the desired number of bits has been
obtained. The carrys written in forward order constitute the equivalent of the fractional part.

. The octal-binary conversion and the reverse process are straightforward. For octal-binary

conversion, replace each digit in the octal number with its three-bit binary equivalent. For
hexadecimal-binary conversion, replace each hex digit with its four-bit binary equivalent. For
binary—octal conversion, split the binary number into groups of three bits, starting from the binary
point, and, if needed, complete the outside groups by adding Os, and then write the octal equivalent
of these three-bit groups. For binary—hex conversion, split the binary number into groups of four
bits, starting from the binary point, and, if needed, complete the outside groups by adding Os, and
then write the hex equivalent of the four-bit groups.

. For octal-hexadecimal conversion, we can go from the given octal number to its binary equivalent

and then from the binary equivalent to its hex counterpart. For hexadecimal—octal conversion, we
can go from the hex to its binary equivalent and then from the binary number to its octal equivalent.

Example 1.9

Assume an arbitrary number system having a radix of 5 and 0, 1, 2, L and M as its independent digits.
Determine:

(a) the decimal equivalent of (12LM.LI);
(b) the total number of possible four-digit combinations in this arbitrary number system.
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Solution
(a) The decimal equivalent of (12LM) is given by

Mx5' 4L x5 42552+ 1 x5 =4x5"43 x5 +2x 5 +1 x5} (L =3, M=4)
=4415+504125=19%

The decimal equivalent of (L1) is given by

Lx5'4+1x52=3x5"1452=0.64

Combining the results, (12LM.L1)5 = (194.64),,,.
(b) The total number of possible four-digit combinations = 5% = 625.

Example 1.10

The 7’s complement of a certain octal number is 5264. Determine the binary and hexadecimal
equivalents of that octal number.

Solution

The 7’s complement = 5264.

e Therefore, the octal number = (2513);.

e The binary equivalent = (010 101 001 011), = (10101001011),.

e Also, (10101001011), = (101 0100 1011), = (0101 0100 1011), = (54B),s.

e Therefore, the hex equivalent of (2513); = (54B),, and the binary equivalent of (2513); =
(10101001011),.

1.17 Floating-Point Numbers

Floating-point notation can be used conveniently to represent both large as well as small fractional
or mixed numbers. This makes the process of arithmetic operations on these numbers relatively much
easier. Floating-point representation greatly increases the range of numbers, from the smallest to the
largest, that can be represented using a given number of digits. Floating-point numbers are in general
expressed in the form

N =mx b° (1.1)

where m is the fractional part, called the significand or mantissa, e is the integer part, called the
exponent, and b is the base of the number system or numeration. Fractional part m is a p-digit number
of the form (+d.dddd . . . dd), with each digit d being an integer between 0 and b — 1 inclusive. If the
leading digit of m is nonzero, then the number is said to be normalized.

Equation (1.1) in the case of decimal, hexadecimal and binary number systems will be written as
follows:

Decimal system

N =mx 10° (1.2)
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Hexadecimal system

N=mx16° (1.3)
Binary system

N=mx?2° (1.4)

For example, decimal numbers 0.0003754 and 3754 will be represented in floating-point notation
as 3.754 x 107 and 3.754 x 10° respectively. A hex number 257.ABF will be represented as
2.57ABF x 16%. In the case of normalized binary numbers, the leading digit, which is the most
significant bit, is always ‘1’ and thus does not need to be stored explicitly.

Also, while expressing a given mixed binary number as a floating-point number, the radix point is
so shifted as to have the most significant bit immediately to the right of the radix point as a ‘1’. Both
the mantissa and the exponent can have a positive or a negative value.

The mixed binary number (110.1011), will be represented in floating-point notation as .1101011
x 23 = .1101011e 4 0011. Here, .1101011 is the mantissa and e +0011 implies that the exponent is
+3. As another example, (0.000111), will be written as .111e — 0011, with .111 being the mantissa
and e — 0011 implying an exponent of —3. Also, (—0.00000101), may be written as —.101 x 27> =
—.101e— 0101, where —.101 is the mantissa and ¢ — 0101 indicates an exponent of —5. If we wanted
to represent the mantissas using eight bits, then .1101011 and .111 would be represented as .11010110
and .11100000.

1.17.1 Range of Numbers and Precision

The range of numbers that can be represented in any machine depends upon the number of bits in the
exponent, while the fractional accuracy or precision is ultimately determined by the number of bits
in the mantissa. The higher the number of bits in the exponent, the larger is the range of numbers
that can be represented. For example, the range of numbers possible in a floating-point binary number
format using six bits to represent the magnitude of the exponent would be from 27% to 2¥%4, which
is equivalent to a range of 10~"°to 10*!°. The precision is determined by the number of bits used to
represent the mantissa. It is usually represented as decimal digits of precision. The concept of precision
as defined with respect to floating-point notation can be explained in simple terms as follows. If the
mantissa is stored in n number of bits, it can represent a decimal number between 0 and 2" — 1 as the
mantissa is stored as an unsigned integer. If M is the largest number such that 10 — 1 is less than or
equal to 2" — 1, then M is the precision expressed as decimal digits of precision. For example, if the
mantissa is expressed in 20 bits, then decimal digits of precision can be found to be about 6, as 22 — 1
equals 1 048 575, which is a little over 10° — 1. We will briefly describe the commonly used formats
for binary floating-point number representation.

1.17.2 Floating-Point Number Formats

The most commonly used format for representing floating-point numbers is the IEEE-754 standard.
The full title of the standard is IEEE Standard for Binary Floating-point Arithmetic (ANSI/IEEE STD
754-1985). It is also known as Binary Floating-point Arithmetic for Microprocessor Systems, IEC
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60559:1989. An ongoing revision to IEEE-754 is IEEE-754r. Another related standard IEEE 854-
1987 generalizes IEEE-754 to cover both binary and decimal arithmetic. A brief description of salient
features of the IEEE-754 standard, along with an introduction to other related standards, is given below.

ANSI/IEEE-754 Format

The IEEE-754 floating point is the most commonly used representation for real numbers on
computers including Intel-based personal computers, Macintoshes and most of the UNIX platforms.
It specifies four formats for representing floating-point numbers. These include single-precision,
double-precision, single-extended precision and double-extended precision formats. Table 1.1 lists
characteristic parameters of the four formats contained in the IEEE-754 standard. Of the four formats
mentioned, the single-precision and double-precision formats are the most commonly used ones. The
single-extended and double-extended precision formats are not common.

Figure 1.1 shows the basic constituent parts of the single- and double-precision formats. As shown in
the figure, the floating-point numbers, as represented using these formats, have three basic components
including the sign, the exponent and the mantissa. A ‘0’ denotes a positive number and a ‘1’ denotes
a negative number. The n-bit exponent field needs to represent both positive and negative exponent
values. To achieve this, a bias equal to 2"~! — 1 is added to the actual exponent in order to obtain the
stored exponent. This equals 127 for an eight-bit exponent of the single-precision format and 1023 for
an 11-bit exponent of the double-precision format. The addition of bias allows the use of an exponent
in the range from —127 to 4128, corresponding to a range of 0-255 in the first case, and in the range
from —1023 to +1024, corresponding to a range of 0-2047 in the second case. A negative exponent
is always represented in 2’s complement form. The single-precision format offers a range from 2~'?’
to 2127, which is equivalent to 1073 to 10738, The figures are 2712 to 2192, which is equivalent to
1073% to 10*3% in the case of the double-precision format.

The extreme exponent values are reserved for representing special values. For example, in the case
of the single-precision format, for an exponent value of —127, the biased exponent value is zero,
represented by an all Os exponent field. In the case of a biased exponent of zero, if the mantissa is zero
as well, the value of the floating-point number is exactly zero. If the mantissa is nonzero, it represents
a denormalized number that does not have an assumed leading bit of ‘1°. A biased exponent of +255,
corresponding to an actual exponent of +128, is represented by an all 1s exponent field. If the mantissa
is zero, the number represents infinity. The sign bit is used to distinguish between positive and negative
infinity. If the mantissa is nonzero, the number represents a ‘NaN’ (Not a Number). The value NaN is
used to represent a value that does not represent a real number. This means that an eight-bit exponent
can represent exponent values between —126 and +127. Referring to Fig. 1.1(a), the MSB of byte 1
indicates the sign of the mantissa. The remaining seven bits of byte 1 and the MSB of byte 2 represent
an eight-bit exponent. The remaining seven bits of byte 2 and the 16 bits of byte 3 and byte 4 give a
23-bit mantissa. The mantissa m is normalized. The left-hand bit of the normalized mantissa is always

Table 1.1 Characteristic parameters of IEEE-754 formats.

Precision Sign (bits) Exponent (bits) Mantissa (bits) Total length (bits) Decimal digits of precision
Single 1 8 23 32 >6
Single-extended 1 >11 >32 >44 >9
Double 1 11 52 64 > 15

1

Double-extended >15 > 64 >80 > 19
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Byte-1 Byte-2 Byte-3 Byte-4
8-bit 23-bit
Sign exponent mantissa
(a)
Byte-1 Byte-2 Byte-3 Byte-4 Byte-5 Byte-6 Byte-7 Byte-8
T 11-bit 52-bit
Sign exponent mantissa

(b)

Figure 1.1 Single-precision and double-precision formats.

‘1°. This ‘1’ is not included but is always implied. A similar explanation can be given in the case of
the double-precision format shown in Fig. 1.1(b).

Step-by-step transformation of (23),, into an equivalent floating-point number in single-precision
IEEE format is as follows:

e (23),, = (10111), = 1.0111e 4 0100.

e The mantissa = 0111000 00000000 00000000.

® The exponent = 00000100.

e The biased exponent = 00000100 4+ 01111111 = 10000011.
® The sign of the mantissa = 0.

e (423),, = 01000001 10111000 00000000 00000000.

e Also, (-23),,= 11000001 10111000 00000000 00000000.

IEEE-754r Format
As mentioned earlier, IEEE-754r is an ongoing revision to the IEEE-754 standard. The main objective of
the revision is to extend the standard wherever it has become necessary, the most obvious enhancement
to the standard being the addition of the 128-bit format and decimal format. Extension of the standard
to include decimal floating-point representation has become necessary as most commercial data are
held in decimal form and the binary floating point cannot represent decimal fractions exactly. If the
binary floating point is used to represent decimal data, it is likely that the results will not be the same as
those obtained by using decimal arithmetic.

In the revision process, many of the definitions have been rewritten for clarification and consistency.
In terms of the addition of new formats, a new addition to the existing binary formats is the 128-bit
‘quad-precision’ format. Also, three new decimal formats, matching the lengths of binary formats,
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have been described. These include decimal formats with a seven-, 16- and 34-digit mantissa, which
may be normalized or denormalized. In order to achieve maximum range (decided by the number of
exponent bits) and precision (decided by the number of mantissa bits), the formats merge part of the
exponent and mantissa into a combination field and compress the remainder of the mantissa using
densely packed decimal encoding. Detailed description of the revision, however, is beyond the scope
of this book.

IEEE-854 Standard

The main objective of the IEEE-854 standard was to define a standard for floating-point arithmetic
without the radix and word length dependencies of the better-known IEEE-754 standard. That is why
IEEE-854 is called the IEEE standard for radix-independent floating-point arithmetic. Although the
standard specifies only the binary and decimal floating-point arithmetic, it provides sufficient guidelines
for those contemplating the implementation of the floating point using any other radix value such
as 16 of the hexadecimal number system. This standard, too, specifies four formats including single,
single-extended, double and double-extended precision formats.

Example 1.11

Determine the floating-point representation of (—142),, using the IEEE single-precision format.

Solution

e As a first step, we will determine the binary equivalent of (142),,. Following the procedure outlined
in an earlier part of the chapter, the binary equivalent can be written as (142),, = (10001110),.
(10001110), = 1.000 1110 x 27 = 1.0001110e + 0111.

The mantissa = 0001110 00000000 00000000.

The exponent = 00000111.

The biased exponent = 00000111 4+ 01111111 = 10000110.

The sign of the mantissa = 1.

Therefore, (—142),, = 11000011 00001110 00000000 00000000.

Example 1.12

Determine the equivalent decimal numbers for the following floating-point numbers:

(a) 00111111 01000000 00000000 00000000 (IEEE-754 single-precision format);
(b) 11000000 00101001 01100 . .. 45 Os (IEEE-754 double-precision format).

Solution
(a) From an examination of the given number:
The sign of the mantissa is positive, as indicated by the ‘0’ bit in the designated position.
The biased exponent = 01111110.
The unbiased exponent =01111110—01111111 = 11111111.
It is clear from the eight bits of unbiased exponent that the exponent is negative, as the 2’s
complement representation of a number gives ‘1’ in place of MSB.
The magnitude of the exponent is given by the 2’s complement of (11111111),, which is
(00000001), = 1.
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(b)

Therefore, the exponent = —1.

The mantissa bits = 11000000 00000000 00000000 (‘1° in MSB is implied).

The normalized mantissa = 1.1000000 00000000 00000000.

The magnitude of the mantissa can be determined by shifting the mantissa bits one position to the left.
That is, the mantissa = (.11), = (0.75),.

The sign of the mantissa is negative, indicated by the ‘1’ bit in the designated position.

The biased exponent = 10000000010.

The unbiased exponent = 10000000010 —01111111111 = 00000000011.

It is clear from the 11 bits of unbiased exponent that the exponent is positive owing to the ‘0’ in
place of MSB. The magnitude of the exponent is 3. Therefore, the exponent = +3.

The mantissa bits = 1100101100 ... 45 Os (‘1” in MSB is implied).

The normalized mantissa = 1.100101100 ... 45 Os.

The magnitude of the mantissa can be determined by shifting the mantissa bits three positions to

the right.
That is, the mantissa = (1100.101), = (12.625),,.
Therefore, the equivalent decimal number = —12.625.

Review Questions

1.

What is meant by the radix or base of a number system? Briefly describe why hex representation is
used for the addresses and the contents of the memory locations in the main memory of a computer.

. What do you understand by the I's and 2’s complements of a binary number? What will be the

range of decimal numbers that can be represented using a 16-bit 2’s complement format?

. Briefly describe the salient features of the IEEE-754 standard for representing floating-point

numbers.

. Why was it considered necessary to carry out a revision of the IEEE-754 standard? What are the

main features of IEEE-754r (the notation for IEEE-754 under revision)?

. In a number system, what decides (a) the place value or weight of a given digit and (b) the maximum

numbers representable with a given number of digits?

. In a floating-point representation, what represents (a) the range of representable numbers and (b)

the precision with which a given number can be represented?

. Why is there a need to have floating-point standards that can take care of decimal data and decimal

arithmetic in addition to binary data and arithmetic?

Problems

1.

Do the following conversions:

(a) eight-bit 2’s complement representation of (—23),;
(b) The decimal equivalent of (00010111), represented in 2’s complement form.
(a) 11101001; (b) +23

. Two possible binary representations of (—1),, are (10000001), and (11111111),. One of them

belongs to the sign-bit magnitude format and the other to the 2’s complement format. Identify.
(10000001 ), = sign-bit magnitude and (11111111), = 2’s complement form

. Represent the following in the IEEE-754 floating-point standard using the single-precision format:

(a) 32-bit binary number 11110000 11001100 10101010 00001111,
(b) (—118.625),0.
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(a) 01001111 01110000 11001100 10101010;
(b) 11000010 11101101 01000000 00000000

4. Give the next three numbers in each of the following hex sequences:

(a) 4AS5, 4A6,4A7,4A8, ...,
(b) B998, B999, ...
(a) 4A9, 4AA, 4AB; (b) B99A, B99B, B99C
5. Show that:

(@) (13A7);5 = (5031),;
(b) (3F2),c = (1111110010),.

6. Assume a radix-32 arbitrary number system with 0-9 and A-V as its basic digits. Express the mixed
binary number (110101.001), in this arbitrary number system.
1L4
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Binary Codes

The present chapter is an extension of the previous chapter on number systems. In the previous
chapter, beginning with some of the basic concepts common to all number systems and an outline
on the familiar decimal number system, we went on to discuss the binary, the hexadecimal and
the octal number systems. While the binary system of representation is the most extensively used
one in digital systems, including computers, octal and hexadecimal number systems are commonly
used for representing groups of binary digits. The binary coding system, called the straight binary
code and discussed in the previous chapter, becomes very cumbersome to handle when used to
represent larger decimal numbers. To overcome this shortcoming, and also to perform many other
special functions, several binary codes have evolved over the years. Some of the better-known binary
codes, including those used efficiently to represent numeric and alphanumeric data, and the codes
used to perform special functions, such as detection and correction of errors, will be detailed in this
chapter.

2.1 Binary Coded Decimal

The binary coded decimal (BCD) is a type of binary code used to represent a given decimal number
in an equivalent binary form. BCD-to-decimal and decimal-to-BCD conversions are very easy and
straightforward. It is also far less cumbersome an exercise to represent a given decimal number in
an equivalent BCD code than to represent it in the equivalent straight binary form discussed in the
previous chapter.

The BCD equivalent of a decimal number is written by replacing each decimal digit in the integer
and fractional parts with its four-bit binary equivalent. As an example, the BCD equivalent of (23.15),,
is written as (0010 0011.0001 0101)gcp. The BCD code described above is more precisely known
as the 8421 BCD code, with 8, 4, 2 and 1 representing the weights of different bits in the four-bit
groups, starting from MSB and proceeding towards LSB. This feature makes it a weighted code,
which means that each bit in the four-bit group representing a given decimal digit has an assigned
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Table 2.1 BCD codes.

Decimal 8421 BCD code 4221 BCD code 5421 BCD code

0 0000 0000 0000
1 0001 0001 0001
2 0010 0010 0010
3 0011 0011 0011
4 0100 1000 0100
5 0101 0111 1000
6 0110 1100 1001
7 0111 1101 1010
8 1000 1110 1011
9 1001 1111 1100

weight. Other weighted BCD codes include the 4221 BCD and 5421 BCD codes. Again, 4, 2, 2 and
1 in the 4221 BCD code and 5, 4, 2 and 1 in the 5421 BCD code represent weights of the relevant
bits. Table 2.1 shows a comparison of 8421, 4221 and 5421 BCD codes. As an example, (98.16),,
will be written as 1111 1110.0001 1100 in 4221 BCD code and 1100 1011.0001 1001 in 5421 BCD
code. Since the 8421 code is the most popular of all the BCD codes, it is simply referred to as the
BCD code.

2.1.1 BCD-to-Binary Conversion

A given BCD number can be converted into an equivalent binary number by first writing its decimal
equivalent and then converting it into its binary equivalent. The first step is straightforward, and the
second step was explained in the previous chapter. As an example, we will find the binary equivalent
of the BCD number 0010 1001.0111 0101:

BCD number: 0010 1001.0111 0101.

Corresponding decimal number: 29.75.

The binary equivalent of 29.75 can be determined to be 11101 for the integer part and .11 for the
fractional part.

Therefore, (0010 1001.0111 0101)cp = (11101.11),.

2.1.2 Binary-to-BCD Conversion

The process of binary-to-BCD conversion is the same as the process of BCD-to-binary conversion
executed in reverse order. A given binary number can be converted into an equivalent BCD number
by first determining its decimal equivalent and then writing the corresponding BCD equivalent. As an
example, we will find the BCD equivalent of the binary number 10101011.101:

® The decimal equivalent of this binary number can be determined to be 171.625.
® The BCD equivalent can then be written as 0001 0111 0001.0110 0010 0101.
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2.1.3 Higher-Density BCD Encoding

In the regular BCD encoding of decimal numbers, the number of bits needed to represent a given
decimal number is always greater than the number of bits required for straight binary encoding of the
same. For example, a three-digit decimal number requires 12 bits for representation in conventional
BCD format. However, since 2' > 103, if these three decimal digits are encoded together, only 10
bits would be needed to do that. Two such encoding schemes are Chen-Ho encoding and the densely
packed decimal. The latter has the advantage that subsets of the encoding encode two digits in the
optimal seven bits and one digit in four bits like regular BCD.

2.1.4 Packed and Unpacked BCD Numbers

In the case of unpacked BCD numbers, each four-bit BCD group corresponding to a decimal digit is
stored in a separate register inside the machine. In such a case, if the registers are eight bits or wider,
the register space is wasted.

In the case of packed BCD numbers, two BCD digits are stored in a single eight-bit register. The
process of combining two BCD digits so that they are stored in one eight-bit register involves shifting
the number in the upper register to the left 4 times and then adding the numbers in the upper and lower
registers. The process is illustrated by showing the storage of decimal digits ‘5’ and ‘7’:

e Decimal digit 5 is initially stored in the eight-bit register as: 0000 0101.

® Decimal digit 7 is initially stored in the eight-bit register as: 0000 0111.

e After shifting to the left 4 times, the digit 5 register reads: 0101 0000.

e The addition of the contents of the digit 5 and digit 7 registers now reads: 0101 0111.

Example 2.1

How many bits would be required to encode decimal numbers 0 to 9999 in straight binary and BCD
codes? What would be the BCD equivalent of decimal 27 in 16-bit representation?

Solution

e Total number of decimals to be represented = 10 000 = 10* =232,

e Therefore, the number of bits required for straight binary encoding = 14.
® The number of bits required for BCD encoding = 16.

® The BCD equivalent of 27 in 16-bit representation = 0000000000100111.

2.2 Excess-3 Code

The excess-3 code is another important BCD code. It is particularly significant for arithmetic operations
as it overcomes the shortcomings encountered while using the 8421 BCD code to add two decimal
digits whose sum exceeds 9. The excess-3 code has no such limitation, and it considerably simplifies
arithmetic operations. Table 2.2 lists the excess-3 code for the decimal numbers 0-9.

The excess-3 code for a given decimal number is determined by adding ‘3’ to each decimal
digit in the given number and then replacing each digit of the newly found decimal number by
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Table 2.2 Excess-3 code equivalent of decimal numbers.

Decimal number  Excess-3 code  Decimal number  Excess-3 code

0 0011 5 1000
1 0100 6 1001
2 0101 7 1010
3 0110 8 1011
4 0111 9 1100

its four-bit binary equivalent. It may be mentioned here that, if the addition of ‘3’ to a digit
produces a carry, as is the case with the digits 7, 8 and 9, that carry should not be taken
forward. The result of addition should be taken as a single entity and subsequently replaced
with its excess-3 code equivalent. As an example, let us find the excess-3 code for the decimal
number 597:

e The addition of ‘3’ to each digit yields the three new digits/numbers ‘8’, ‘12’ and ‘10’.
® The corresponding four-bit binary equivalents are 1000, 1100 and 1010 respectively.
® The excess-3 code for 597 is therefore given by: 1000 1100 1010 =100011001010.

Also, it is normal practice to represent a given decimal digit or number using the maximum number
of digits that the digital system is capable of handling. For example, in four-digit decimal arithmetic,
5 and 37 would be written as 0005 and 0037 respectively. The corresponding 8421 BCD equivalents
would be 0000000000000101 and 0000000000110111 and the excess-3 code equivalents would be
0011001100111000 and 0011001101101010.

Corresponding to a given excess-3 code, the equivalent decimal number can be determined by
first splitting the number into four-bit groups, starting from the radix point, and then subtracting
0011 from each four-bit group. The new number is the 8421 BCD equivalent of the given
excess-3 code, which can subsequently be converted into the equivalent decimal number. As an
example, following these steps, the decimal equivalent of excess-3 number 01010110.10001010 would
be 23.57.

Another significant feature that makes this code attractive for performing arithmetic operations is
that the complement of the excess-3 code of a given decimal number yields the excess-3 code for 9’s
complement of the decimal number. As adding 9’s complement of a decimal number B to a decimal
number A achieves A — B, the excess-3 code can be used effectively for both addition and subtraction
of decimal numbers.

Example 2.3

Find (a) the excess-3 equivalent of (237.75),, and (b) the decimal equivalent of the excess-3 number
110010100011.01110101.

Solution

(a) Integer part=237. The excess-3 code for (237),, is obtained by replacing 2, 3 and 7 with the
four-bit binary equivalents of 5, 6 and 10 respectively. This gives the excess-3 code for (237),,
as: 0101 0110 1010=010101101010.
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Fractional part =.75. The excess-3 code for (.75),, is obtained by replacing 7 and 5 with the four-bit
binary equivalents of 10 and 8 respectively. That is, the excess-3 code for (.75),, =.10101000.
Combining the results of the integral and fractional parts, the excess-3 code for
(237.75),,=010101101010.10101000.

(b) The excess-3 code =110010100011.01110101 =1100 1010 0011.0111 0101.
Subtracting 0011 from each four-bit group, we obtain the new number as: 1001 0111 0000.0100
0010.
Therefore, the decimal equivalent=(970.42),,.

2.3 Gray Code

The Gray code was designed by Frank Gray at Bell Labs and patented in 1953. It is an unweighted
binary code in which two successive values differ only by 1 bit. Owing to this feature, the maximum
error that can creep into a system using the binary Gray code to encode data is much less than the
worst-case error encountered in the case of straight binary encoding. Table 2.3 lists the binary and
Gray code equivalents of decimal numbers 0—15. An examination of the four-bit Gray code numbers,
as listed in Table 2.3, shows that the last entry rolls over to the first entry. That is, the last and the
first entry also differ by only 1 bit. This is known as the cyclic property of the Gray code. Although
there can be more than one Gray code for a given word length, the term was first applied to a
specific binary code for non-negative integers and called the binary-reflected Gray code or simply the
Gray code.

There are various ways by which Gray codes with a given number of bits can be remembered.
One such way is to remember that the least significant bit follows a repetitive pattern of 2’ (11,
00, 11,...), the next higher adjacent bit follows a pattern of ‘4> (1111, 0000, 1111,...) and so
on. We can also generate the n-bit Gray code recursively by prefixing a ‘0’ to the Gray code
for n—1 bits to obtain the first 2"~' numbers, and then prefixing ‘1’ to the reflected Gray code
for n—1 bits to obtain the remaining 2"~' numbers. The reflected Gray code is nothing but the
code written in reverse order. The process of generation of higher-bit Gray codes using the reflect-
and-prefix method is illustrated in Table 2.4. The columns of bits between those representing the
Gray codes give the intermediate step of writing the code followed by the same written in reverse
order.

Table 2.3 Gray code.

Decimal ~ Binary Gray Decimal Binary  Gray

0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
4 0100 0110 12 1100 1010
5 0101 0111 13 1101 1011
6 0110 0101 14 1110 1001
7 0111 0100 15 1111 1000
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Table 2.4 Generation of higher-bit Gray code numbers.

One-bit Gray code Two-bit Gray code Three-bit Gray code Four-bit Gray code
0 00 00 000 000 0000
1 1 01 01 001 001 0001
1 11 11 011 011 0011
0 10 10 010 010 0010
10 110 110 0110
11 111 111 0111
01 101 101 0101
00 100 100 0100
100 1100
101 1101
111 1111
110 1110
010 1010
011 1011
001 1001
000 1000

2.3.1 Binary-Gray Code Conversion

A given binary number can be converted into its Gray code equivalent by going through the following
steps:

1. Begin with the most significant bit (MSB) of the binary number. The MSB of the Gray code
equivalent is the same as the MSB of the given binary number.

2. The second most significant bit, adjacent to the MSB, in the Gray code number is obtained by
adding the MSB and the second MSB of the binary number and ignoring the carry, if any. That is,
if the MSB and the bit adjacent to it are both ‘1’, then the corresponding Gray code bit would be a
‘0.

3. The third most significant bit, adjacent to the second MSB, in the Gray code number is obtained
by adding the second MSB and the third MSB in the binary number and ignoring the carry, if any.

4. The process continues until we obtain the LSB of the Gray code number by the addition of the LSB
and the next higher adjacent bit of the binary number.

The conversion process is further illustrated with the help of an example showing step-by-step
conversion of (1011), into its Gray code equivalent:

Binary 1011
Gray code 1-- -
Binary 1011
Gray code 11- -
Binary 1011
Gray code 111-
Binary 1011

Gray code 1110
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2.3.2 Gray Code—Binary Conversion

A given Gray code number can be converted into its binary equivalent by going through the following
steps:

1. Begin with the most significant bit (MSB). The MSB of the binary number is the same as the MSB
of the Gray code number.

2. The bit next to the MSB (the second MSB) in the binary number is obtained by adding the MSB in the
binary number to the second MSB in the Gray code number and disregarding the carry, if any.

3. The third MSB in the binary number is obtained by adding the second MSB in the binary number
to the third MSB in the Gray code number. Again, carry, if any, is to be ignored.

4. The process continues until we obtain the LSB of the binary number.

The conversion process is further illustrated with the help of an example showing step-by-step
conversion of the Gray code number 1110 into its binary equivalent:

Gray code 1110

Binary 1---
Gray code 1110
Binary 10 - -
Gray code 1110
Binary 101

Gray code 1110
Binary 1011

2.3.3 n-ary Gray Code

The binary-reflected Gray code described above is invariably referred to as the ‘Gray code’. However,
over the years, mathematicians have discovered other types of Gray code. One such code is the n-ary
Gray code, also called the non-Boolean Gray code owing to the use of non-Boolean symbols for
encoding. The generalized representation of the code is the (n, k)-Gray code, where n is the number
of independent digits used and k is the word length. A ternary Gray code (n=3) uses the values 0,
1 and 2, and the sequence of numbers in the two-digit word length would be (00, 01, 02, 12, 11, 10,
20, 21, 22). In the quaternary (n =4) code, using 0, 1, 2 and 3 as independent digits and a two-digit
word length, the sequence of numbers would be (00, 01, 02, 03, 13, 12, 11, 10, 20, 21, 22, 23, 33, 32,
31, 30). It is important to note here that an (n, k)-Gray code with an odd n does not exhibit the cyclic
property of the binary Gray code, while in case of an even n it does have the cyclic property.

The (n, k)-Gray code may be constructed recursively, like the binary-reflected Gray code, or may be
constructed iteratively. The process of generating larger word-length ternary Gray codes is illustrated in
Table 2.5. The columns between those representing the ternary Gray codes give the intermediate steps.

2.3.4 Applications

1. The Gray code is used in the transmission of digital signals as it minimizes the occurrence of
erTors.

2. The Gray code is preferred over the straight binary code in angle-measuring devices. Use of
the Gray code almost eliminates the possibility of an angle misread, which is likely if the
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Table 2.5 Generation of a larger word-length ternary Gray code.

One-digit ternary code Two-digit ternary code Three-digit ternary code
0 0 00 00 000
1 1 01 01 001
2 2 02 02 002
2 12 12 012
1 11 11 011
0 10 10 010
0 20 20 020
1 21 21 021
2 22 22 022
22 122
21 121
20 120
10 110
11 111
12 112
02 102
01 101
00 100
00 200
01 201
02 202
12 212
11 211
10 210
20 220
21 221
22 222

angle is represented in straight binary. The cyclic property of the Gray code is a plus in this
application.

3. The Gray code is used for labelling the axes of Karnaugh maps, a graphical technique used for
minimization of Boolean expressions.

4. The use of Gray codes to address program memory in computers minimizes power consumption.
This is due to fewer address lines changing state with advances in the program counter.

5. Gray codes are also very useful in genetic algorithms since mutations in the code allow for mostly
incremental changes. However, occasionally a one-bit change can result in a big leap, thus leading
to new properties.

Example 2.4

Find (a) the Gray code equivalent of decimal 13 and (b) the binary equivalent of Gray code number
1111.
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Solution
(a) The binary equivalent of decimal 13 is 1101.
Binary—Gray conversion

Binary 1101
Gray 1- - -

Binary 1101
Gray 10 - -
Binary 1101
Gray 101 —
Binary 1101
Gray 1011

(b) Gray-binary conversion

Gray 1111
Binary 1- - -
Gray 1111
Binary 10- -
Gray 1111
Binary 101-
Gray 1111
Binary 1010

Example 2.5

Given the sequence of three-bit Gray code as (000, 001, 011, 010, 110, 111, 101, 100), write the next
three numbers in the four-bit Gray code sequence after 0101.

Solution

The first eight of the 16 Gray code numbers of the four-bit Gray code can be written by appending ‘0’
to the eight three-bit Gray code numbers. The remaining eight can be determined by appending ‘1’ to
the eight three-bit numbers written in reverse order. Following this procedure, we can write the next
three numbers after 0101 as 0100, 1100 and 1101.

2.4 Alphanumeric Codes

Alphanumeric codes, also called character codes, are binary codes used to represent alphanumeric
data. The codes write alphanumeric data, including letters of the alphabet, numbers, mathematical
symbols and punctuation marks, in a form that is understandable and processable by a computer. These
codes enable us to interface input—output devices such as keyboards, printers, VDUs, etc., with the
computer. One of the better-known alphanumeric codes in the early days of evolution of computers,
when punched cards used to be the medium of inputting and outputting data, is the 12-bit Hollerith
code. The Hollerith code was used in those days to encode alphanumeric data on punched cards.
The code has, however, been rendered obsolete, with the punched card medium having completely
vanished from the scene. Two widely used alphanumeric codes include the ASCII and the EBCDIC
codes. While the former is popular with microcomputers and is used on nearly all personal computers
and workstations, the latter is mainly used with larger systems.
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Traditional character encodings such as ASCII, EBCDIC and their variants have a limitation in
terms of the number of characters they can encode. In fact, no single encoding contains enough
characters so as to cover all the languages of the European Union. As a result, these encodings do
not permit multilingual computer processing. Unicode, developed jointly by the Unicode Consortium
and the International Standards Organization (ISO), is the most complete character encoding scheme
that allows text of all forms and languages to be encoded for use by computers. Different codes are
described in the following.

2.4.1 ASCII code

The ASCII (American Standard Code for Information Interchange), pronounced ‘ask-ee’, is strictly a
seven-bit code based on the English alphabet. ASCII codes are used to represent alphanumeric data
in computers, communications equipment and other related devices. The code was first published as
a standard in 1967. It was subsequently updated and published as ANSI X3.4-1968, then as ANSI
X3.4-1977 and finally as ANSI X3.4-1986. Since it is a seven-bit code, it can at the most represent
128 characters. It currently defines 95 printable characters including 26 upper-case letters (A to Z),
26 lower-case letters (a to z), 10 numerals (0 to 9) and 33 special characters including mathematical
symbols, punctuation marks and space character. In addition, it defines codes for 33 nonprinting, mostly
obsolete control characters that affect how text is processed. With the exception of ‘carriage return’
and/or ‘line feed’, all other characters have been rendered obsolete by modern mark-up languages and
communication protocols, the shift from text-based devices to graphical devices and the elimination of
teleprinters, punch cards and paper tapes. An eight-bit version of the ASCII code, known as US ASCII-8
or ASCII-8, has also been developed. The eight-bit version can represent a maximum of 256 characters.

Table 2.6 lists the ASCII codes for all 128 characters. When the ASCII code was introduced, many
computers dealt with eight-bit groups (or bytes) as the smallest unit of information. The eighth bit was
commonly used as a parity bit for error detection on communication lines and other device-specific
functions. Machines that did not use the parity bit typically set the eighth bit to ‘0’.

Table 2.6 ASCII code.

Decimal  Hex Binary Code  Code description
0 00 0000 0000 NUL  Null character
1 01 0000 0001  SOH  Start of header
2 02 0000 0010 STX  Start of text
3 03 0000 0011  ETX  End of text
4 04 0000 0100 EOT  End of transmission
5 05 0000 0101  ENQ  Enquiry
6 06 00000110 ACK  Acknowledgement
7 07 0000 0111  BEL  Bell
8 08 0000 1000  BS Backspace
9 09 0000 1001  HT Horizontal tab
10 0A 0000 1010 LF Line feed
11 0B 0000 1011 VT Vertical tab
12 0C 0000 1100 FF Form feed
13 0D 0000 1101 CR Carriage return
14 OE 00001110 SO Shift out
15 OF 0000 1111  SI Shift in
16 10 0001 0000 DLE  Data link escape
17 11 0001 0001 DCl  Device control 1 (XON)
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Table 2.6 (continued).

Decimal ~ Hex Binary Code  Code description

18 12 0001 0010 DC2 Device control 2

19 13 0001 0011  DC3  Device control 3 (XOFF)
20 14 0001 0100 DC4 Device control 4

21 15 0001 0101 NAK  Negative acknowledgement
22 16 0001 0110  SYN  Synchronous idle

23 17 0001 0111 ETB End of transmission block
24 18 0001 1000 CAN  Cancel

25 19 0001 1001 EM End of medium

26 1A 0001 1010 SUB  Substitute

27 1B 0001 1011  ESC Escape

28 1C 0001 1100 FS File separator

29 1D 0001 1101  GS Group separator

30 1E 0001 1110 RS Record separator

31 1IF 0001 1111 US Unit separator

32 20 0010 0000  SP Space

33 21 0010 0001 ! Exclamation point

34 22 0010 0010 " Quotation mark

35 23 0010 0011  # Number sign, octothorp, pound
36 24 00100100 % Dollar sign

37 25 0010 0101 % Percent

38 26 0010 0110 & Ampersand

39 27 ooioorrr Apostrophe, prime

40 28 0010 1000  ( Left parenthesis

41 29 0010 1001 ) Right parenthesis

42 2A 0010 1010  =* Asterisk, ‘star’

43 2B 0010 1011 + Plus sign

44 2C 00101100 Comma

45 2D 0010 1101 - Hyphen, minus sign

46 2E 0010 1110 . Period, decimal Point, ‘dot’
47 2F 0010 1111/ Slash, virgule

48 30 00110000 O 0

49 31 0011 0001 1 1

50 32 00110010 2 2

51 33 0011 0011 3 3

52 34 00110100 4 4

53 35 0011 0101 5 5

54 36 00110110 6 6

55 37 oolrorrr 7 7

56 38 0011 1000 8 8

57 39 0011 1001 9 9

58 3A 0011 1010 Colon

59 3B 0011 1011 ; Semicolon

60 3C 0011 1100 < Less-than sign

61 3D 00111101 = Equals sign

62 3E 0011 1110 > Greater-than sign

63 3F 0011 1111 ? Question mark

64 40 0100 0000 @ At sign

65 41 0100 0001 A A

(continued overleaf)
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Table 2.6 (continued).

Decimal  Hex Binary Code  Code description
66 42 0100 0010 B B

67 43 0100 0011 C C

68 44 0100 0100 D D

69 45 0100 0101 E E

70 46 0100 0110 F F

71 47 0100 0111 G G

72 48 0100 1000 H H

73 49 0100 1001 I I

74 4A 0100 1010 J J

75 4B 0100 1011 K K

76 4C 0100 1100 L L

77 4D 0100 1101 M M

78 4E 0100 1110 N N

79 4F 0100 1111 O (0]

80 50 0101 0000 P P

81 51 0101 0001 Q Q

82 52 0101 0010 R R

83 53 0101 0011 S S

84 54 0101 0100 T T

85 55 0101 0101 U U

86 56 0101 0110 V \%

87 57 0101 0111 W w

88 58 0101 1000 X X

89 59 0101 1001 Y Y

90 5A 0101 1010 Z Z

91 5B 0101 1011 [ Opening bracket
92 5C 0101 1100 \ Reverse slash
93 SD 0101 1101 ] Closing bracket
94 S5E 0101 1110 A Circumflex, caret
95 5F 0101 1111 _ Underline, underscore
96 60 0110 0000 * Grave accent
97 61 0110 0001 a a

98 62 0110 0010 b b

99 63 0110 0011 ¢ c

100 64 01100100 d d

101 65 0110 0101 e e

102 66 01100110 f f

103 67 orioo111r g g

104 68 0110 1000 h h

105 69 0110 1001 i i

106 6A 0110 1010 j j

107 6B 0110 1011  k k

108 6C 0110 1100 1 1

109 6D 0110 1101 m m

110 6E 0110 1110 n n

111 6F 0110 1111 o o

112 70 0111 0000 p p

113 71 0111 0001 q q

114 72 0111 0010 r r
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Table 2.6 (continued).

Decimal  Hex Binary Code  Code description

115 73 0111 0011 s s

116 74 01110100 t t

117 75 0111 0101 u u

118 76 01110110 v v

119 77 01110111 w w

120 78 0111 1000  x X

121 79 0111 1001 'y y

122 7A 0111 1010 =z z

123 7B o111 1011 { Opening brace
124 7C  OI11 1100 | Vertical line
125 7D 0111 1101 '} Closing brace
126 7E  Olll 1110 ~ Tilde

127 7F 0111 1111 DEL  Delete

Looking at the structural features of the code as reflected in Table 2.6, we can see that the digits O to
9 are represented with their binary values prefixed with 0011. That is, numerals O to 9 are represented
by binary sequences from 0011 0000 to 0011 1001 respectively. Also, lower-case and upper-case
letters differ in bit pattern by a single bit. While upper-case letters ‘A’ to ‘O’ are represented by 0100
0001 to 0100 1111, lower-case letters ‘a’ to ‘0’ are represented by 0110 0001 to 0110 1111. Similarly,
while upper-case letters ‘P’ to ‘Z’ are represented by 0101 0000 to 0101 1010, lower-case letters ‘p’
to ‘z’ are represented by 0111 0000 to 0111 1010.

With widespread use of computer technology, many variants of the ASCII code have evolved over
the years to facilitate the expression of non-English languages that use a Roman-based alphabet. In
some of these variants, all ASCII printable characters are identical to their seven-bit ASCII code
representations. For example, the eight-bit standard ISO/IEC 8859 was developed as a true extension
of ASCII, leaving the original character mapping intact in the process of inclusion of additional values.
This made possible representation of a broader range of languages. In spite of the standard suffering
from incompatibilities and limitations, ISO-8859-1, its variant Windows-1252 and the original seven-bit
ASCII continue to be the most common character encodings in use today.

2.4.2 EBCDIC code

The EBCDIC (Extended Binary Coded Decimal Interchange Code), pronounced ‘eb-si-dik’, is another
widely used alphanumeric code, mainly popular with larger systems. The code was created by IBM to
extend the binary coded decimal that existed at that time. All IBM mainframe computer peripherals
and operating systems use EBCDIC code, and their operating systems provide ASCII and Unicode
modes to allow translation between different encodings. It may be mentioned here that EBCDIC offers
no technical advantage over the ASCII code and its variant ISO-8859 or Unicode. Its importance in the
earlier days lay in the fact that it made it relatively easier to enter data into larger machines with punch
cards. Since, punch cards are not used on mainframes any more, the code is used in contemporary
mainframe machines solely for backwards compatibility.

It is an eight-bit code and thus can accommodate up to 256 characters. Table 2.7 gives the listing of
characters in binary as well as hex form in EBCDIC. The arrangement is similar to the one adopted
for Table 2.6 for the ASCII code. A single byte in EBCDIC is divided into two four-bit groups called
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Table 2.7 EBCDIC code.

Decimal  Hex Binary Code  Code description
0 00 0000 0000 NUL Null character
1 01 0000 0001  SOH Start of header
2 02 0000 0010  STX Start of text
3 03 0000 0011  ETX End of text
4 04 0000 0100  PF Punch off
5 05 0000 0101  HT Horizontal tab
6 06 0000 0110 LC Lower case
7 07 0000 0111  DEL Delete
8 08 0000 1000
9 09 0000 1001
10 0A 0000 1010 SMM  Start of manual message
11 0B 0000 1011 VT Vertical tab
12 0C 0000 1100 FF Form feed
13 0D 0000 1101 CR Carriage return
14 OE 0000 1110 SO Shift out
15 OF 00001111 SI Shift in
16 10 0001 0000 DLE Data link escape
17 11 0001 0001  DC1 Device control 1
18 12 0001 0010  DC2 Device control 2
19 13 0001 0011 TM Tape mark
20 14 0001 0100  RES Restore
21 15 0001 0101 NL New line
22 16 0001 0110  BS Backspace
23 17 0001 0111 IL Idle
24 18 0001 1000 CAN  Cancel
25 19 0001 1001 EM End of medium
26 1A 0001 1010 CC Cursor control
27 1B 0001 1011  CU1 Customer use 1
28 1C 0001 1100 IFS Interchange file separator
29 ID 0001 1101  IGS Interchange group separator
30 1E 0001 1110 IRS Interchange record separator
31 1F 0001 1111 TUS Interchange unit separator
32 20 0010 0000 DS Digit select
33 21 0010 0001  SOS Start of significance
34 22 0010 0010  FS Field separator
35 23 0010 0011
36 24 0010 0100  BYP Bypass
37 25 0010 0101 LF Line feed
38 26 0010 0110 ETB End of transmission block
39 27 0010 0111  ESC Escape
40 28 0010 1000
41 29 0010 1001
42 2A 0010 1010 SM Set mode
43 2B 0010 1011  CU2 Customer use 2
44 2C 0010 1100
45 2D 0010 1101 ENQ  Enquiry
46 2E 00101110 ACK  Acknowledge
47 2F 0010 1111  BEL Bell
48 30 0011 0000
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Table 2.7 (continued).

Decimal  Hex Binary Code  Code description
49 31 0011 0001

50 32 0011 0010 SYN  Synchronous idle
51 33 0011 0011

52 34 0011 0100 PN Punch on

53 35 0011 0101 RS Reader stop

54 36 0011 0110 UC Upper case

55 37 0011 0111  EOT  End of transmission
56 38 0011 1000

57 39 0011 1001

58 3A 0011 1010

59 3B 0011 1011 CU3 Customer use 3
60 3C 0011 1100 DC4  Device control 4
61 3D 0011 1101 NAK  Negative acknowledge
62 3E 0011 1110

63 3F 00111111 SUB  Substitute

64 40 0100 0000  SP Space

65 41 0100 0001

66 42 0100 0010

67 43 0100 0011

68 44 0100 0100

69 45 0100 0101

70 46 0100 0110

71 47 0100 0111

72 48 0100 1000

73 49 0100 1001

74 4A 0100 1010 ¢ Cent sign

75 4B 0100 1011 . Period, decimal point
76 4C 0100 1100 < Less-than sign

77 4D 0100 1101  ( Left parenthesis
78 4E 0100 1110 + Plus sign

79 4F 0100 1111 | Logical OR

80 50 0101 0000 & Ampersand

81 51 0101 0001

82 52 0101 0010

83 53 0101 0011

84 54 0101 0100

85 55 0101 0101

86 56 0101 0110

87 57 0101 0111

88 58 0101 1000

89 59 0101 1001

90 5A 0101 1010 ! Exclamation point
91 5B o101 1011 $ Dollar sign

92 5C 0101 1100  * Asterisk

93 5D 0101 1101 ) Right parenthesis
94 S5E 0101 1110 Semicolon

95 SF 0101 1111 A Logical NOT

96 60 0110 0000 - Hyphen, minus sign

(continued overleaf)
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Table 2.7 (continued).

Decimal  Hex Binary Code  Code description
97 61 0110 0001 7/ Slash, virgule
98 62 0110 0010

99 63 0110 0011

100 64 0110 0100

101 65 0110 0101

102 66 01100110

103 67 0110 0111

104 68 0110 1000

105 69 0110 1001

106 6A 0110 1010

107 6B 0110 1011 s Comma

108 6C 01101100 % Percent

109 6D 0110 1101 _ Underline, underscore
110 6E 0110 1110 > Greater-than sign
111 6F o110 1111 ? Question mark
112 70 0111 0000

113 71 0111 0001

114 72 0111 0010

115 73 0111 0011

116 74 0111 0100

117 75 0111 0101

118 76 0111 0110

119 77 0111 0111

120 78 0111 1000

121 79 0111 1001 ¢ Grave accent
122 7A 0111 1010 Colon

123 7B 0111 1011 # Number sign, octothorp, pound
124 7C 01111100 @ At sign

125 7D o111 1101~ Apostrophe, prime
126 7E  Ol11 1110 = Equals sign

127 7F 0111 1111 * Quotation mark
128 80 1000 0000

129 81 1000 1001  a a

130 82 1000 1010 b b

131 83 1000 1011 ¢ c

132 84 1000 1100 d d

133 85 1000 0101 e e

134 86 1000 0110 £ f

135 87 10000111 g g

136 88 1000 1000 h h

137 89 1000 1001 i i

138 8A 1000 1010

139 8B 1000 1011

140 8C 1000 1100

141 8D 1000 1101

142 8E 1000 1110

143 8F 1000 1111

144 90 1001 0000

145 91 1001 0001 j ]
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Table 2.7 (continued).

Decimal  Hex Binary Code  Code description
146 92 1001 0010  k k
147 93 1001 0011 1 1
148 94 1001 0100 m m
149 95 1001 0101  n n
150 96 1001 0110 o o
151 97 1001 0111 p p
152 98 1001 1000 q q
153 99 1001 1001 r r
154 9A 1001 1010

155 9B 1001 1011

156 9C 1001 1100

157 oD 1001 1101

158 9E 1001 1110

159 9F 1001 1111

160 A0 1010 0000

161 Al 1010 0001  ~ Tilde
162 A2 10100010 s s
163 A3 1010 0011 ¢ t
164 A4 10100100 u u
165 AS 1010 0101 v v
166 A6 10100110 w w
167 A7 10100111 x X
168 A8 1010 1000 'y y
169 A9 1010 1001 z z
170 AA 1010 1010

171 AB 1010 1011

172 AC 1010 1100

173 AD 1010 1101

174 AE 1010 1110

175 AF 1010 1111

176 BO 1011 0000

177 B1 1011 0001

178 B2 1011 0010

179 B3 1011 0011

180 B4 1011 0100

181 B5 1011 0101

182 B6 1011 0110

183 B7 1011 0111

184 B8 1011 1000

185 B9 1011 1001

186 BA 1011 1010

187 BB 1011 1011

188 BC 1011 1100

189 BD 1011 1101

190 BE 1011 1110

191 BF 1011 1111

192 Co 1100 0000  { Opening brace
193 C1 1100 0001 A A

(continued overleaf)
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Table 2.7 (continued).

Decimal Hex  Binary Code  Code description
194 C2 1100 0010 B B
195 C3 1100 0011 C C
196 C4 1100 0100 D D
197 C5 1100 0101 E E
198 C6 1100 0110 F F
199 C7 11000111 G G
200 C8 1100 1000 H H
201 Cc9 1100 1001 I I
202 CA 1100 1010

203 CB 1100 1011

204 CcC 1100 1100

205 CD 1100 1101

206 CE 1100 1110

207 CF 1100 1111

208 DO 1101 0000 } Closing brace
209 D1 1101 0001 J J
210 D2 1101 0010 K K
211 D3 11010011 L L
212 D4 1101 0100 M M
213 D5 1101 0101 N N
214 D6 1101 0110 O O
215 D7 11010111 P P
216 D8 1101 1000 Q Q
217 D9 1101 1001 R R
218 DA 1101 1010

219 DB 1101 1011

220 DC 1101 1100

221 DD 1101 1101

222 DE 1101 1110

223 DF 1101 1111

224 EO 1110 0000 \ Reverse slant
225 El 1110 0001

226 E2 1110 0010 S S
227 E3 11100011 T T
228 E4 11100100 U U
229 E5 11100101 VvV A%
230 E6 11100110 W w
231 E7 1ioorrr X X
232 E8 1110 1000 Y Y
233 E9 1110 1001 Z Z
234 EA 1110 1010

235 EB 1110 1011

236 EC 1110 1100

237 ED 1110 1101

238 EE 1110 1110

239 EF 1110 1111

240 FO 1111 0000 0 0
241 F1 1111 0001 1 1

Digital Electronics
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Table 2.7 (continued).

Decimal Hex  Binary Code  Code description
242 F2 1111 0010 2 2
243 F3 1r1roorr 3 3
244 F4 1111 0100 4 4
245 F5 1111 0101 5 5
246 F6 11110110 6 [§
247 F7 rrrorrr 7 7
248 F8 1111 1000 8 8
249 F9 1111 1001 9 9
250 FA 1111 1010 |

251 FB 1111 1011

252 FC 1111 1100

253 FD 1111 1101

254 FE 1111 1110

255 FF 1111 1111 eo

nibbles. The first four-bit group, called the ‘zone’, represents the category of the character, while the
second group, called the ‘digit’, identifies the specific character.

2.4.3 Unicode

As briefly mentioned in the earlier sections, encodings such as ASCII, EBCDIC and their variants
do not have a sufficient number of characters to be able to encode alphanumeric data of all forms,
scripts and languages. As a result, these encodings do not permit multilingual computer processing.
In addition, these encodings suffer from incompatibility. Two different encodings may use the same
number for two different characters or different numbers for the same characters. For example, code
4E (in hex) represents the upper-case letter ‘N’ in ASCII code and the plus sign ‘+’ in the EBCDIC
code. Unicode, developed jointly by the Unicode Consortium and the International Organization for
Standardization (ISO), is the most complete character encoding scheme that allows text of all forms
and languages to be encoded for use by computers. It not only enables the users to handle practically
any language and script but also supports a comprehensive set of mathematical and technical symbols,
greatly simplifying any scientific information exchange. The Unicode standard has been adopted by
such industry leaders as HP, IBM, Microsoft, Apple, Oracle, Unisys, Sun, Sybase, SAP and many more.

Unicode and ISO-10646 Standards

Before we get on to describe salient features of Unicode, it may be mentioned that another standard
similar in intent and implementation to Unicode is the ISO-10646. While Unicode is the brainchild of
the Unicode Consortium, a consortium of manufacturers (initially mostly US based) of multilingual
software, ISO-10646 is the project of the International Organization for Standardization. Although
both organizations publish their respective standards independently, they have agreed to maintain
compatibility between the code tables of Unicode and ISO-10646 and closely coordinate any further
extensions.
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The Code Table

The code table defined by both Unicode and ISO-10646 provides a unique number for every character,
irrespective of the platform, program and language used. The table contains characters required to
represent practically all known languages and scripts. The list includes not only the Greek, Latin,
Cyrillic, Arabic, Arabian and Georgian scripts but also Japanese, Chinese and Korean scripts. In
addition, the list also includes scripts such as Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Telugu,
Tamil, Kannada, Thai, Tibetan, Ethiopic, Sinhala, Canadian Syllabics, Mongolian, Myanmar and
others. Scripts not yet covered will eventually be added. The code table also covers a large number of
graphical, typographical, mathematical and scientific symbols.

In the 32-bit version, which is the most recent version, the code table is divided into 2'® subsets, with
each subset having 2'¢ characters. In the 32-bit representation, elements of different subsets therefore
differ only in the 16 least significant bits. Each of these subsets is known as a plane. Plane 0, called the
basic multilingual plane (BMP), defined by 00000000 to 0000FFFF, contains all most commonly used
characters including all those found in major older encoding standards. Another subset of 2'° characters
could be defined by 00010000 to 0001FFFF. Further, there are different slots allocated within the
BMP to different scripts. For example, the basic Latin character set is encoded in the range 0000 to
007F. Characters added to the code table outside the 16-bit BMP are mostly for specialist applications
such as historic scripts and scientific notation. There are indications that there may never be characters
assigned outside the code space defined by 00000000 to 0010FFFF, which provides space for a little
over 1 million additional characters.

Different characters in Unicode are represented by a hexadecimal number preceded by ‘U+’. For
example, ‘A’ and ‘e’ in basic Latin are respectively represented by U+0041 and U+4-0065. The first
256 code numbers in Unicode are compatible with the seven-bit ASCII-code and its eight-bit variant
ISO-8859-1. Unicode characters U4+0000 to U4+007F (128 characters) are identical to those in the
ASCII code, and the Unicode characters in the range U40000 to U+00FF (256 characters) are identical
to ISO-8859-1.

Use of Combining Characters

Unicode assigns code numbers to combining characters, which are not full characters by themselves
but accents or other diacritical marks added to the previous character. This makes it possible to place
any accent on any character. Although Unicode allows the use of combining characters, it also assigns
separate codes to commonly used accented characters known as precomposed characters. This is done
to ensure backwards compatibility with older encodings. As an example, the character ‘4’ can be
represented as the precomposed character U4+-00E4. It can also be represented in Unicode as U+0061
(Latin lower-case letter ‘a’) followed by U+00A8 (combining character °..”).

Unicode and ISO-10646 Comparison

Although Unicode and ISO-10646 have identical code tables, Unicode offers many more features not
available with ISO-10646. While the ISO-10646 standard is not much more than a comprehensive
character set, the Unicode standard includes a number of other related features such as character
properties and algorithms for text normalization and handling of bidirectional text to ensure correct
display of mixed texts containing both right-to-left and left-to-right scripts.

2.5 Seven-segment Display Code

Seven-segment displays [Fig. 2.1(a)] are very common and are found almost everywhere, from pocket
calculators, digital clocks and electronic test equipment to petrol pumps. A single seven-segment
display or a stack of such displays invariably meets our display requirement. There are both LED and
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Figure 2.1 Seven-segment displays.
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Table 2.8 Seven-segment display code.

Common cathode type Common anode type ‘0’ means ON
‘1’ means ON

a b c d e f g DP a b c d e f g DP
0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1
2 1 1 0 1 1 0 1 2 0 0 1 0 0 1 0
3 1 1 1 1 0 0 1 3 0 0 0 0 1 1 0
4 0 1 1 0 0 1 1 4 1 0 0 1 1 0 0
5 1 0 1 1 0 1 1 5 0 1 0 0 1 0 0
6 0 0 1 1 1 1 1 6 1 1 0 0 0 0 0
7 1 1 1 0 0 0 0 7 0 0 0 1 1 1 1
8 1 1 1 1 1 1 1 8 0 0 0 0 0 0 0
9 1 1 1 0 0 1 1 9 0 0 0 1 1 0 0
a 1 1 1 1 1 0 1 a 0 0 0 0 0 1 0
b 0 0 1 1 1 1 1 b 1 1 0 0 0 0 0
c 0 0 0 1 1 0 1 c 1 1 1 0 0 1 0
d 0 1 1 1 1 0 1 d 1 0 0 0 0 1 0
e 1 1 0 1 1 1 1 e 0 0 1 0 0 0 0
f 1 0 0 0 1 1 1 f 0 1 1 1 0 0 0

LCD types of seven-segment display. Furthermore, there are common anode-type LED displays where
the arrangement of different diodes, designated a, b, ¢, d, e, f and g, is as shown in Fig. 2.1(b), and
common cathode-type displays where the individual diodes are interconnected as shown in Fig. 2.1(c).
Each display unit usually has a dot point (DP).

The DP could be located either towards the left (as shown) or towards the right of the figure
‘8> display pattern. This type of display can be used to display numerals from O to 9 and letters
from A to F. Table 2.8 gives the binary code for displaying different numeric and alphabetic
characters for both the common cathode and the common anode type displays. A ‘1’ lights a
segment in the common cathode type display, and a ‘0’ lights a segment in the common anode type
display.

2.6 Error Detection and Correction Codes

When we talk about digital systems, be it a digital computer or a digital communication set-up, the issue
of error detection and correction is of great practical significance. Errors creep into the bit stream owing
to noise or other impairments during the course of its transmission from the transmitter to the receiver.
Any such error, if not detected and subsequently corrected, can be disastrous, as digital systems are
sensitive to errors and tend to malfunction if the bit error rate is more than a certain threshold level.
Error detection and correction, as we will see below, involves the addition of extra bits, called check
bits, to the information-carrying bit stream to give the resulting bit sequence a unique characteristic
that helps in detection and localization of errors. These additional bits are also called redundant bits
as they do not carry any information. While the addition of redundant bits helps in achieving the goal
of making transmission of information from one place to another error free or reliable, it also makes
it inefficient. In this section, we will examine some common error detection and correction codes.
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2.6.1 Parity Code

A parity bit is an extra bit added to a string of data bits in order to detect any error that might have
crept into it while it was being stored or processed and moved from one place to another in a digital
system.

We have an even parity, where the added bit is such that the total number of Is in the data bit string
becomes even, and an odd parity, where the added bit makes the total number of Is in the data bit
string odd. This added bit could be a ‘0’ or a ‘1’. As an example, if we have to add an even parity bit to
01000001 (the eight-bit ASCII code for ‘A’), it will be a ‘0’ and the number will become 001000001.
If we have to add an odd parity bit to the same number, it will be a ‘I’ and the number will become
101000001. The odd parity bit is a complement of the even parity bit. The most common convention
is to use even parity, that is, the total number of 1s in the bit stream, including the parity bit, is even.

The parity check can be made at different points to look for any possible single-bit error, as it would
disturb the parity. This simple parity code suffers from two limitations. Firstly, it cannot detect the
error if the number of bits having undergone a change is even. Although the number of bits in error
being equal to or greater than 4 is a very rare occurrence, the addition of a single parity cannot be
used to detect two-bit errors, which is a distinct possibility in data storage media such as magnetic
tapes. Secondly, the single-bit parity code cannot be used to localize or identify the error bit even if
one bit is in error. There are several codes that provide self-single-bit error detection and correction
mechanisms, and these are discussed below.

2.6.2 Repetition Code

The repetition code makes use of repetitive transmission of each data bit in the bit stream. In the case
of threefold repetition, ‘1’ and ‘0’ would be transmitted as ‘111’ and ‘000 respectively. If, in the
received data bit stream, bits are examined in groups of three bits, the occurrence of an error can be
detected. In the case of single-bit errors, ‘1’ would be received as 011 or 101 or 110 instead of 111,
and a ‘0’ would be received as 100 or 010 or 001 instead of 000. In both cases, the code becomes
self-correcting if the bit in the majority is taken as the correct bit. There are various forms in which
the data are sent using the repetition code. Usually, the data bit stream is broken into blocks of bits,
and then each block of data is sent some predetermined number of times. For example, if we want
to send eight-bit data given by 11011001, it may be broken into two blocks of four bits each. In the
case of threefold repetition, the transmitted data bit stream would be 110111011101100110011001.
However, such a repetition code where the bit or block of bits is repeated 3 times is not capable of
correcting two-bit errors, although it can detect the occurrence of error. For this, we have to increase
the number of times each bit in the bit stream needs to be repeated. For example, by repeating each
data bit 5 times, we can detect and correct all two-bit errors. The repetition code is highly inefficient
and the information throughput drops rapidly as we increase the number of times each data bit needs
to be repeated to build error detection and correction capability.

2.6.3 Cyclic Redundancy Check Code

Cyclic redundancy check (CRC) codes provide a reasonably high level of protection at low redundancy
level. The cycle code for a given data word is generated as follows. The data word is first appended
by a number of Os equal to the number of check bits to be added. This new data bit sequence is then
divided by a special binary word whose length equals n+ 1, n being the number of check bits to
be added. The remainder obtained as a result of modulo-2 division is then added to the dividend bit
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sequence to get the cyclic code. The code word so generated is completely divisible by the divisor
used in the generation of the code. Thus, when the received code word is again divided by the same
divisor, an error-free reception should lead to an all ‘0’ remainder. A nonzero remainder is indicative
of the presence of errors.

The probability of error detection depends upon the number of check bits, n, used to construct the
cyclic code. It is 100 % for single-bit and two-bit errors. It is also 100 % when an odd number of bits
are in error and the error bursts have a length less than n 4 1. The probability of detection reduces to
1 — (1/2)*~! for an error burst length equal to n + 1, and to 1 — (1/2)" for an error burst length greater
than n + 1.

2.6.4 Hamming Code

We have seen, in the case of the error detection and correction codes described above, how an increase
in the number of redundant bits added to message bits can enhance the capability of the code to detect
and correct errors. If we have a sufficient number of redundant bits, and if these bits can be arranged
such that different error bits produce different error results, then it should be possible not only to detect
the error bit but also to identify its location. In fact, the addition of redundant bits alters the ‘distance’
code parameter, which has come to be known as the Hamming distance. The Hamming distance is
nothing but the number of bit disagreements between two code words. For example, the addition of
single-bit parity results in a code with a Hamming distance of at least 2. The smallest Hamming
distance in the case of a threefold repetition code would be 3. Hamming noticed that an increase
in distance enhanced the code’s ability to detect and correct errors. Hamming’s code was therefore
an attempt at increasing the Hamming distance and at the same time having as high an information
throughput rate as possible.
The algorithm for writing the generalized Hamming code is as follows:

1. The generalized form of code is P,P,D,P;D,D;D,P,DsD¢D,D3DyD oD, Ps. .., where P and D
respectively represent parity and data bits.

2. We can see from the generalized form of the code that all bit positions that are powers of 2 (positions
1,2,4,8,16,...) are used as parity bits.

3. All other bit positions (positions 3, 5, 6, 7, 9, 10, 11,...) are used to encode data.

4. Each parity bit is allotted a group of bits from the data bits in the code word, and the value of the
parity bit (0 or 1) is used to give it certain parity.

5. Groups are formed by first checking N— 1 bits and then alternately skipping and checking N bits
following the parity bit. Here, N is the position of the parity bit; 1 for P, 2 for P,, 4 for P, 8 for P,
and so on. For example, for the generalized form of code given above, various groups of bits formed
with different parity bits would be P,D,D,D,Ds ..., P,D,D;D,D¢D; ..., PyD,D;D,D¢Dy. . .,
P,DsDsD,DgDyD (D, .. .and so on. To illustrate the formation of groups further, let us examine
the group corresponding to parity bit P;. Now, the position of P; is at number 4. In order to form
the group, we check the first three bits (N— 1=23) and then follow it up by alternately skipping
and checking four bits (N =4).

The Hamming code is capable of correcting single-bit errors on messages of any length. Although
the Hamming code can detect two-bit errors, it cannot give the error locations. The number of parity
bits required to be transmitted along with the message, however, depends upon the message length, as
shown above. The number of parity bits n required to encode m message bits is the smallest integer
that satisfies the condition (2" — n) > m.
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Table 2.9 Generation of Hamming code.

Data bits (without parity) 0 1 1 0
Data bits with parity bit P, 1 0 1 0
Data bits with parity bit P, 1 0 1 0
Data bits with parity bit P 0 1 1 0
Data bits with parity 1 1 0 0 1 1 0

The most commonly used Hamming code is the one that has a code word length of seven bits with
four message bits and three parity bits. It is also referred to as the Hamming (7, 4) code. The code word
sequence for this code is written as P, P,D, P;D,D;D,, with P, P, and P; being the parity bits and D,
D,, D; and D, being the data bits. We will illustrate step by step the process of writing the Hamming
code for a certain group of message bits and then the process of detection and identification of error
bits with the help of an example. We will write the Hamming code for the four-bit message 0110
representing numeral ‘6’. The process of writing the code is illustrated in Table 2.9, with even parity.

Thus, the Hamming code for 0110 is 1100110. Let us assume that the data bit D, gets corrupted
in the transmission channel. The received code in that case is 1110110. In order to detect the error,
the parity is checked for the three parity relations mentioned above. During the parity check operation
at the receiving end, three additional bits X, Y and Z are generated by checking the parity status of
P,D\D,D,, P,D,D;D, and P;D,D;D, respectively. These bits are a ‘0’ if the parity status is okay,
and a ‘1’ if it is disturbed. In that case, ZYX gives the position of the bit that needs correction. The
process can be best explained with the help of an example.

Examination of the first parity relation gives X =1 as the even parity is disturbed. The second
parity relation yields Y =1 as the even parity is disturbed here too. Examination of the third relation
gives Z =0 as the even parity is maintained. Thus, the bit that is in error is positioned at 011 which is
the binary equivalent of ‘3°. This implies that the third bit from the MSB needs to be corrected. After
correcting the third bit, the received message becomes 1100110 which is the correct code.

Example 2.6

By writing the parity code (even) and threefold repetition code for all possible four-bit straight binary
numbers, prove that the Hamming distance in the two cases is at least 2 in the case of the parity code
and 3 in the case of the repetition code.

Solution

The generation of codes is shown in Table 2.10. An examination of the parity code numbers reveals
that the number of bit disagreements between any pair of code words is not less than 2. It is either 2
or 4. It is 4, for example, between 00000 and 10111, 00000 and 11011, 00000 and 11101, 00000 and
11110 and 00000 and 01111. In the case of the threefold repetition code, it is either 3, 6, 9 or 12 and
therefore not less than 3 under any circumstances.

Example 2.7

It is required to transmit letter ‘A’ expressed in the seven-bit ASCII code with the help of the Hamming
(11, 7) code. Given that the seven-bit ASCII notation for ‘A’ is 1000001 and that the data word gets
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Table 2.10 Example 2.6.

Binary Parity Three-time Binary Parity Three-time
number code repetition number code repetition
Code code

0000 00000 000000000000 1000 11000 100010001000
0001 10001 000100010001 1001 01001 100110011001
0010 10010 001000100010 1010 01010 101010101010
0011 00011 001100110011 1011 11011 101110111011
0100 10100 010001000100 1100 01100 110011001100
0101 00101 010101010101 1101 11101 110111011101
0110 00110 011001100110 1110 11110 111011101110
0111 10111 011101110111 1111 01111 IRRRREEREENA!

corrupted to 1010001 in the transmission channel, show how the Hamming code can be used to identify
the error. Use even parity.

Solution

e The generalized form of the Hamming code in this case is P,P,D,P;D,D;D,P,DsDsD, =
P, P,1P;000P,001.

® The four groups of bits using different parity bits are P, D,D,D,DsD,, P,D,D;D,D¢D,, PyD,D;D,

and P,DsD¢D,.

This gives P, =0, P,=0, P;=0and P,=1.

Therefore, the transmitted Hamming code for ‘A’ is 00100001001.

The received Hamming code is 00100101001.

Checking the parity for the P; group gives ‘0’ as it passes the test.

Checking the parity for the P, group gives ‘1’ as it fails the test.

Checking the parity for the P; group gives ‘1’ as it fails the test.

Checking the parity for the P, group gives ‘0’ as it passes the test.

The bits resulting from the parity check, written in reverse order, constitute 0110, which is the

binary equivalent of ‘6’. This shows that the bit in error is the sixth from the MSB.

Therefore, the corrected Hamming code is 00100001001, which is the same as the transmitted code.

® The received data word is 1000001.

Review Questions

1. Distinguish between weighted and unweighted codes. Give two examples each of both types of
code.

2. What is an excess-3 BCD code? Which shortcoming of the 8421 BCD code is overcome in the
excess-3 BCD code? Illustrate with the help of an example.

3. What is the Gray code? Why is it also known as the binary-reflected Gray code? Briefly outline
some of the important applications of the Gray code.

4. Briefly describe salient features of the ASCII and EBCDIC codes in terms of their capability to
represent characters and suitability for their use in different platforms.

5. What is the Unicode? Why is it called the most complete character code?
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. What is a parity bit? Define even and odd parity. What is the limitation of the parity code when it

comes to detection and correction of bit errors?

. What is the Hamming distance? What is the role of the Hamming distance in deciding the error

detection and correction capability of a code meant for the purpose? How does it influence the
information throughput rate?

. With the help of the generalized form of the Hamming code, explain how the number of parity bits

required to transmit a given number of data bits is decided upon.

Problems

1.

Write the excess-3 equivalent codes of (6),,, (78),, and (357),,, all in 16-bit format.
0011001100111001, 0011001110101011, 0011011010001010

. Determine the Gray code equivalent of (10011), and the binary equivalent of the Gray code number

110011.
11010, (100010),

. A 16-bit data word given by 1001100001110110 is to be transmitted by using a fourfold repetition

code. If the data word is broken into four blocks of four bits each, then write the transmitted bit
stream.
1001100110011001100010001000100001110111011101110110011001100110

. Write (a) the Hamming (7, 4) code for 0000 using even parity and (b) the Hamming (11, 7) code

for 1111111 using odd parity.
(a) 0000000; (b) 00101110111

. Write the last four of the 16 possible numbers in the two-bit quaternary Gray code with 0, 1, 2 and

3 as its independent digits, beginning with the thirteenth number.
33, 32, 31, 30
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Digital Arithmetic

Having discussed different methods of numeric and alphanumeric data representation in the first two
chapters, the next obvious step is to study the rules of data manipulation. Two types of operation
that are performed on binary data include arithmetic and logic operations. Basic arithmetic operations
include addition, subtraction, multiplication and division. AND, OR and NOT are the basic logic
functions. While the rules of arithmetic operations are covered in the present chapter, those related to
logic operations will be discussed in the next chapter.

3.1 Basic Rules of Binary Addition and Subtraction

The basic principles of binary addition and subtraction are similar to what we all know so well in
the case of the decimal number system. In the case of addition, adding ‘0’ to a certain digit produces
the same digit as the sum, and, when we add ‘1’ to a certain digit or number in the decimal number
system, the result is the next higher digit or number, as the case may be. For example, 6 + 1 in decimal
equals ‘7’ because ‘7’ immediately follows ‘6’ in the decimal number system. Also, 7 + 1 in octal
equals ‘10’ as, in the octal number system, the next adjacent higher number after ‘7’ is ‘10’. Similarly,
9 + 1 in the hexadecimal number system is ‘A’. With this background, we can write the basic rules of
binary addition as follows:

.0+0=0.
.0+ 1=1.
1+0=1

1 + 1 = 0 with a carry of ‘1’ to the next more significant bit.
14+ 1+ 1 =1 with a carry of ‘1’ to the next more significant bit.

N

Table 3.1 summarizes the sum and carry outputs of all possible three-bit combinations. We have
taken three-bit combinations as, in all practical situations involving the addition of two larger bit
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Table 3.1 Binary addition of three bits.

A B Carry- Sum Carry- A B Carry- Sum Carry-
in (Cin) out (Co) in (Cin) out (Co)

0 0 0 0 0 1 0 0 1 0

0 0 1 1 0 1 0 1 0 1

0 1 0 1 0 1 1 0 0 1

0 1 1 0 1 1 1 1 1 1

numbers, we need to add three bits at a time. Two of the three bits are the bits that are part of the two
binary numbers to be added, and the third bit is the carry-in from the next less significant bit column.
The basic principles of binary subtraction include the following:

1.0-0=0.
2.1-0=1.
3.1-1=0.

4. 0 — 1 = 1 with a borrow of 1 from the next more significant bit.

The above-mentioned rules can also be explained by recalling rules for subtracting decimal numbers.
Subtracting ‘0’ from any digit or number leaves the digit or number unchanged. This explains
the first two rules. Subtracting ‘1’ from any digit or number in decimal produces the immediately
preceding digit or number as the answer. In general, the subtraction operation of larger-bit binary
numbers also involves three bits, including the two bits involved in the subtraction, called the minuend
(the upper bit) and the subtrahend (the lower bit), and the borrow-in. The subtraction operation
produces the difference output and borrow-out, if any. Table 3.2 summarizes the binary subtraction
operation. The entries in Table 3.2 can be explained by recalling the basic rules of binary subtraction
mentioned above, and that the subtraction operation involving three bits, that is, the minuend (A),
the subtrahend (B) and the borrow-in (By,), produces a difference output equal to (A — B — B,,)).
It may be mentioned here that, in the case of subtraction of larger-bit binary numbers, the least
significant bit column always involves two bits to produce a difference output bit and the borrow-out

Table 3.2 Binary subtraction.

Inputs Outputs

Minuend Subtrahend Borrow-in Difference Borrow-out
(4) (B) (Bin) (D) (B,)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1
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bit. The borrow-out bit produced here becomes the borrow-in bit for the next more significant bit
column, and the process continues until we reach the most significant bit column. The addition and
subtraction of larger-bit binary numbers is illustrated with the help of examples in sections 3.2 and 3.3
respectively.

3.2 Addition of Larger-Bit Binary Numbers

The addition of larger binary integers, fractions or mixed binary numbers is performed columnwise
in just the same way as in the case of decimal numbers. In the case of binary numbers, however, we
follow the basic rules of addition of two or three binary digits, as outlined earlier. The process of
adding two larger-bit binary numbers can be best illustrated with the help of an example.

Consider two generalized four-bit binary numbers (A; A, A, A,) and (B; B, B, B,), with A, and B,
representing the LSB and A; and Bj; representing the MSB of the two numbers. The addition of these
two numbers is performed as follows. We begin with the LSB position. We add the LSB bits and
record the sum S, below these bits in the same column and take the carry C,,, if any, to the next column
of bits. For instance, if Ay = 1 and B, = 0, then S, = 1 and C;, = 0. Next we add the bits A, and B,
and the carry C, from the previous addition. The process continues until we reach the MSB bits. The
four steps are shown ahead. C,, C;, C, and Cj; are carrys, if any, produced as a result of adding first,
second, third and fourth column bits respectively, starting from LSB and proceeding towards MSB. A
similar procedure is followed when the given numbers have both integer as well as fractional parts:

(Go) (€)  (G)
L A, A A A 2 A, A, A A
B, B, B B, B, B, B B,
So S, So

() (C€) (G () () (G
3.0A A A A 4 A, A, A A
B3 BZ Bl BO B3 BZ Bl BO
Sy Sy So G 5 S S So

3.2.1 Addition Using the 2’s Complement Method

The 2’s complement is the most commonly used code for processing positive and negative binary
numbers. It forms the basis of arithmetic circuits in modern computers. When the decimal numbers to
be added are expressed in 2’s complement form, the addition of these numbers, following the basic
laws of binary addition, gives correct results. Final carry obtained, if any, while adding MSBs should
be disregarded. To illustrate this, we will consider the following four different cases:

1. Both the numbers are positive.

2. Larger of the two numbers is positive.

3. The larger of the two numbers is negative.
4. Both the numbers are negative.
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Case 1

e Consider the decimal numbers 437 and +18.

e The 2’s complement of +37 in eight-bit representation = 00100101.

® The 2’s complement of 418 in eight-bit representation = 00010010.

e The addition of the two numbers, that is, +-37 and +18, is performed as follows

00100101
+ 00010010
00110111

e The decimal equivalent of (00110111), is (+55), which is the correct answer.

Case 2
e Consider the two decimal numbers +37 and -18.
e The 2’s complement representation of 437 in eight-bit representation = 00100101.
® The 2’s complement representation of —18 in eight-bit representation = 11101110.
e The addition of the two numbers, that is, +37 and —18, is performed as follows:

00100101

+ 11101110
00010011

The final carry has been disregarded.
The decimal equivalent of (00010011), is +19, which is the correct answer.

Case 3
e Consider the two decimal numbers +18 and —37.
e —37 in 2’s complement form in eight—bit representation = 11011011.
® +18in 2’s complement form in eight—bit representation = 00010010.
e The addition of the two numbers, that is, —37 and +18, is performed as follows:
11011011
+ 00010010
11101101

e The decimal equivalent of (11101101),, which is in 2’s complement form, is —19, which is the
correct answer. 2’s complement representation was discussed in detail in Chapter 1 on number
systems.

Case 4

e Consider the two decimal numbers —18 and —37.

e —18in 2’s complement form is 11101110.

® —37in 2’s complement form is 11011011.

® The addition of the two numbers, that is, —37 and —18, is performed as follows:
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11011011
+ 11101110
11001001

e The final carry in the ninth bit position is disregarded.
e The decimal equivalent of (11001001),, which is in 2’s complement form, is —55, which is the
correct answer.

It may also be mentioned here that, in general, 2’s complement notation can be used to perform
addition when the expected result of addition lies in the range from —2""! to +(2"~! — 1), n being
the number of bits used to represent the numbers. As an example, eight-bit 2’s complement arithmetic
cannot be used to perform addition if the result of addition lies outside the range from —128 to +127.
Different steps to be followed to do addition in 2’s complement arithmetic are summarized as follows:

. Represent the two numbers to be added in 2’s complement form.
. Do the addition using basic rules of binary addition.

. Disregard the final carry, if any.

. The result of addition is in 2’s complement form.

S I S

Example 3.1

Perform the following addition operations:

1. (275.75),0+ (37.875),0.
2. (AF1.B3),4+ (FFF.E),;.

Solution

1. As a first step, the two given decimal numbers will be converted into their equivalent binary
numbers (decimal-to-binary conversion has been covered at length in Chapter 1, and therefore the
decimal-to-binary conversion details will not be given here):

(275.75),4 = (100010011.11), and (37.875),, = (100101.111),

The two binary numbers can be rewritten as (100010011.110), and (000100101.111), to have the
same number of bits in their integer and fractional parts. The addition of two numbers is performed
as follows:

100010011.110
000100101.111
100111001.101

The decimal equivalent of (100111001.101), is (313.625),,.
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2. (AF1.B3),,=(101011110001.10110011), and (FFF.E),q=(111111111111.1110),. (1111111111
11.1110), can also be written as (111111111111.11100000), to have the same number of bits in
the integer and fractional parts. The two numbers can now be added as follows:

0101011110001.10110011
0111111111111.11100000
1101011110001.10010011

The hexadecimal equivalent of (1101011110001.10010011), is (1AF1.93),,, which is equal to the
hex addition of (AF1.B3),, and (FFF.E).

Example 3.2
Find out whether 16-bit 2’s complement arithmetic can be used to add 14 276 and 18 490.

Solution

The addition of decimal numbers 14 276 and 18 490 would yield 32 766. 16-bit 2’s complement
arithmetic has a range of —2'5 to +(2!° — 1), i.e. —32 768 to +32 767. The expected result is inside
the allowable range. Therefore, 16-bit arithmetic can be used to add the given numbers.

Example 3.3

Add —118 and —32 firstly using eight-bit 2’s complement arithmetic and then using 16-bit 2’s
complement arithmetic. Comment on the results.

Solution

e —118 in eight-bit 2’s complement representation = 10001010.

e —32 in eight-bit 2’s complement representation = 11100000.

® The addition of the two numbers, after disregarding the final carry in the ninth bit position, is
01101010. Now, the decimal equivalent of (01101010),, which is in 2’s complement form, is +106.
The reason for the wrong result is that the expected result, i.e. —150, lies outside the range of
eight-bit 2’s complement arithmetic. Eight-bit 2’s complement arithmetic can be used when the
expected result lies in the range from —27 to + (2”7 — 1), i.e. —128 to +127. —118 in 16-bit 2’s
complement representation = 1111111110001010.

e —32 in 16-bit 2’s complement representation = 1111111111100000.

e The addition of the two numbers, after disregarding the final carry in the 17th position, produces
1111111101101010. The decimal equivalent of (1111111101101010),, which is in 2’s complement
form, is —150, which is the correct answer. 16-bit 2’s complement arithmetic has produced the
correct result, as the expected result lies within the range of 16-bit 2’s complement notation.

3.3 Subtraction of Larger-Bit Binary Numbers

Subtraction is also done columnwise in the same way as in the case of the decimal number system.
In the first step, we subtract the LSBs and subsequently proceed towards the MSB. Wherever the
subtrahend (the bit to be subtracted) is larger than the minuend, we borrow from the next adjacent
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higher bit position having a ‘1’. As an example, let us go through different steps of subtracting (1001),
from (1100),.

In this case, ‘1’ is borrowed from the second MSB position, leaving a ‘0’ in that position. The
borrow is first brought to the third MSB position to make it ‘10’. Out of ‘10’ in this position,
‘1’ is taken to the LSB position to make ‘10’ there, leaving a ‘1’ in the third MSB position.
10 —1 in the LSB column gives ‘1°, 1 —0 in the third MSB column gives ‘1°, 0 — 0 in the second
MSB column gives ‘0’ and 1 —1 in the MSB also gives ‘0’ to complete subtraction. Subtraction
of mixed numbers is also done in the same manner. The above-mentioned steps are summarized
as follows:

. 1.1 0 0 2. 1.1 0 0
1 0 0 1 1 0 0 1

1 1 1

3.1.1 0 0 4. 1. 1 0 O
1 0 0 1 1 0 0 1

0 1 1 0 0 1 1

3.3.1 Subtraction Using 2’s Complement Arithmetic

Subtraction is similar to addition. Adding 2’s complement of the subtrahend to the minuend and
disregarding the carry, if any, achieves subtraction. The process is illustrated by considering six
different cases:

. Both minuend and subtrahend are positive. The subtrahend is the smaller of the two.
. Both minuend and subtrahend are positive. The subtrahend is the larger of the two.
The minuend is positive. The subtrahend is negative and smaller in magnitude.

The minuend is positive. The subtrahend is negative and greater in magnitude.

. Both minuend and subtrahend are negative. The minuend is the smaller of the two.

. Both minuend and subtrahend are negative. The minuend is the larger of the two.

<RV B NI SR

Case 1

Let us subtract +14 from +24.

The 2’s complement representation of +24 = 00011000.

The 2’s complement representation of +14 = 00001110.

Now, the 2’s complement of the subtrahend (i.e. +14) is 11110010.
Therefore, 424 — (+14) is given by

00011000
+ 11110010
00001010

with the final carry disregarded.
e The decimal equivalent of (00001010), is 410, which is the correct answer.
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Case 2

® Let us subtract 424 from +14.

e The 2’s complement representation of +14 = 00001110.

® The 2’s complement representation of +24 = 00011000.

e The 2’s complement of the subtrahend (i.e. +24) = 11101000.
® Therefore, +14 — (+24) is given by

00001110
+ 11101000
11110110

e The decimal equivalent of (11110110),, which is of course in 2’s complement form, is —10 which
is the correct answer.

Case 3

e Let us subtract —14 from +24.

® The 2’s complement representation of +24 = 00011000 = minuend.

® The 2’s complement representation of —14 = 11110010 = subtrahend.
e The 2’s complement of the subtrahend (i.e. —14) = 00001110.

e Therefore, +24 — (—14) is performed as follows:

00011000
4 00001110
00100110

The decimal equivalent of (00100110), is +38, which is the correct answer.

Case 4

® Let us subtract —24 from +14.

® The 2’s complement representation of +14 = 00001110 = minuend.

® The 2’s complement representation of —24 = 11101000 = subtrahend.
e The 2’s complement of the subtrahend (i.e. —24) = 00011000.

e Therefore, +14 — (—24) is performed as follows:

00001110
4+ 00011000
00100110

e The decimal equivalent of (00100110), is 438, which is the correct answer.

Case 5

® Let us subtract —14 from —24.
® The 2’s complement representation of —24 = 11101000 = minuend.
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The 2’s complement representation of —14=11110010 = subtrahend.
The 2’s complement of the subtrahend = 00001110.
Therefore, —24 — (—14) is given as follows:

11101000
4 00001110
11110110

The decimal equivalent of (11110110),, which is in 2’s complement form, is —10, which is the
correct answer.

Case 6

® Let us subtract —24 from —14.

e The 2’s complement representation of —14 = 11110010 = minuend.
e The 2’s complement representation of —24=11101000 = subtrahend.
® The 2’s complement of the subtrahend = 00011000.

e Therefore, —14 — (—24) is given as follows:

11110010
+ 00011000
00001010

with the final carry disregarded.
e The decimal equivalent of (00001010),, which is in 2’s complement form, is 410, which is the
correct answer.

It may be mentioned that, in 2’s complement arithmetic, the answer is also in 2’s complement
notation, only with the MSB indicating the sign and the remaining bits indicating the magnitude. In
2’s complement notation, positive magnitudes are represented in the same way as the straight binary
numbers, while the negative magnitudes are represented as the 2’s complement of their straight binary
counterparts. A ‘0’ in the MSB position indicates a positive sign, while a ‘1’ in the MSB position
indicates a negative sign.

The different steps to be followed to do subtraction in 2’s complement arithmetic are summarized
as follows:

. Represent the minuend and subtrahend in 2’s complement form.

. Find the 2’s complement of the subtrahend.

Add the 2’s complement of the subtrahend to the minuend.

. Disregard the final carry, if any.

. The result is in 2°s complement form.

. 2’s complement notation can be used to perform subtraction when the expected result of subtraction
lies in the range from —2"~! to +(2"~! — 1), n being the number of bits used to represent the
numbers.
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Example 3.4

Subtract (1110.011), from (11011.11), using basic rules of binary subtraction and verify the result by
showing equivalent decimal subtraction.

Solution
The minuend and subtrahend are first modified to have the same number of bits in the integer and
fractional parts. The modified minuend and subtrahend are (11011.110), and (01110.011), respectively:

11011.110
—01110.011
01101.011

The decimal equivalents of (11011.110), and (01110.011), are 27.75 and 14.375 respectively. Their
difference is 13.375, which is the decimal equivalent of (01101.011),.

Example 3.5
Subtract (a) (—64),, from (+32),, and (b) (29.A),s from (4F.B),s. Use 2’s complement arithmetic.

Solution:

(a) (+32),pin 2’s complement notation = (00100000),.
(—64),, in 2’s complement notation = (11000000),.
The 2’s complement of (—64),, = (01000000),.
(432),0 — (—64), is determined by adding the 2’s complement of (—64),, to (+32),,-
Therefore, the addition of (00100000), to (01000000), should give the result. The operation is
shown as follows:

00100000
+ 01000000
01100000

The decimal equivalent of (01100000), is 496, which is the correct answer as +32 — (—64) = +96.
(b) The minuend = (4F.B),, = (01001111.1011),.

The minuend in 2’s complement notation = (01001111.1011),.

The subtrahend = (29.A),, = (00101001.1010),.

The subtrahend in 2’s complement notation = (00101001.1010),.

The 2’s complement of the subtrahend = (11010110.0110),.

(4F.B),s —(29.A)¢ is given by the addition of the 2’s complement of the subtrahend to the

minuend.

01001111.1011
+11010110.0110
00100110.0001

with the final carry disregarded. The result is also in 2’s complement form. Since the result is a
positive number, 2’s complement notation is the same as it would be in the case of the straight
binary code.

The hex equivalent of the resulting binary number = (26.1),,, which is the correct answer.
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3.4 BCD Addition and Subtraction in Excess-3 Code

Below, we will see how the excess-3 code can be used to perform addition and subtraction operations
on BCD numbers.

3.4.1 Addition

The excess-3 code can be very effectively used to perform the addition of BCD numbers. The steps to
be followed for excess-3 addition of BCD numbers are as follows:

1. The given BCD numbers are written in excess-3 form by adding ‘0011’ to each of the four-bit
groups.

2. The two numbers are then added using the basic laws of binary addition.

3. Add ‘0011’ to all those four-bit groups that produce a carry, and subtract ‘0011’ from all those
four-bit groups that do not produce a carry during addition.

4. The result thus obtained is in excess-3 form.

3.4.2 Subtraction

Subtraction of BCD numbers using the excess-3 code is similar to the addition process discussed
above. The steps to be followed for excess-3 substraction of BCD numbers are as follows:

. Express both minuend and subtrahend in excess-3 code.

. Perform subtraction following the basic laws of binary subtraction.

. Subtract ‘0011” from each invalid BCD four-bit group in the answer.

. Subtract ‘0011° from each BCD four-bit group in the answer if the subtraction operation of the
relevant four-bit groups required a borrow from the next higher adjacent four-bit group.

. Add ‘0011’ to the remaining four-bit groups, if any, in the result.

6. This gives the result in excess-3 code.

S I S

(91

The process of addition and subtraction can be best illustrated with the help of following examples.

Example 3.6
Add (0011 0101 0110)gcp, and (0101 0111 1001)pcp, using the excess-3 addition method and verify the

result using equivalent decimal addition.

Solution
The excess-3 equivalents of 0011 0101 0110 and 0101 0111 1001 are 0110 1000 1001 and 1000 1010
1100 respectively. The addition of the two excess-3 numbers is given as follows:

0110 1000 1001
1000 1010 1100

11110011 0101

After adding 0011 to the groups that produced a carry and subtracting 0011 from the groups that did
not produce a carry, we obtain the result of the above addition as 1100 0110 1000. Therefore, 1100
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0110 1000 represents the excess-3 code for the true result. The result in BCD code is 1001 0011 0101,
which is the BCD equivalent of 935. This is the correct answer as the addition of the given BCD
numbers 0011 0101 0110 = (356),, and 0101 0111 1001 = (579),, yields (935),, only.

Example 3.7
Perform (185) ;y— (8),, using the excess-3 code.

Solution

e (185),, = (0001 1000 0101)gcp.-The excess-3 equivalent of (0001 1000 0101)gcp = 0100 1011
1000.

® (8),, = (008),, = (0000 0000 1000)zcp. The excess-3 equivalent of (0000 0000 1000)z-, = 0011
0011 1011.

e Subtraction is performed as follows:

0100 1011 1000
— 00110011 1011

0001 0111 1101

® In the subtraction operation, the least significant column of four-bit groups needed a borrow, while
the other two columns did not need any borrow. Also, the least significant column has produced an
invalid BCD code group. Subtracting 0011 from the result of this column and adding 0011 to the
results of other two columns, we get 0100 1010 1010. This now constitutes the result of subtraction
expressed in excess-3 code.

® The result in BCD code is therefore 0001 0111 0111.

® The decimal equivalent of 0001 0111 0111 is 177, which is the correct result.

3.5 Binary Multiplication

The basic rules of binary multiplication are governed by the way an AND gate functions when the
two bits to be multiplied are fed as inputs to the gate. Logic gates are discussed in detail in the next
chapter. As of now, it would suffice to say that the result of multiplying two bits is the same as the
output of the AND gate with the two bits applied as inputs to the gate. The basic rules of multiplication
are listed as follows:

1.0x0=0.
2.0x1=0.
3.1 x0=0.
4. 1 x1=1.

One of the methods for multiplication of larger-bit binary numbers is similar to what we are
familiar with in the case of decimal numbers. This is called the ‘repeated left-shift and add’ algorithm.
Microprocessors and microcomputers, however, use what is known as the ‘repeated add and right-shift’
algorithm to do binary multiplication as it is comparatively much more convenient to implement than
the ‘repeated left-shift and add’ algorithm. The two algorithms are briefly described below. Also, binary
multiplication of mixed binary numbers is done by performing multiplication without considering the
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binary point. Starting from the LSB, the binary point is then placed after n bits, where n is equal to
the sum of the number of bits in the fractional parts of the multiplicand and multiplier.

3.5.1 Repeated Left-Shift and Add Algorithm

In the ‘repeated left-shift and add’ method of binary multiplication, the end-product is the sum of
several partial products, with the number of partial products being equal to the number of bits in the
multiplier binary number. This is similar to the case of decimal multiplication. Each successive partial
product after the first is shifted one digit to the left with respect to the immediately preceding partial
product. In the case of binary multiplication too, the first partial product is obtained by multiplying the
multiplicand binary number by the LSB of the multiplier binary number. The second partial product is
obtained by multiplying the multiplicand binary number by the next adjacent higher bit in the multiplier
binary number and so on. We begin with the LSB of the multiplier to obtain the first partial product.
If the LSB is a ‘1’, a copy of the multiplicand forms the partial product, and it is an all ‘0’ sequence if
the LSB is a ‘0’. We proceed towards the MSB of the multiplier and obtain various partial products.
The second partial product is shifted one bit position to the left relative to the first partial product; the
third partial product is shifted one bit position to the left relative to the second partial product and so
on. The addition of all partial products gives the final answer. If the multiplicand and multiplier have
different signs, the end result has a negative sign, otherwise it is positive. The procedure is further
illustrated by showing (23),, x (6),, multiplication.

10111
Multiplicand : N BT R (23)10

Multiplier: —— ... (Om

10001010

The decimal equivalent of (10001010), is (138),,, which is the correct result.

3.5.2 Repeated Add and Right-Shift Algorithm

The multiplication process starts with writing an all ‘0’ bit sequence, with the number of bits equal
to the number of bits in the multiplicand. This bit sequence (all ‘0’ sequence) is added to another
same-sized bit sequence, which is the same as the multiplicand if the LSB of the multiplier is a ‘1’, and
an all ‘0’ sequence if it is a ‘0’. The result of the first addition is shifted one bit position to the right,
and the bit shifted out is recorded. The vacant MSB position is replaced by a ‘0’. This new sequence is
added to another sequence, which is an all ‘0’ sequence if the next adjacent higher bit in the multiplier
is a ‘0’, and the same as the multiplicand if it is a ‘1’. The result of the second addition is also shifted
one bit position to the right, and a new sequence is obtained. The process continues until all multiplier
bits are exhausted. The result of the last addition together with the recorded bits constitutes the result
of multiplication. We will illustrate the procedure by doing (23),, x (6),, multiplication again, this
time by using the ‘repeated add and right-shift’ algorithm:

e The multiplicand = (23),, = (10111), and the multiplier = (6),,= (110),. The multiplication process
is shown in Table 3.3.
e Therefore, (10111), x (110), = (10001010),.
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Table 3.3 Multiplication using the repeated add and right-shift algorithm.

10111 Multiplicand
110 Multiplier

00000 Start
+00000

00000 Result of first addition

00000 0 (Result of addition shifted one bit to right)
+10111

10111 Result of second addition

01011 10 (Result of addition shifted one bit to right)
+10111
100010 Result of third addition
010001 010 (Result of addition shifted one bit to right)

Example 3.8

Multiply (a) (100.01), x (10.1), by using the ‘repeated add and left-shift’ algorithm and (b) (2B) ;5%

(3) 6 by using the ‘add and right-shift’ algorithm. Verify the results by showing equivalent decimal
multiplication.

Solution
(a) As a first step, we will multiply (10001), by (101),. The process is shown as follows:

10001
x101

10001
00000
10001

1010101

The multiplication result is then given by placing the binary point three bits after the LSB, which
gives (1010.101), as the final result. Also, (100.01), = (4.25),, and (10.1), = (2.5),,. Moreover,
(4.25),9 x (2.5),p = (10.625),, and (1010.101), equals (10.625),,, which verifies the result.

(b) (2B),, = 00101011 = 101011 and (3),, = 0011 = 11.
Different steps involved in the multiplication process are shown in Table 3.4.
The result of multiplication is therefore (10000001),. Also, (2B);s = (43),o and (3);6 = (3)0-
Therefore, (2B) x (3)16 = (129),5. Moreover, (10000001), = (129),,, which verifies the result.

3.6 Binary Division

While binary multiplication is the process of repeated addition, binary division is the process of
repeated subtraction. Binary division can be performed by using either the ‘repeated right-shift and
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Table 3.4 Example 3.8.

101011 Multiplicand
11 Multiplier

000000 Start
+101011

101011 Result of first addition

010101 1 (Result of addition shifted one bit to right)
+101011
1000000 Result of second addition

0100000 01 (Result of addition shifted one bit to right)

subtract’ or the ‘repeated subtract and left-shift’ algorithm. These are briefly described and suitably
illustrated in the following sections.

3.6.1 Repeated Right-Shift and Subtract Algorithm

The algorithm is similar to the case of conventional division with decimal numbers. At the outset,
starting from MSB, we begin with the number of bits in the dividend equal to the number of bits in
the divisor and check whether the divisor is smaller or greater than the selected number of bits in
the dividend. If it happens to be greater, we record a ‘0’ in the quotient column. If it is smaller, we
subtract the divisor from the dividend bits and record a ‘1’ in the quotient column. If it is greater and
we have already recorded a ‘0’, then, as a second step, we include the next adjacent bit in the dividend
bits, shift the divisor to the right by one bit position and again make a similar check like the one made
in the first step. If it is smaller and we have made the subtraction, then in the second step we append
the next MSB of the dividend to the remainder, shift the divisor one bit to the right and again make a
similar check. The options are again the same. The process continues until we have exhausted all the
bits in the dividend. We will illustrate the algorithm with the help of an example. Let us consider the
division of (100110), by (1100),. The sequence of operations needed to carry out the above division
is shown in Table 3.5. The quotient = 011 and the remainder = 10.

Table 3.5 Binary division using the repeated right-shift and subtract algorithm.

Quotient
First step 0 100110 Dividend
—-1100 Divisor
Second step 1 10011 First five MSBs of dividend
—-1100 Divisor shifted to right

0111 First subtraction remainder
Third step 1 01110 Next MSB appended

-1100 Divisor right shifted

0010 Second subtraction remainder
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Table 3.6 Binary division using the repeate subtract and left-shift

algorithm.

Quotient 1001 10
-1100

0 1101 Borrow exists
+1100

1001 Final carry ignored

10011 Next MSB appended
-1100

1 0111 No borrow
01110 Next MSB appended
-1100

1 00010 No borrow

3.6.2 Repeated Subtract and Left-Shift Algorithm

The procedure can again be best illustrated with the help of an example. Let us consider solving the
above problem using this algorithm. The steps needed to perform the division are as follows. We begin
with the first four MSBs of the dividend, four because the divisor is four bits long. In the first step, we
subtract the divisor from the dividend. If the subtraction requires borrow in the MSB position, enter a
‘0’ in the quotient column; otherwise, enter a ‘1°. In the present case there exists a borrow in the MSB
position, and so there is a ‘0’ in the quotient column. If there is a borrow, the divisor is added to the
result of subtraction. In doing so, the final carry, if any, is ignored. The next MSB is appended to the
result of the first subtraction if there is no borrow, or to the result of subtraction, restored by adding
the divisor, if there is a borrow. By appending the next MSB, the remaining bits of the dividend are
one bit position shifted to the left. It is again compared with the divisor, and the process is repeated.
It goes on until we have exhausted all the bits of the dividend. The final remainder can be further
processed by successively appending Os and trying subtraction to get fractional part bits of the quotient.
The different steps are summarized in Table 3.6. The quotient = 011 and the remainder = 10.

Example 3.9

Use the ‘repeated right-shift and subtract’ algorithm to divide (110101), by (1011),. Determine both
the integer and the fractional parts of the quotient. The fractional part may be determined up to three
bit places.

Solution
The sequence of operations is given in Table 3.7. The operations are self-explanatory.

® The quotient = 100.110.

e Now, (110101), = (53),, and (1011), = (11),q.

e (53),, divided by (11),, gives (4.82),,-

e (100.110), = (4.75),9, which matches with the expected result to a good approximation.
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Table 3.7 Example 3.9.

Quotient
First step 1 110101 Dividend
—-1011 Divisor
0010 First subtraction
Second step 0 00100 Next MSB appended
—-1011 Divisor right shifted
Third step 0 001001 Next MSB appended
—-1011 Divisor right shifted
001001 All bits exhausted
1 0010010 ‘0’ appended
—-1011 Divisor right shifted
0111 Second subtraction
Fourth step 1 01110 ‘0’ appended
-1011 Divisor right shifted
00011 Third subtraction
Fifth step 0 000110 ‘0’ appended

—-1011 Divisor right shifted

0011 Fourth subtraction

Example 3.10

Use the ‘repeated subtract and left-shift’ algorithm to divide (100011), by (100), to determine both the
integer and fractional parts of the quotient. Verify the result by showing equivalent decimal division.
Determine the fractional part to two bit places.

Solution
The sequence of operations is given in Table 3.8. The operations are self-explanatory.

e The quotient = (1000.11), = (8.75),-
e Now, (100011), = (35),, and (100), = (4),o-
® (35),, divided by (4),, gives (8.75),, and hence is verified.

Example 3.11

Divide (AF),;s by (09),s using the method of ‘repeated right shift and subtract’, bearing in mind the
signs of the given numbers, assuming that we are working in eight-bit 2’s complement arithmetic.

Solution

e The dividend = (AF)s.

® As it is a negative hexadecimal number, the magnitude of this number is determined by its 2’s
complement (or more precisely by its 16’s complement in hexadecimal number language).
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Table 3.8 Example 3.10.

Quotient 100 0 1 1 Dividend
-100 Divisor
1 000 No borrow
0000 Next MSB appended
-100
0 100 Borrow exists
+100
000 Final carry ignored
0001 Next MSB appended
-100
0 101 Borrow exists
+100
001 Final carry ignored
0011 Next MSB appended
—-100
0 111 Borrow exists
+100
011 Final carry ignored
0110 ‘0’ appended
—-100
1 010 No borrow
0100 ‘0’ appended
-100
1 000 No borrow

The 16’s complement of (AF),;s = (51)-

The binary equivalent of (51),, = 01010001 = 1010001.

The divisor = (09).

It is a positive number.

The binary equivalent of (09),, = 00001001.

As the dividend is a negative number and the divisor a positive number, the quotient will be a

negative number. The division process using the ‘repeated right-shift and subtract’ algorithm is

given in Table 3.9.

e The quotient = 1001 = (09),,.

® As the quotient should be a negative number, its magnitude is given by the 16’s complement of
(09)16, i.e. (F7)y6.

e Therefore, (AF),¢ divided by (09),4 gives (F7).

3.7 Floating-Point Arithmetic

Before performing arithmetic operations on floating-point numbers, it is necessary to make a few checks,
such as finding the signs of the two mantissas, checking any possible misalignment of exponents, etc.
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Table 3.9 Example 3.11

1 1010001 Divisor less than dividend
—-1001

0001

0 00010 Divisor greater than dividend
—-1001

0 000100 Divisor still greater
—-1001

1 0001001 Divisor less than dividend
—-1001

0000000

For example, if the exponents of the two numbers are not equal, the addition and subtraction operations
necessitate that they be made equal. In that case, the mantissa of the smaller of the two numbers is
shifted right, and the exponent is incremented for each shift until the two exponents are equal. Once the
binary points are aligned and the exponents made equal, addition and subtraction operations become
straightforward. While doing subtraction, of course, a magnitude check is also required to determine
the smaller of the two numbers.

3.7.1 Addition and Subtraction

If N, and N, are two floating-point numbers given by

Ny =my x2°¢

N, =m, x2°

then
N, +N,=m; x2°+m, x2°=(m; +m,) x2°

and

N, — N,=my x2° —m, x2°=(m; —m,) x2°

The subtraction operation assumes that N; > N,. Post-normalization of the result may be required
after the addition or subtraction operation.

3.7.2 Multiplication and Division

In the case of multiplication of two floating-point numbers, the mantissas of the two numbers are
multiplied and their exponents are added. In the case of a division operation, the mantissa of the
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quotient is given by the division of the two mantissas (i.e. dividend mantissa divided by divisor
mantissa) and the exponent of the quotient is given by subtraction of the two exponents (i.e. dividend
exponent minus divisor exponent).

If

N, =m, x2%and N, = m, x 2
then

N, x Ny = (m; x m,) x2€!*?
and

Ny /Ny = (m/my) x 20e1=e2)

Again, post-normalization may be required after multiplication or division, as in the case of addition
and subtraction operations.

Example 3.12

Add (a) (39),, and (19),, and (b) (1E),s and (F3),s using floating-point numbers. Verify the answers
by performing equivalent decimal addition.

Solution
(a) (39),, = 100111 = 0.100111 x 2°.
(19),p = 10011 = 0.10011 x 2° = 0.010011 x 2°.
Therefore, (39);, + (19);,= 0.100111 x 2% + 0.010011 x 2°
= (0.100111 + 0.010011) x 2% = 0.111010 x 2¢
= 111010 = (58),,

and hence is verified.
(b) (1E);s = (00011110), = 0.00011110 x 28.
(F3);s = (11110011), = 0.11110011 x 28,
(1E) s + (F3),6= (0.00011110 + 0.11110011) x 2% = 100010001
= 000100010001
= (111).
Also, (1E),4 + (F3),, = (111),4 and hence is proved.

Example 3.13

Subtract (17)g from (21)g using floating-point numbers and verify the answer.

Solution
e (21); = (010001), = 0.010001 x 2°.
o (17)g = (001111), = 0.001111 x 2°.
e Therefore, (21); — (17)s = (0.010001 — 0.001111) x 2°
= 0.000010 x 2% = 000010 = (02),.
e Also, (21); — (17)s = (02) and hence is verified.
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Example 3.14

Multiply (37),y by (10),, using floating-point numbers. Verify by showing equivalent decimal
multiplication.

Solution

e The multiplicand = (37),, = (100101), = 0.100101 x 2°.

e The multiplier = (10),, = (1010), = 0.1010 x 2*.

® (37),0 x (10);0 = (0.100101 x 0.1010) x 2!° = 0.0101110010 x 2'° = 101110010
= (370),, and hence is verified.

Example 3.15

Perform (E3B),s + (1A),s using binary floating-point numbers. Verify by showing equivalent decimal
division.

Solution

e Dividend = (E3B);, = (111000111011), = 0.111000111011 x 2'2,

e Divisor = (1A);, = (00011010), = (11010), = 0.11010 x 25.

e Therefore, (E3B);s + (1A);s = (0.111000111011 <+ 0.11010) x 27.

® By performing division of the mantissas using either of the two division algorithms described earlier,
we obtain the result of division as (10001100.00011),.

e (10001100.00011), = (140.093),,.

e Also, (E3B), = (3643),, and (1A),c = (26),.-

e (E3B);s ~ (1A),4 = (3643),, + (26),, = (140.1),,, which is the same as the result obtained with
binary floating-point arithmetic to a good approximation.

Review Questions

1. Outline the different steps involved in the addition of larger-bit binary numbers for the following
two cases:

(a) The larger of the two numbers is positive and the other number is negative.
(b) The larger of the two numbers is negative and the other number is positive.

2. Outline the different steps involved in the subtraction of larger-bit binary numbers for the following
two cases:

(a) The minuend is positive. The subtrahend is negative and smaller in magnitude.
(b) The minuend is positive. The subtrahend is negative and larger in magnitude.

3. What decides whether a particular binary addition or subtraction operation would be possible with
2’s complement arithmetic?

4. Why in microprocessors and microcomputers is the ‘repeated add and right-shift’ algorithm preferred
over the ‘repeated left-shift and add’ algorithm for binary multiplication? Briefly outline the
procedure for multiplication in the case of the former.
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5.

Prove that the largest six-digit hexadecimal number when subtracted from the largest eight-digit
octal number yields zero in decimal.

Problems

1.

Perform the following operations using 2’s complement arithmetic. The numbers are represented
using 2’s or 10’s or 16’s complement notation as the case may be. Express the result both in 2’s
complement binary as well as in decimal.

(@) (TF)i6 + (Al)ss.
(b) (110),, + (0111),.
(a) (00100000),, (32),o; (b) (01110101),,(117),,

Evaluate the following to two binary places:

(a) (100.0001), = (10.1),.
(b) (111001), = (1001),.
(c) (111.001), x (1.11),.
(a) 1.10; (b) 110.01; (c) 1100.01

Prove that 16-bit 2’s complement arithmetic cannot be used to add +18 150 and +14 618, while it
can be used to add —18 150 and —14 618.
Add the maximum positive integer to the minimum negative integer, both represented in 16-bit 2’s
complement binary notation. Express the answer in 2’s complement binary.

11ririannt

The result of adding two BCD numbers represented in excess-3 code is 0111 1011 when the two
numbers are added using simple binary addition. If one of the numbers is (12),,, find the other.

(03)10
Perform the following operations using 2’s complement arithmetic:

(@) (+43)19 — (=53);0-
(b) (1ABC),¢ + (1DEF),s.
() (3E91);6— (1F93)y4.
() 01100000; (b) (38AB),q; () (1EFE),q
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Logic Gates and Related Devices

Logic gates are electronic circuits that can be used to implement the most elementary logic expressions,
also known as Boolean expressions. The logic gate is the most basic building block of combinational
logic. There are three basic logic gates, namely the OR gate, the AND gate and the NOT gate. Other
logic gates that are derived from these basic gates are the NAND gate, the NOR gate, the EXCLUSIVE-
OR gate and the EXCLUSIVE-NOR gate. This chapter deals with logic gates and some related devices
such as buffers, drivers, etc., as regards their basic functions. The treatment of the subject matter is
mainly with the help of respective truth tables and Boolean expressions. The chapter is adequately
illustrated with the help of solved examples. Towards the end, the chapter contains application-relevant
information in terms of popular type numbers of logic gates from different logic families and their
functional description to help application engineers in choosing the right device for their application. Pin
connection diagrams are given on the companion website at http://www.wiley.com/go/maini_digital.
Different logic families used to hardware-implement different logic functions in the form of digital
integrated circuits are discussed in the following chapter.

4.1 Positive and Negative Logic

The binary variables, as we know, can have either of the two states, i.e. the logic ‘0’ state or the
logic ‘1’ state. These logic states in digital systems such as computers, for instance, are represented by
two different voltage levels or two different current levels. If the more positive of the two voltage or
current levels represents a logic ‘1’ and the less positive of the two levels represents a logic ‘0’, then
the logic system is referred to as a positive logic system. If the more positive of the two voltage or
current levels represents a logic ‘0’ and the less positive of the two levels represents a logic ‘1°, then
the logic system is referred to as a negative logic system. The following examples further illustrate this
concept.

Digital Electronics: Principles, Devices and Applications ~Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5
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If the two voltage levels are 0 V and +5 V, then in the positive logic system the 0 V represents a
logic ‘0’ and the +5 V represents a logic ‘1°. In the negative logic system, 0 V represents a logic ‘1’
and +5 V represents a logic ‘0’.

If the two voltage levels are 0 V and —5 V, then in the positive logic system the 0 V represents a
logic ‘1’ and the —5 V represents a logic ‘0’. In the negative logic system, O V represents a logic ‘0’
and —5 V represents a logic ‘1°.

It is interesting to note, as we will discover in the latter part of the chapter, that a positive OR is a
negative AND. That is, OR gate hardware in the positive logic system behaves like an AND gate in
the negative logic system. The reverse is also true. Similarly, a positive NOR is a negative NAND,
and vice versa.

4.2 Truth Table

A truth table lists all possible combinations of input binary variables and the corresponding outputs of
a logic system. The logic system output can be found from the logic expression, often referred to as
the Boolean expression, that relates the output with the inputs of that very logic system.

When the number of input binary variables is only one, then there are only two possible inputs, i.e.
‘0’ and ‘1’. If the number of inputs is two, there can be four possible input combinations, i.e. 00, 01, 10
and 11. Figure 4.1(b) shows the truth table of the two-input logic system represented by Fig. 4.1(a). The
logic system of Fig. 4.1(a) is such that ¥ = 0 only when both A =0 and B = 0. For all other possible
input combinations, output ¥ = 1. Similarly, for three input binary variables, the number of possible
input combinations becomes eight, i.e. 000, 001, 010, 011, 100, 101, 110 and 111. This statement can
be generalized to say that, if a logic circuit has n binary inputs, its truth table will have 2" possible
input combinations, or in other words 2" rows. Figure 4.2 shows the truth table of a three-input logic
circuit, and it has 8 (= 2*) rows. Incidentally, as we will see later in the chapter, this is the truth table
of a three-input AND gate. It may be mentioned here that the truth table of a three-input AND gate as
given in Fig. 4.2 is drawn following the positive logic system, and also that, in all further discussion
throughout the book, we will use a positive logic system unless otherwise specified.

A —— .
Logic v
B System
e ——
(a)
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

(b)

Figure 4.1 Two-input logic system.
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Figure 4.2 Truth table of a three-input logic system

4.3 Logic Gates

The logic gate is the most basic building block of any digital system, including computers. Each one
of the basic logic gates is a piece of hardware or an electronic circuit that can be used to implement
some basic logic expression. While laws of Boolean algebra could be used to do manipulation with
binary variables and simplify logic expressions, these are actually implemented in a digital system
with the help of electronic circuits called logic gates. The three basic logic gates are the OR gate, the
AND gate and the NOT gate.

4.3.1 OR Gate

An OR gate performs an ORing operation on two or more than two logic variables. The OR operation
on two independent logic variables A and B is written as ¥ = A+ B and reads as Y equals A OR B
and not as A plus B. An OR gate is a logic circuit with two or more inputs and one output. The output
of an OR gate is LOW only when all of its inputs are LOW. For all other possible input combinations,
the output is HIGH. This statement when interpreted for a positive logic system means the following.
The output of an OR gate is a logic ‘0’ only when all of its inputs are at logic ‘0’. For all other possible
input combinations, the output is a logic ‘1°. Figure 4.3 shows the circuit symbol and the truth table
of a two-input OR gate. The operation of a two-input OR gate is explained by the logic expression

Y=A+B 4.1

As an illustration, if we have four logic variables and we want to know the logical output of (A +
B+ C+ D), then it would be the output of a four-input OR gate with A, B, C and D as its inputs.

A
Y=A+B
B

Figure 4.3 Two-input OR gate.

- a2 o o|l>»
- O = O|lw
- = a4 O
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_\_\ Y=A+B+C

(a)

O w >

A
8§>— Y=A+B+C+D
D
(b)
AlBJ]c]yY
oo oo
o | o [ 1|1
o | 1 [ o |1
o |1 |1 |
1 o | o | 1
1o | 1] 1
1] 1 | o | 1
11 1]
()

Figure 4.4 (a) Three-input OR gate, (b) four-input OR gate and (c) the truth table of a three-input OR gate.

Figures 4.4(a) and (b) show the circuit symbol of three-input and four-input OR gates. Figure 4.4(c)
shows the truth table of a three-input OR gate. Logic expressions explaining the functioning of three-
input and four-input OR gates are Y = A+B+Cand Y = A+B+C+D.

Example 4.1

How would you hardware-implement a four-input OR gate using two-input OR gates only?

Solution

Figure 4.5(a) shows one possible arrangement of two-input OR gates that simulates a four-input OR
gate. A, B, C and D are logic inputs and Y3 is the output. Figure 4.5(b) shows another possible
arrangement. In the case of Fig. 4.5(a), the output of OR gate 1 is Y1 = (A + B). The second

A Y1
A
Y1 o B
B Y3
C 3 Y3 C
D Y2
D

(@) (b)

Figure 4.5 Example 4.1.
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OR gate produces the output Y2 = (Y1+ C) = (A+ B+ C). Similarly, the output of OR gate 3 is
Y3 = (Y2+ D)= (A+ B+ C+ D). In the case of Fig. 4.5(b), the output of OR gate 1is Y1 = (A+ B).
The second OR gate produces the output Y2 = (C + D). Output Y3 of the third OR gate is given by
(Y14+Y2)=(A+B+C+D).

Example 4.2

Draw the output waveform for the OR gate and the given pulsed input waveforms of Fig. 4.6(a).

Solution
Figure 4.6(b) shows the output waveform. It can be drawn by following the truth table of the OR gate.

4.3.2 AND Gate

An AND gate is a logic circuit having two or more inputs and one output. The output of an AND gate
is HIGH only when all of its inputs are in the HIGH state. In all other cases, the output is LOW. When
interpreted for a positive logic system, this means that the output of the AND gate is a logic ‘1’ only
when all of its inputs are in logic ‘1’ state. In all other cases, the output is logic ‘0’. The logic symbol
and truth table of a two-input AND gate are shown in Figs 4.7(a) and (b) respectively. Figures 4.8(a)
and (b) show the logic symbols of three-input and four-input AND gates respectively. Figure 4.8(c)
gives the truth table of a four-input AND gate.

The AND operation on two independent logic variables A and B is written as ¥ = A.B and reads
as Y equals A AND B and not as A multiplied by B. Here, A and B are input logic variables and Y is
the output. An AND gate performs an ANDing operation:

. il
LT

» t (a)

Figure 4.6 Example 4.2.
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Figure 4.7 Two-input AND gate.
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Figure 4.8 (a) Three-input AND gate, (b) four-input AND gate and (c) the truth table of a four-input AND gate.
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e for a two-input AND gate, ¥ = A.B;
e for a three-input AND gate, Y = A.B.C;
e for a four-input AND gate, ¥ = A.B.C.D.

If we interpret the basic definition of OR and AND gates for a negative logic system, we have an
interesting observation. We find that an OR gate in a positive logic system is an AND gate in a negative
logic system. Also, a positive AND is a negative OR.

Example 4.3

Show the logic arrangement for implementing a four-input AND gate using two-input AND gates only.

Solution

Figure 4.9 shows the hardware implementation of a four-input AND gate using two-input AND gates.
The output of AND gate 1 is Y1 = A.B. The second AND gate produces an output Y2 given by
Y2 =Y1.C = A.B.C. Similarly, the output of AND gate 3 is Y = Y2.D = A.B.C.D and hence the
result.

4.3.3 NOT Gate

A NOT gate is a one-input, one-output logic circuit whose output is always the complement of the
input. That is, a LOW input produces a HIGH output, and vice versa. When interpreted for a positive
logic system, a logic ‘0’ at the input produces a logic ‘1’ at the output, and vice versa. It is also known
as a ‘complementing circuit’ or an ‘inverting circuit’. Figure 4.10 shows the circuit symbol and the
truth table.

The NOT operation on a logic variable X is denoted as X or X’. That is, if X is the input to a NOT
circuit, then its output Y is given by ¥ = X or X’ and reads as Y equals NOT X. Thus, if X=0,Y =1
andif X=1,Y=0.

Example 4.4

For the logic circuit arrangements of Figs 4.11(a) and (b), draw the output waveform.

Solution

In the case of the OR gate arrangement of Fig. 4.11(a), the output will be permanently in logic ‘1’
state as the two inputs can never be in logic ‘0’ state together owing to the presence of the inverter.

In the case of the AND gate arrangement of Fig. 4.11(b), the output will be permanently in logic ‘0’
state as the two inputs can never be in logic ‘1’ state together owing to the presence of the inverter.

A Y1

B— 2
C—— 3 Y=A.B.C.D
D

Figure 4.9 Implementation of a four-input AND gate using two-input AND gates.
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X Y=X
(a)
X | Y
X = 0 1
Y=X 1] 0

Figure 4.10 (a) Circuit symbol of a NOT circuit and (b) the truth table of a NOT circuit.

I b

(b)

Figure 4.11 Example 4.4.

4.3.4 EXCLUSIVE-OR Gate

The EXCLUSIVE-OR gate, commonly written as EX-OR gate, is a two-input, one-output gate. Figures
4.12(a) and (b) respectively show the logic symbol and truth table of a two-input EX-OR gate. As can
be seen from the truth table, the output of an EX-OR gate is a logic ‘1’ when the inputs are unlike and
a logic ‘0’ when the inputs are like. Although EX-OR gates are available in integrated circuit form
only as two-input gates, unlike other gates which are available in multiple inputs also, multiple-input
EX-OR logic functions can be implemented using more than one two-input gates. The truth table of
a multiple-input EX-OR function can be expressed as follows. The output of a multiple-input EX-OR
logic function is a logic ‘1’ when the number of 1s in the input sequence is odd and a logic ‘0’ when
the number of 1s in the input sequence is even, including zero. That is, an all Os input sequence also
produces a logic ‘0’ at the output. Figure 4.12(c) shows the truth table of a four-input EX-OR function.
The output of a two-input EX-OR gate is expressed by

Y =(A®B)=AB+AB (4.2)



Logic Gates and Related Devices 77

A
)Diwx@s
B

(a)

- a2 o o|l>»
- o = o|lw
o =« 2 o<

—
O
~

4~ 4 4 44 a4 2000000 O0O>»
4 4 4 XA 0000 422 20000l
4 4 002 2002200 =20 0o|l0
— 020202020 —=0 =0 = o|lg
O - 2 0O 2 00 4 =~ 00 =0 = = Oflx

—
o
-~

Figure 4.12 (a) Circuit symbol of a two-input EXCLUSIVE-OR gate, (b) the truth table of a two-input
EXCLUSIVE-OR gate and (c) the truth table of a four-input EXCLUSIVE-OR gate

Example 4.5

How do you implement three-input and four-input EX-OR logic functions with the help of two-input
EX-OR gates?

Solution
Figures 4.13(a) and (b) show the implementation of a three-input EX-OR logic function and a four-input
EX-OR logic function using two-input logic gates:

e For Fig. 4.13(a), the output Y1 is given by A & B. The final output Y is given by Y = (Y1 C) =
(A®B)®C=A®B&C.
e Figure 4.13(b) can be explained on similar lines.
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-
B
C 7

(a)

B Y2
o , ) >
D 7

(b)

Figure 4.13 (a) Three-input EX-OR gate and (b) a four-input EX-OR gate.

[os]

Example 4.6

How can you implement a NOT circuit using a two-input EX-OR gate?

Solution
Refer to the truth table of a two-input EX-OR gate reproduced in Fig. 4.14(a). It is clear from the truth

table that, if one of the inputs of the gate is permanently tied to logic ‘1’ level, then the other input
and output perform the function of a NOT circuit. Figure 4.14(b) shows the implementation.

- 2 O o>
- 0o = Oo|lw
o =~ 2 ol

(@
v Output
Input

(b)

Figure 4.14 Implementation of a NOT circuit using an EX-OR gate.
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4.3.5 NAND Gate

NAND stands for NOT AND. An AND gate followed by a NOT circuit makes it a NAND gate [Fig.
4.15(a)]. Figure 4.15(b) shows the circuit symbol of a two-input NAND gate. The truth table of a
NAND gate is obtained from the truth table of an AND gate by complementing the output entries [Fig.
4.15(c)]. The output of a NAND gate is a logic ‘0’ when all its inputs are a logic ‘1’. For all other
input combinations, the output is a logic ‘1’. NAND gate operation is logically expressed as

Y=AB (4.3)

In general, the Boolean expression for a NAND gate with more than two inputs can be written as

Y =(A.B.C.D..) (44)

4.3.6 NOR Gate

NOR stands for NOT OR. An OR gate followed by a NOT circuit makes it a NOR gate [Fig. 4.16(a)].
The truth table of a NOR gate is obtained from the truth table of an OR gate by complementing the
output entries. The output of a NOR gate is a logic ‘1’ when all its inputs are logic ‘0’. For all other input
combinations, the output is a logic ‘0’. The output of a two-input NOR gate is logically expressed as

Y=(A+B) (4.5)
A : [
B
(a)
A __
Y=A.B
b
(b)

- a2 O o>
- O = Oo|wm
O = 2 4|

(©)

Figure 4.15 (a) Two-input NAND implementation using an AND gate and a NOT circuit, (b) the circuit symbol
of a two-input NAND gate and (c) the truth table of a two-input NAND gate.
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Figure 4.16 (a) Two-input NOR implementation using an OR gate and a NOT circuit, (b) the circuit symbol of
a two-input NOR gate and (c) the truth table of a two-input NOR gate.

In general, the Boolean expression for a NOR gate with more than two inputs can be written as

Y=(MA+B+C+D..) (4.6)

4.3.7 EXCLUSIVE-NOR Gate

EXCLUSIVE-NOR (commonly written as EX-NOR) means NOT of EX-OR, i.e. the logic gate that
we get by complementing the output of an EX-OR gate. Figure 4.17 shows its circuit symbol along

with its truth table.
The truth table of an EX-NOR gate is obtained from the truth table of an EX-OR gate by

complementing the output entries. Logically,

Y=(A®B)=(A.B+A.B) 4.7

Y=A®B

B =1
- O = Oo|lw
- 0O 0O =<

Figure 4.17 (a) Circuit symbol of a two-input EXCLUSIVE-NOR gate and (b) the truth table of a two-input
EXCLUSIVE-NOR gate.
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The output of a two-input EX-NOR gate is a logic ‘1’ when the inputs are like and a logic ‘0’
when they are unlike. In general, the output of a multiple-input EX-NOR logic function is a logic
‘0’ when the number of 1s in the input sequence is odd and a logic ‘1’ when the number of 1s in the
input sequence is even including zero. That is, an all Os input sequence also produces a logic ‘1’ at
the output.

Example 4.7

Show the logic arrangements for implementing:

(a) a four-input NAND gate using two-input AND gates and NOT gates;
(b) a three-input NAND gate using two-input NAND gates;

(c) a NOT circuit using a two-input NAND gate;

(d) a NOT circuit using a two-input NOR gate;

(e) a NOT circuit using a two-input EX-NOR gate.

Solution

(a) Figure 4.18(a) shows the arrangement. The logic diagram is self-explanatory. The first step is to get
a four-input AND gate using two-input AND gates. The output thus obtained is then complemented
using a NOT circuit as shown.

(b) Figure 4.18(b) shows the arrangement, which is again self-explanatory. The first step is to get a
two-input AND from a two-input NAND. The output of the two-input AND gate and the third
input then feed the inputs of another two-input NAND to get the desired output.

(c) Shorting the inputs of the NAND gives a one-input, one-output NOT circuit. This is because when
all inputs to a NAND are at logic ‘0’ level the output is a logic ‘1’, and when all inputs to a NAND
are at logic ‘1’ level the output is a logic ‘0’. Figure 4.18(c) shows the implementation.

(d) Again, shorting the inputs of a NOR gate gives a NOT circuit. From the truth table of a NOR gate
it is evident that an all Os input to a NOR gate gives a logic ‘1’ output and an all 1s input gives a
logic ‘0’ output. Figure 4.18(d) shows the implementation.

(e) Itisevident from the truth table of a two-input EX-NOR gate that, if one of the inputs is permanently
tied to a logic ‘0’ level and the other input is treated as the input, then it behaves as a NOT circuit
between input and output [Fig. 4.18(e)]. When the input is a logic ‘0’, the two inputs become 00,
which produces a logic ‘1’ at the output. When the input is at logic ‘1’ level, a 01 input produces
a logic ‘0’ at the output.

Example 4.8

How do you implement a three-input EX-NOR function using only two-input EX-NOR gates?

Solution

Figure 4.19 shows the arrangement. The first two EX-NOR gates implement a two-input EX-OR
gate using two-input EX-NOR gates. The second EX-NOR gate here has been wired as a NOT
circuit. The output of the second gate and the third input are fed to the two inputs of the third
EX-NOR gate.
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Figure 4.18 Example 4.7.
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Figure 4.19 Example 4.8.

4.3.8 INHIBIT Gate

There are many situations in digital circuit design where the passage of a logic signal needs to be
either enabled or inhibited depending upon certain other control inputs. INHIBIT here means that the
gate produces a certain fixed logic level at the output irrespective of changes in the input logic level.
As an illustration, if one of the inputs of a four-input NOR gate is permanently tied to logic ‘1’ level,
then the output will always be at logic ‘0’ level irrespective of the logic status of other inputs. This
gate will behave as a NOR gate only when this control input is at logic ‘0’ level. This is an example of
the INHIBIT function. The INHIBIT function is available in integrated circuit form for an AND gate,
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which is basically an AND gate with one of its inputs negated by an inverter. The negated input acts
to inhibit the gate. In other words, the gate will behave like an AND gate only when the negated input
is driven to a logic ‘0’. Figure 4.20 shows the circuit symbol and truth table of a four-input INHIBIT
gate.

Example 4.9

Refer to the INHIBIT gate of Fig. 4.21(a). If the waveform of Fig. 4.21(b) is applied to the INHIBIT
input, draw the waveform at the output.

Solution

Since all other inputs of the gate have been permanently tied to logic ‘1’ level, a logic ‘0’ at the
INHIBIT input would produce a logic ‘1’ at the output and a logic ‘1’ at the INHIBIT input would
produce a logic ‘0’ at the output. The output waveform is therefore the inversion of the input waveform
and is shown in Fig. 4.22.

A

B

c Y

p—O

(a)

A B C D Y
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

—
O
~

Figure 4.20 INHIBIT gate.
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Figure 4.21 Example 4.9.

R S

Figure 4.22 Solution to example 4.9.

Example 4.10

Refer to the INHIBIT gate shown in Fig. 4.23(a) and the INHIBIT input waveform shown in Fig.
4.23(b). Sketch the output waveform.

Solution

The output will always be at logic ‘1’ level as two of the inputs of the logic gate, which is a NAND,
are permanently tied to logic ‘0’ level. This would have been so even if one of the inputs of the gate
were at logic ‘0’ level.

o

I/P >———0 :

(@)

Logic 1" |----

Logic '0' + t(ms)
1 5

Figure 4.23 Example 4.10.
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4.4 Universal Gates

OR, AND and NOT gates are the three basic logic gates as they together can be used to construct
the logic circuit for any given Boolean expression. NOR and NAND gates have the property that they
individually can be used to hardware-implement a logic circuit corresponding to any given Boolean
expression. That is, it is possible to use either only NAND gates or only NOR gates to implement any
Boolean expression. This is so because a combination of NAND gates or a combination of NOR gates
can be used to perform functions of any of the basic logic gates. It is for this reason that NAND and
NOR gates are universal gates.

As an illustration, Fig. 4.24 shows how two-input NAND gates can be used to construct a NOT circuit
[Fig. 4.24(a)], a two-input AND gate [Fig. 4.24(b)] and a two-input OR gate [Fig. 4.24(c)]. Figure 4.25
shows the same using NOR gates. Understanding the conversion of NAND to OR and NOR to AND
requires the use of DeMorgan’s theorem, which is discussed in Chapter 6 on Boolean algebra.

4.5 Gates with Open Collector/Drain Outputs

These are gates where we need to connect an external resistor, called the pull-up resistor, between the
output and the DC power supply to make the logic gate perform the intended logic function. Depending
on the logic family used to construct the logic gate, they are referred to as gates with open collector
output (in the case of the TTL logic family) or open drain output (in the case of the MOS logic family).
Logic families are discussed in detail in Chapter 5.

The advantage of using open collector/open drain gates lies in their capability of providing an
ANDing operation when outputs of several gates are tied together through a common pull-up resistor,

A

A{} Y=A+B
B{}

(©

BB
(b)
A
B

Figure 4.24 Implementation of basic logic gates using only NAND gates.
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(©

Figure 4.25 Implementation of basic logic gates using only NOR gates.

without having to use an AND gate for the purpose. This connection is also referred to as WIRE-AND
connection. Figure 4.26(a) shows such a connection for open collector NAND gates. The output in this
case would be

Y = AB.CD.EF (4.8)
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Figure 4.26 WIRE-AND connection with open collector/drain devices.
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+V

Pull-up
Resistor

Figure 4.26 (continued).

Figure 4.26(b) shows a similar arrangement for NOT gates. The disadvantage is that they are relatively
slower and noisier. Open collector/drain devices are therefore not recommended for applications where
speed is an important consideration.

4.6 Tristate Logic Gates

Tristate logic gates have three possible output states, i.e. the logic ‘1’ state, the logic ‘0’ state and
a high-impedance state. The high-impedance state is controlled by an external ENABLE input. The
ENABLE input decides whether the gate is active or in the high-impedance state. When active, it can
be ‘0’ or ‘1’ depending upon input conditions. One of the main advantages of these gates is that their
inputs and outputs can be connected in parallel to a common bus line. Figure 4.27(a) shows the circuit
symbol of a tristate NAND gate with active HIGH ENABLE input, along with its truth table. The one
shown in Fig. 4.27(b) has active LOW ENABLE input. When tristate devices are paralleled, only one
of them is enabled at a time. Figure 4.28 shows paralleling of tristate inverters having active HIGH
ENABLE inputs.

4.7 AND-OR-INVERT Gates

AND-OR and OR-AND gates can be usefully employed to implement sum-of-products and product-
of-sums Boolean expressions respectively. Figures 4.29(a) and (b) respectively show the symbols of
AND-OR-INVERT and OR-AND-INVERT gates.

Another method for designating the gates shown in Fig. 4.29 is to call them two-wide, two-input
AND-OR-INVERT or OR-AND-INVERT gates as the case may be. The gate is two-wide as there
are two gates at the input, and two-input as each of the gates has two inputs. Other varieties such
as two-wide, four-input AND-OR-INVERT (Fig. 4.30) and four-wide, two-input AND-OR-INVERT
(Fig. 4.31) are also available in IC form.
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Figure 4.27 Tristate devices.

4.8 Schmitt Gates

The logic gates discussed so far have a single-input threshold voltage level. This threshold is the
same for both LOW-to-HIGH and HIGH-to-LOW output transitions. This threshold voltage lies
somewhere between the highest LOW voltage level and the lowest HIGH voltage level guaranteed by
the manufacturer of the device. These logic gates can produce an erratic output when fed with a slow
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Figure 4.28 Paralleling of tristate inverters.
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Figure 4.29 AND-OR-INVERT and OR-AND-INVERT gates.

(ABCD+EFGH)

Figure 4.30 Two-wide, four-input AND-OR-INVERT gate.



90 Digital Electronics

(AB+CD+EF+GH)

ww@w

Figure 4.31 Four-wide, two-input AND-OR-INVERT gate.

varying input. Figure 4.32 shows the response of an inverter circuit when fed with a slow varying
input both in the case of an ideal signal [Fig. 4.32(a)] and in the case of a practical signal having
a small amount of AC noise superimposed on it [Fig. 4.32(b)]. A possible solution to this problem
lies in having two different threshold voltage levels, one for LOW-to-HIGH transition and the other
for HIGH-to-LOW transition, by introducing some positive feedback in the internal gate circuitry, a
phenomenon called hysteresis.

There are some logic gate varieties, mainly in NAND gates and inverters, that are available
with built-in hysteresis. These are called Schmitt gates, which interpret varying input voltages
according to two threshold voltages, one for LOW-to-HIGH and the other for HIGH-to-LOW
output transition. Figures 4.33(a) and (b) respectively show circuit symbols of Schmitt NAND and
Schmitt inverter. Schmitt gates are distinguished from conventional gates by the small ‘hysteresis’
symbol reminiscent of the B— H loop for a ferromagnetic material. Figure 4.33(c) shows typical
transfer characteristics for such a device. The difference between the two threshold levels is

< Qutput
~
° Input
()]
o [ I "
S} S Threshold

——» time

(@)

Figure 4.32 Response of conventional inverters to slow varying input.
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Figure 4.32 (continued).

the hysteresis. These characteristics have been reproduced from the data sheet of IC 74LS132,
which is a quad two-input Schmitt NAND belonging to the low-power Schottky TTL family.
Figure 4.33(d) shows the response of a Schmitt inverter to a slow varying noisy input signal.
We will learn more about different logic families in Chapter 5. It may be mentioned here that
hysteresis increases noise immunity and is used in applications where noise is expected on input
signal lines.

4.9 Special Output Gates

There are many applications where it is desirable to have both noninverted and inverted outputs.
Examples include a single-input gate that is both an inverter and a noninverting buffer, or a two-input
logic gate that is both an AND and a NAND. Such gates are called complementary output gates and
are particularly useful in circuits where PCB space is at a premium. These are also useful in circuits
where the addition of an inverter to obtain the inverted output introduces an undesirable time delay
between inverted and noninverted outputs. Figure 4.34 shows the circuit symbols of complementary
buffer, AND, OR and EX-OR gates.

Example 4.11

Draw the circuit symbols for (a) a two-wide, four-input OR-AND-INVERT gate and (b) a four-wide,
two-input OR-AND-INVERT gate.

Solution
(a) Refer to Fig. 4.35(a).
(b) Refer to Fig. 4.35(b).
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Figure 4.33 Schmitt gates.
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Figure 4.35 Example 4.11.

Example 4.12

Refer to Fig. 4.36(a). If the NAND gate used has the transfer characteristics of Fig. 4.36(b), sketch the
expected output waveform.

Solution

The output waveform is shown in Fig. 4.36(c). The output is initially in logic ‘1’ state. It goes from
logic ‘1’ to logic ‘0’ state as the input exceeds 2 V. The output goes from logic ‘0’ to logic ‘1’ state
as the input drops below 1 V.
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Figure 4.36 Example 4.12.
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Figure 4.37 Example 4.13.

Example 4.13

Refer to the logic arrangement of Fig. 4.37. Write the logic expression for the output Y.

Solution

The NAND gates used in the circuit are open collector gates. Paralleling of the two NAND gates at
the input leads to a WIRE-AND connection. Therefore the logic expression at the point where the two
outputs combine is given by the equation

(AB.CD) (4.9
Using DeMorgan’s theorem (discussed in Chapter 6 on Boolean algebra),
(AB.CD) = (AB+CD) (4.10)
The third NAND is wired as an inverter. Therefore, the final output can be written as

Y = (AB+CD) (4.11)

4.10 Fan-Out of Logic Gates

It is a common occurrence in logic circuits that the output of one logic gate feeds the inputs of several
others. It is not practical to drive the inputs of an unlimited number of logic gates from the output of
a single logic gate. This is limited by the current-sourcing capability of the output when the output of
the logic gate is HIGH and by the current-sinking capability of the output when it is LOW, and also
by the requirement of the inputs of the logic gates being fed in the two states.

To illustrate the point further, let us say that the current-sourcing capability of a certain NAND gate
is I,y when its output is in the logic HIGH state and that each of the inputs of the logic gate that it is
driving requires an input current ,;, as shown in Fig. 4.38(a). In this case, the output of the logic gate
will be able to drive a maximum of /,/I;; inputs when it is in the logic HIGH state. When the output
of the driving logic gate is in the logic LOW state, let us say that it has a maximum current-sinking
capability /,,, and that each of the inputs of the driven logic gates requires a sinking current ;;, as
shown in Fig. 4.38(b). In this case the output of the logic gate will be able to drive a maximum of
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Figure 4.38 Fan-out of logic gates.

I, /1;; inputs when it is in the logic LOW state. Thus, the number of logic gate inputs that can be
driven from the output of a single logic gate will be /,,/I,; in the logic HIGH state and I, /I;; in
the logic LOW state. The number of logic gate inputs that can be driven from the output of a single
logic gate without causing any false output is called fan-out. It is the characteristic of the logic family
to which the device belongs. If in a certain case the two values I,,/I;; and I, /I, are different, the
fan-out is taken as the smaller of the two. Figure 4.39 shows the actual circuit diagram where the output
of a single NAND gate belonging to a standard TTL logic family feeds the inputs of multiple NAND
gates belonging to the same family when the output of the feeding gate is in the logic HIGH state
[Fig. 4.39(a)] and the logic LOW state [Fig. 4.39(b)]. We will learn in Chapter 5 on logic families that
the maximum HIGH-state output sourcing current (I, ),.., and maximum HIGH-state input current
(I;1) max specifications of standard TTL family devices are 400 pA and 40 pA respectively. Also, the
maximum LOW-state output sinking current (I, ),,,, and maximum LOW-state input current (1;; ).
specifications are 16 mA and 1.6 mA respectively. Considering both the sourcing and sinking capability
of standard TTL family devices, we obtain a fan-out figure of 10 both for HIGH and for LOW logic
states. If the maximum sourcing and sinking current specifications are exceeded, the output voltage
levels in the logic HIGH and LOW states will go out of the specified ranges.
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Figure 4.39 Fan-out of the standard TTL logic family.

Example 4.14

A certain logic family has the following input and output current specifications:

1. The maximum output HIGH-state current = I mA.
2. The maximum output LOW-state current = 20 mA.
3. The maximum input HIGH-state current = 50 pA.
4. The maximum input LOW-state current = 2 mA.
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The output of an inverter belonging to this family feeds the clock inputs of various flip-flops belonging
to the same family. How many flip-flops can be driven by the output of this inverter providing the clock
signal? Incidentally, the data given above are taken from the data sheet of a Schottky TTL family.

Solution

e The HIGH-state fan-out = (1/0.05) =20 and the LOW-state fan-out = (20/2) = 10.

e Since the lower of the two fan-out values is 10, the inverter output can drive a maximum of 10
flip-flops.

4.11 Buffers and Transceivers

Logic gates, discussed in the previous pages, have a limited load-driving capability. A buffer has a
larger load-driving capability than a logic gate. It could be an inverting or noninverting buffer with a
single input, a NAND buffer, a NOR buffer, an OR buffer or an AND buffer. ‘Driver’ is another name
for a buffer. A driver is sometimes used to designate a circuit that has even larger drive capability than
a buffer. Buffers are usually tristate devices to facilitate their use in bus-oriented systems. Figure 4.40
shows the symbols and functional tables of inverting and noninverting buffers of the tristate type.

A transceiver is a bidirectional buffer with additional direction control and ENABLE inputs. It allows
flow of data in both directions, depending upon the logic status of the control inputs. Transceivers,
like buffers, are tristate devices to make them compatible with bus-oriented systems. Figures 4.41(a)
and (b) respectively show the circuit symbols of inverting and noninverting transceivers. Figure 4.42
shows a typical logic circuit arrangement of a tristate noninverting transceiver with its functional table
[Fig. 4.42(b)].

Some of the common applications of inverting and noninverting buffers are as follows. Buffers are
used to drive circuits that need more drive current. Noninverting buffers are also used to increase the
fan-out of a given logic gate. This means that the buffer can be used to increase the number of logic
gate inputs to which the output of a given logic gate can be connected. Yet another application of a
noninverting buffer is its use as a delay line. It delays the signal by an amount equal to the propagation
delay of the device. More than one device can be connected in cascade to get larger delays.
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Figure 4.40 (a) Inverting tristate buffers and (b) noninverting tristate buffers.
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Figure 4.41 (a) Inverting transceivers and (b) noninverting transceivers.
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Figure 4.42 Tristate noninverting transceiver.
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Figure 4.42 (continued).

4.12 IEEE/ANSI Standard Symbols

The symbols used thus far in the chapter for representing different types of gate are the ones that are
better known to all of us and have been in use for many years. Each logic gate has a symbol with a
distinct shape. However, for more complex logic devices, e.g. sequential logic devices like flip-flops,
counters, registers or arithmetic circuits, such as adders, subtractors, etc., these symbols do not carry
any useful information. A new set of standard symbols was introduced in 1984 under IEEE/ANSI
Standard 91-1984. The logic symbols given under this standard are being increasingly used now and
have even started appearing in the literature published by manufacturers of digital integrated circuits.
The utility of this new standard will be more evident in the following paragraphs as we go through its
salient features and illustrate them with practical examples.

4.12.1 IEEE/ANSI Standards — Salient Features

This standard uses a rectangular symbol for all devices instead of a different symbol shape for each
device. For instance, all logic gates (OR, AND, NAND, NOR) will be represented by a rectangular
block.

A right triangle is used instead of a bubble to indicate inversion of a logic level. Also, the right
triangle is used to indicate whether a given input or output is active LOW. The absence of a triangle
indicates an active HIGH input or output. As far as logic gates are concerned, a special notation inside
the rectangular block describes the logic relationship between output and inputs. A ‘1’ inside the block
indicates that the device has only one input. An AND operation is expressed by ‘&’, and an OR
operation is expressed by the symbol ‘>1’. Figure 4.43 shows the ANSI counterparts of various logic
gates. A ‘>1" symbol indicates that the output is HIGH when one or more than one input is HIGH.
An ‘&’ symbol indicates that the output is HIGH only when all the inputs are HIGH. The two-input
EX-OR is represented by the symbol ‘=1" which implies that the output is HIGH only when one of
its inputs is HIGH.

A special dependency notation system is used to indicate how the outputs depend upon the input.
This notation contains almost the entire functional information of the logic device in question. This
will be more clear as we illustrate this new standard with the help of ANSI symbols for some of the
actual devices belonging to the category of flip-flops, counters, etc., in the following chapters. All
those control inputs that control the timing of change in output states as per logic status of inputs are
designated by the letter ‘C’. These are ENABLE inputs in latches or CLOCK inputs in flip-flops.

Most of the digital ICs contain more than one similar function on one chip such as IC 7400 (quad
two-input NAND), IC 7404 (hex inverter), IC 74112 (dual-edge triggered JK flip-flop), IC 7474 (dual
D-type latch), IC 7475 (quad D-type latch) and so on. Those inputs to such ICs that are common to
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Figure 4.43 IEEE/ANSI symbols.

all the functional blocks or in other words similarly affect various individual but similar functions are
represented by a separate notched rectangle on the top of the main rectangle.

4.12.2 ANSI Symbols for Logic Gate ICs

Figure 4.44 shows the ANSI symbol for IC 7400, which is a quad two-input NAND gate. The figure
is self-explanatory with the background given in the preceding paragraphs. Any other similar device,
i.e. another quad two-input NAND gate belonging to another logic family, would also be represented
by the same ANSI symbol. As another illustration, Fig. 4.45 shows the ANSI symbol for IC 7420,

which is a dual four-input NAND gate.
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Figure 4.44 ANSI symbol for IC 7400.
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Figure 4.45 ANSI symbol for IC 7420.

Example 4.15
Draw the IEEE/ANSI symbol representation of the logic circuit shown in Fig. 4.46.

Solution
Figure 4.47 shows the circuit using IEEE/ANSI symbols.

4.13 Some Common Applications of Logic Gates

In this section, we will briefly look at some common applications of basic logic gates. The applications
discussed here include those where these devices are used to provide a specific function in a larger
digital circuit. These also include those where one or more logic gates, along with or without some
external components, can be used to build some digital building blocks.
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Figure 4.46 Example 4.15.

Figure 4.47 Solution to example 4.15.

4.13.1 OR Gate

An OR gate can be used in all those situations where the occurrence of any one or more than one
event needs to be detected or acted upon. One such example is an industrial plant where any one or
more than one parameter exceeding a preset limiting value should lead to initiation of some kind of
protective action. Figure 4.48 shows a typical schematic where the OR gate is used to detect either
temperature or pressure exceeding a preset threshold value and produce the necessary command signal

for the system.
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Figure 4.48 Application of an OR gate.
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4.13.2 AND Gate

An AND gate is commonly used as an ENABLE or INHIBIT gate to allow or disallow passage of
data from one point in the circuit to another. One such application of enabling operation, for instance,
is in the measurement of the frequency of a pulsed waveform or the width of a given pulse with the
help of a counter. In the case of frequency measurement, a gating pulse of known width is used to
enable the passage of the pulse waveform to the counter’s clock input. In the case of pulse width
measurement, the pulse is used to enable the passage of the clock input to the counter. Figure 4.49
shows the arrangement.

4.13.3 EX-OR/EX-NOR Gate

EX-OR and EX-NOR logic gates are commonly used in parity generation and checking circuits. Figures
4.50(a) and (b) respectively show even and odd parity generator circuits for four-bit data. The circuits
are self-explanatory.

The parity check operation can also be performed by similar circuits. Figures 4.51(a) and (b)
respectively show simple even and odd parity check circuits for a four-bit data stream. In the circuits
shown in Fig. 4.51, a logic ‘0’ at the output signifies correct parity and a logic ‘1’ signifies one-bit
error. Parity generator/checker circuits are available in IC form. 74180 in TTL and 40101 in CMOS
are nine-bit odd/even parity generator/checker ICs. Parity generation and checking circuits are further
discussed in Chapter 7 on arithmetic circuits.

Enable Gate
Clock 1
; ’7 clock  Counter
Gating (
Pulse ] input

Figure 4.49 Application of an AND gate.
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Figure 4.50 Parity generation using EX-OR/EX-NOR gates.



Logic Gates and Related Devices 105

Parity bit : Z:
A
7

ooOw
~

D—Output
4

(@)

7 j : ,
7 Output
7

(b)

Parity bit :

O0Ow >

Figure 4.51 Parity check using EX-OR and EX-NOR gates.

4.13.4 Inverter

CMOS inverters are commonly used to build square-wave oscillators for generating clock signals.
These clock generators offer good stability, operation over a wide supply voltage range (3—15 V) and
frequency range (1 Hz to in excess of 15 MHz), low power consumption and an easy interface to other
logic families.

The most fundamental circuit is the ring configuration of any odd number of inverters. Figure 4.52
shows one such circuit using three inverters. Inverting gates such as NAND and NOR gates can also
be used instead. This configuration does not make a practical oscillator circuit as its frequency of
oscillation is highly susceptible to variation with temperature, supply voltage and external loading. The
frequency of oscillation is given by the equation

f=1/Qnt,) (4.12)

where 1 is the number of inverters and ¢, is the propagation delay per gate.

» Qutput

Figure 4.52 Square-wave oscillator using a ring configuration.
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Figure 4.53(a) shows a practical oscillator circuit. The frequency of oscillation in this case is given
by Equation (4.13) (the duty cycle of the waveform is approximately 50 %):

f =1/2C(0.405R, +0.693R, ) (4.13)
where R,, = R|.R,/(R; +R;).

Figure 4.53(b) shows another circuit using two inverters instead of three inverters. The frequency
of oscillation of this circuit is given by the equation

f=1/22RC (4.14)
The circuits shown in Fig. 4.53 are not as sensitive to supply voltage variations as the one shown in

Fig. 4.52. Figure 4.54 shows yet another circuit that is configured around a single Schmitt inverter. The
capacitor charges (when the output is HIGH) and discharges (when the output is LOW) between the

—— Output

R2 TC R1
YWy ¢

(@

Output

T

(b)

Figure 4.53 Square-wave oscillator with external components.
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Figure 4.54 Schmitt inverter based oscillator.
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Figure 4.55 Crystal oscillator.

two threshold voltages. The frequency of oscillation, however, is sensitive to supply voltage variations.
It is given by the equation

f=1/RC (4.15)

Figure 4.55 shows a crystal oscillator configured around a single inverter as the active element. Any odd
number of inverters can be used. A larger number of inverters limits the highest attainable frequency
of oscillation to a lower value.

4.14 Application-Relevant Information

Table 4.1 lists the commonly used type numbers along with the functional description and the logic
family. The pin connection diagrams and the functional tables of the more popular type numbers are
given in the companion website.

Table 4.1 Functional index of logic gates.

Type number Function Logic family
7400 Quad two-input NAND gate TTL
7401 Quad two-input NAND gate (open collector) TTL
7402 Quad two-input NOR gate TTL
7403 Quad two-input NAND gate (open collector) TTL
7404 Hex inverter TTL
7405 Hex inverter (open collector) TTL
7408 Quad two-input AND gate TTL
7409 Quad two-input AND gate (open collector) TTL
7410 Triple three-input NAND gate TTL

(Continued overleaf)
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Table 4.1 (continued).

Type number

Function

Logic family

7411
7412
7413
7414
7418
7419
7420
7421
7422
7427
7430
7432
7451
7454
7455
7486
74125
74126
74132
74133
74136
74240
74241
74242
74243
74244
74245
74266
74365
74366
74367
74368
74386
74465

74540
74541
74640
74641

74645
4001B
4002B
4011B
4012B
4023B
4025B
4030B
4049B

Triple three-input AND gate

Triple three-input NAND gate (open collector)

Dual four-input Schmitt NAND gate

Hex Schmitt trigger inverter

Dual four-input Schmitt NAND gate

Hex Schmitt trigger inverter

Dual four-input NAND gate

Dual four-input AND gate

Dual four-input NAND gate (open collector)

Triple three-input NOR gate

Eight-input NAND gate

Quad two-input OR gate

Dual two-wide two-input three-input AND-OR-INVERT gate
Four-wide two-input AND-OR-INVERT gate
Two-wide four-input AND-OR-INVERT gate

Quad two-input EX-OR gate

Quad tristate noninverting buffer (LOW ENABLE)
Quad tristate noninverting buffer (HIGH ENABLE)
Quad two-input Schmitt trigger NAND gate
13-input NAND gate

Quad two-input EX-OR gate (open collector)

Octal tristate inverting bus/line driver

Octal tristate bus/line driver

Quad tristate inverting bus transceiver

Quad tristate noninverting bus transceiver

Octal tristate noninverting driver

Octal tristate noninverting bus transceiver

Quad two-input EXCLUSIVE-NOR gate (open collector)
Hex tristate noninverting buffer with common ENABLE
Hex tristate inverting buffer with common ENABLE
Hex tristate noninverting buffer, four-bit and two-bit
Hex tristate inverting buffer, four-bit and two-bit
Quad two-input EX-OR gate

Octal tristate noninverting buffer

Gated ENABLE inverted

Octal tristate inverting buffer/line driver

Octal tristate noninverting buffer/line driver

Octal tristate inverting bus transceiver

Octal tristate noninverting bus transceiver

(open collector)

Octal tristate noninverting bus transceiver

Quad two-input NOR gate

Dual four-input NOR gate

Quad two-input NAND gate

Dual four-input NAND gate

Triple three-input NAND gate

Triple three-input NOR gate

Quad two-input EX-OR gate

Hex inverting buffer

TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL

TTL
TTL
TTL
TTL

TTL

CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
CMOS
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Table 4.1 (continued).

Type number Function Logic family
4050B Hex noninverting buffer CMOS
40097B Tristate hex noninverting buffer CMOS
40098B Tristate inverting buffer CMOS
4069UB Hex inverter CMOS
4070B Quad two-input EX-OR gate CMOS
4071B Quad two-input OR gate CMOS
4081B Quad two-input AND gate CMOS
4086B Four-wide two-input AND-OR-INVERT gate CMOS
4093B Quad two-input Schmitt NAND CMOS
10100 Quad two-input NOR gate with strobe ECL
10101 Quad two-input OR/NOR gate ECL
10102 Quad two-input NOR gate ECL
10103 Quad two-input OR gate ECL
10104 Quad two-input AND gate ECL
10113 Quad two-input EX-OR gate ECL
10114 Triple line receiver ECL
10115 Quad line Receiver ECL
10116 Triple Line receiver ECL
10117 Dual two-wide two- to three-input OR-AND/OR-AND-INVERT gate ECL
10118 Dual two-wide three-input OR-AND gate ECL
10123 Triple 4-3-3 input bus driver

10128 Dual bus driver ECL
10129 Quad bus driver ECL
10188 Hex buffer with ENABLE ECL
10192 Quad bus driver ECL
10194 Dual simultaneous transceiver ECL
10195 Hex buffer with invert/noninvert control ECL

Review Questions

1. How do you distinguish between positive and negative logic systems? Prove that an OR gate in a
positive logic system is an AND gate in a negative logic system.

2. Give brief statements that would help one remember the truth table of AND, NAND,
OR, NOR, EX-OR and EX-NOR logic gate functions, irrespective of the number of inputs
used.

3. Why are NAND and NOR gates called universal gates? Justify your answer with the help of
examples.

4. What are Schmitt gates? How does a Schmitt gate overcome the problem of occurrence of an erratic
output for slow varying input transitions?

5. What are logic gates with open collector or open drain outputs? What are the major advantages and
disadvantages of such devices?

6. Draw the circuit symbol and the associated truth table for the following:

(a) a tristate noninverting buffer with an active HIGH ENABLE input;
(b) a tristate inverting buffer with an active LOW ENABLE input;
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(c) a three-input NAND with an open collector output;
(d) a four-input INHIBIT gate.

7. Define the fan-out specification of a logic gate. Which parameters would you need to know from
the data sheet of a logic gate to determine for yourself the fan-out in case it is not mentioned in the
data sheet? Explain the procedure for determining the fan-out specification from those parameters.
What are the consequences of exceeding the fan-out specification?

8. What is the main significance of IEEE/ANSI symbols when compared with the conventional ones?
Draw the ANSI symbols for four-input OR, two-input AND, two-input EX-OR and two-input
NAND gates.

Problems
1. What is the only input combination that:

(a) Will produce a logic ‘1’ at the output of an eight-input AND gate?
(b) Will produce a logic ‘0’ at the output of a four-input NAND gate?
(c) Will produce a logic ‘1’ at the output of an eight-input NOR gate?
(d) Will produce a logic ‘0’ at the output of a four-input OR gate?
(a) 11111111; (b) 1111; (c) 00000000; (d) 0000

2. Draw the truth table of the logic circuit shown in Fig. 4.56.

T o

B
C
D

T

Figure 4.56 Problem 2.
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Figure 4.57 Solution of problem 2.
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3. Redraw the logic circuit of Fig. 4.56 using IEEE/ANSI symbols.

Figure 4.58 Solution to problem 3.

4. Refer to Fig. 4.59(a). The ENABLE waveforms applied at A and B inputs are respectively shown
in Figs 4.59(b) and (c). What is the output state of inverter 3 and inverter 4 at (i) = 3 ms and (ii)
t =5 ms?
(i) The output of inverter 3 = high Z, while the output of inverter 4 = logic ‘I’
(ii) The output of inverter 3 = logic ‘0’, while the output of inverter 4 = high Z

A
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Figure 4.59 Problem 4.
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Figure 4.59 (Continued)

Figure 4.60 Solution to problem 5.

5. Draw logic implementation of an inverter using (i) two-input NAND, (ii) two-input NOR,
(iii) two-input EX-OR and (iv) two-input EX-NOR.
(i) Fig. 4.60(a); (ii) Fig. 4.60(b); (iii) Fig. 4.60(c); (iv) Fig. 4.60(d)
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Figure 4.61 Solution to problem 6.
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6. Itis proposed to construct an eight-input NAND gate using only two-input AND gates and two-input
NAND gates. Draw the logic arrangement that uses the minimum number of logic gates.
The two possible logic circuits are shown in Figs 4.61(a) and (b)

7. Draw the logic diagram to implement an eight-input EX-NOR function using the minimum number
of two-input logic gates.
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Logic Families

Digital integrated circuits are produced using several different circuit configurations and production
technologies. Each such approach is called a specific logic family. In this chapter, we will discuss
different logic families used to hardware-implement different logic functions in the form of digital
integrated circuits. The chapter begins with an introduction to logic families and the important
parameters that can be used to characterize different families. This is followed by a detailed description
of common logic families in terms of salient features, internal circuitry and interface aspects. Logic
families discussed in the chapter include transistor transistor logic (TTL), metal oxide semiconductor
(MOS) logic, emitter coupled logic (ECL), bipolar-CMOS (Bi-CMOS) logic and integrated injection
logic (I°L).

5.1 Logic Families — Significance and Types

There are a variety of circuit configurations or more appropriately various approaches used to produce
different types of digital integrated circuit. Each such fundamental approach is called a logic family.
The idea is that different logic functions, when fabricated in the form of an IC with the same approach,
or in other words belonging to the same logic family, will have identical electrical characteristics.
These characteristics include supply voltage range, speed of response, power dissipation, input and
output logic levels, current sourcing and sinking capability, fan-out, noise margin, etc. In other
words, the set of digital ICs belonging to the same logic family are electrically compatible with each
other.

5.1.1 Significance

A digital system in general comprises digital ICs performing different logic functions, and choosing
these ICs from the same logic family guarantees that different ICs are compatible with respect to each

Digital Electronics: Principles, Devices and Applications ~Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5
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other and that the system as a whole performs the intended logic function. In the case where the output
of an IC belonging to a certain family feeds the inputs of another IC belonging to a different family,
we must use established interface techniques to ensure compatibility. Understanding the features and
capabilities of different logic families is very important for a logic designer who is out to make an
optimum choice for his new digital design from the available logic family alternatives. A not so well
thought out choice can easily underkill or overkill the design with either inadequate or excessive
capabilities.

5.1.2 Types of Logic Family

The entire range of digital ICs is fabricated using either bipolar devices or MOS devices or a
combination of the two. Different logic families falling in the first category are called bipolar families,
and these include diode logic (DL), resistor transistor logic (RTL), diode transistor logic (DTL),
transistor transistor logic (TTL), emitter coupled logic (ECL), also known as current mode logic
(CML), and integrated injection logic (I’L). The logic families that use MOS devices as their basis are
known as MOS families, and the prominent members belonging to this category are the PMOS family
(using P-channel MOSFETS), the NMOS family (using N-channel MOSFETSs) and the CMOS family
(using both N- and P-channel devices). The Bi-MOS logic family uses both bipolar and MOS devices.

Of all the logic families listed above, the first three, that is, diode logic (DL), resistor transistor
logic (RTL) and diode transistor logic (DTL), are of historical importance only. Diode logic used
diodes and resistors and in fact was never implemented in integrated circuits. The RTL family used
resistors and bipolar transistors, while the DTL family used resistors, diodes and bipolar transistors.
Both RTL and DTL suffered from large propagation delay owing to the need for the transistor base
charge to leak out if the transistor were to switch from conducting to nonconducting state. Figure 5.1
shows the simplified schematics of a two-input AND gate using DL [Fig. 5.1(a)], a two-input NOR
gate using RTL [Fig. 5.1(b)] and a two-input NAND gate using DTL [Fig. 5.1(c)]. The DL, RTL and
DTL families, however, were rendered obsolete very shortly after their introduction in the early 1960s
owing to the arrival on the scene of transistor transistor logic (TTL).

Logic families that are still in widespread use include TTL, CMOS, ECL, NMOS and Bi-CMOS.
The PMOS and I’L logic families, which were mainly intended for use in custom large-scale integrated
(LSI) circuit devices, have also been rendered more or less obsolete, with the NMOS logic family
replacing them for LSI and VLSI applications.

5.1.2.1 TTL Subfamilies

The TTL family has a number of subfamilies including standard TTL, low-power TTL, high-power
TTL, low-power Schottky TTL, Schottky TTL, advanced low-power Schottky TTL, advanced Schottky
TTL and fast TTL. The ICs belonging to the TTL family are designated as 74 or 54 (for standard TTL),
74L or 54L (for low-power TTL), 74H or 54H (for high-power TTL), 74LS or 54LS (for low-power
Schottky TTL), 74S or 54S (for Schottky TTL), 74ALS or 54ALS (for advanced low-power Schottky
TTL), 74AS or 54AS (for advanced Schottky TTL) and 74F or 54F (for fast TTL). An alphabetic code
preceding this indicates the name of the manufacturer (DM for National Semiconductors, SN for Texas
Instruments and so on). A two-, three- or four-digit numerical code tells the logic function performed
by the IC. It may be mentioned that 74-series devices and 54-series devices are identical except for
their operational temperature range. The 54-series devices are MIL-qualified (operational temperature
range: —55 °C to +125 °C) versions of the corresponding 74-series ICs (operational temperature range:
0°C to 70 °C). For example, 7400 and 5400 are both quad two-input NAND gates.
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Figure 5.1 (a) Diode logic (b) resistor transistor logic and (c) diode transistor logic.

5.1.2.2 CMOS Subfamilies

The popular CMOS subfamilies include the 4000A, 4000B, 4000UB, 54/74C, 54/74HC, 54/74HCT,
54/74AC and 54/74ACT families. The 4000A CMOS family has been replaced by its high-voltage
versions in the 4000B and 4000UB CMOS families, with the former having buffered and the latter
having unbuffered outputs. 54/74C, 54/74HC, 54/74HCT, 54/74AC and 54/74ACT are CMOS logic
families with pin-compatible 54/74 TTL series logic functions.
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5.1.2.3 ECL Subfamilies

The first monolithic emitter coupled logic family was introduced by ON Semiconductor, formerly a
division of Motorola, with the MECL-I series of devices in 1962, with the MECL-II series following
it up in 1966. Both these logic families have become obsolete. Currently, popular subfamilies of ECL
logic include MECL-III (also called the MC 1600 series), the MECL-10K series, the MECL-10H series
and the MECL-10E series (ECLinPS and ECLinPSLite). The MECL-10K series further divided into
the 10 100-series and 10 200-series devices.

5.2 Characteristic Parameters

In this section, we will briefly describe the parameters used to characterize different logic families.
Some of these characteristic parameters, as we will see in the paragraphs to follow, are also used to
compare different logic families.

e HIGH-level input current, Iy;. This is the current flowing into (taken as positive) or out of (taken
as negative) an input when a HIGH-level input voltage equal to the minimum HIGH-level output
voltage specified for the family is applied. In the case of bipolar logic families such as TTL, the
circuit design is such that this current flows into the input pin and is therefore specified as positive.
In the case of CMOS logic families, it could be either positive or negative, and only an absolute
value is specified in this case.

e LOW-level input current, I}; . The LOW-level input current is the maximum current flowing into
(taken as positive) or out of (taken as negative) the input of a logic function when the voltage
applied at the input equals the maximum LOW-level output voltage specified for the family. In the
case of bipolar logic families such as TTL, the circuit design is such that this current flows out of
the input pin and is therefore specified as negative. In the case of CMOS logic families, it could be
either positive or negative. In this case, only an absolute value is specified.

HIGH-level and LOW-level input current or loading are also sometimes defined in terms of unit load
(UL). For devices of the TTL family, 1 UL (HIGH) =40 n.A and 1 UL (LOW) = 1.6 mA.

e HIGH-level output current, I;. This is the maximum current flowing out of an output when
the input conditions are such that the output is in the logic HIGH state. It is normally shown as
a negative number. It tells about the current sourcing capability of the output. The magnitude of
Ioy determines the number of inputs the logic function can drive when its output is in the logic
HIGH state. For example, for the standard TTL family, the minimum guaranteed /oy is —400 pA,
which can drive 10 standard TTL inputs with each requiring 40 wA in the HIGH state, as shown in
Fig. 5.2(a).

e LOW-level output current, I, . This is the maximum current flowing into the output pin of a logic
function when the input conditions are such that the output is in the logic LOW state. It tells about
the current sinking capability of the output. The magnitude of /; determines the number of inputs
the logic function can drive when its output is in the logic LOW state. For example, for the standard
TTL family, the minimum guaranteed I, is 16 mA, which can drive 10 standard TTL inputs with
each requiring 1.6 mA in the LOW state, as shown in Fig. 5.2(b).

e HIGH-level off-state (high-impedance state) output current, I,;y. This is the current flowing
into an output of a tristate logic function with the ENABLE input chosen so as to establish a
high-impedance state and a logic HIGH voltage level applied at the output. The input conditions are
chosen so as to produce logic LOW if the device is enabled.
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Figure 5.2 Input and output current specifications.

e LOW-level off-state (high-impedance state) output current, I, . This is the current flowing
into an output of a tristate logic function with the ENABLE input chosen so as to establish a
high-impedance state and a logic LOW voltage level applied at the output. The input conditions are
chosen so as to produce logic HIGH if the device is enabled.

o HIGH-level input voltage, V|y. This is the minimum voltage level that needs to be applied at the
input to be recognized as a legal HIGH level for the specified family. For the standard TTL family,
a 2 V input voltage is a legal HIGH logic state.
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e LOW-level input voltage, V. This is the maximum voltage level applied at the input that is
recognized as a legal LOW level for the specified family. For the standard TTL family, an input
voltage of 0.8 V is a legal LOW logic state.

e HIGH-level output voltage, V. This is the minimum voltage on the output pin of a logic function
when the input conditions establish logic HIGH at the output for the specified family. In the case of
the standard TTL family of devices, the HIGH level output voltage can be as low as 2.4V and still
be treated as a legal HIGH logic state. It may be mentioned here that, for a given logic family, the
Vou specification is always greater than the Vjy specification to ensure output-to-input compatibility
when the output of one device feeds the input of another.

¢ LOW-level output voltage, V,, . This is the maximum voltage on the output pin of a logic function
when the input conditions establish logic LOW at the output for the specified family. In the case of
the standard TTL family of devices, the LOW-level output voltage can be as high as 0.4 V and still
be treated as a legal LOW logic state. It may be mentioned here that, for a given logic family, the
VoL specification is always smaller than the V; specification to ensure output-to-input compatibility
when the output of one device feeds the input of another.

The different input/output current and voltage parameters are shown in Fig. 5.3, with HIGH-level current
and voltage parameters in Fig. 5.3(a) and LOW-level current and voltage parameters in Fig. 5.3(b).
It may be mentioned here that the direction of the LOW-level input and output currents shown in
Fig. 5.3(b) is applicable to logic families with current-sinking action such as TTL.
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Figure 5.3 (a) HIGH-level current and voltage parameters and (b) LOW-level current and voltage parameters.
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e Supply current, I .. The supply current when the output is HIGH, LOW and in the high-impedance
state is respectively designated as Iocy, Iocp and Iecy.

e Rise time, ¢.. This is the time that elapses between 10 and 90 % of the final signal level when the
signal is making a transition from logic LOW to logic HIGH.

e Fall time, #. This is the time that elapses between 90 and 10 % of the signal level when it is making
HIGH to LOW transition.

¢ Propagation delay f,. The propagation delay is the time delay between the occurrence of change
in the logical level at the input and before it is reflected at the output. It is the time delay between
the specified voltage points on the input and output waveforms. Propagation delays are separately
defined for LOW-to-HIGH and HIGH-to-LOW transitions at the output. In addition, we also define
enable and disable time delays that occur during transition between the high-impedance state and
defined logic LOW or HIGH states.

¢ Propagation delay £, . This is the time delay between specified voltage points on the input and
output waveforms with the output changing from LOW to HIGH.

¢ Propagation delay 7, . This is the time delay between specified voltage points on the input and
output waveforms with the output changing from HIGH to LOW. Figure 5.4 shows the two types
of propagation delay parameter.

¢ Disable time from the HIGH state, 7,51, . Defined for a tristate device, this is the time delay between
specified voltage points on the input and output waveforms with the tristate output changing from
the logic HIGH level to the high-impedance state.

¢ Disable time from the LOW state, #,; ;. Defined for a tristate device, this is the time delay between
specified voltage points on the input and output waveforms with the tristate output changing from
the logic LOW level to the high-impedance state.

¢ Enable time from the HIGH state, #,,5. Defined for a tristate device, this is the time delay between
specified voltage points on the input and output waveforms with the tristate output changing from
the high-impedance state to the logic HIGH level.

Input

s

50%---

In-phase output

Out-of-phase output
50% -~

[ERySyr i R R —————

Figure 5.4 Propagation delay parameters.
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Enable time from the LOW state, £, . Defined for a tristate device, this is the time delay between
specified voltage points on the input and output waveforms with the tristate output changing from
the high-impedance state to the logic LOW level.

e Maximum clock frequency, f,,,.. This is the maximum frequency at which the clock input of a
flip-flop can be driven through its required sequence while maintaining stable transitions of logic
level at the output in accordance with the input conditions and the product specification. It is also
referred to as the maximum toggle rate for a flip-flop or counter device.

e Power dissipation. The power dissipation parameter for a logic family is specified in terms of
power consumption per gate and is the product of supply voltage V- and supply current /~.. The
supply current is taken as the average of the HIGH-level supply current /-y and the LOW-level
supply current /oy -

¢ Speed-power product. The speed of a logic circuit can be increased, that is, the propagation delay
can be reduced, at the expense of power dissipation. We will recall that, when a bipolar transistor
switches between cut-off and saturation, it dissipates the least power but has a large associated
switching time delay. On the other hand, when the transistor is operated in the active region, power
dissipation goes up while the switching time decreases drastically. It is always desirable to have in
a logic family low values for both propagation delay and power dissipation parameters. A useful
figure-of-merit used to evaluate different logic families is the speed—power product, expressed in
picojoules, which is the product of the propagation delay (measured in nanoseconds) and the power
dissipation per gate (measured in milliwatts).

e Fan-out. The fan-out is the number of inputs of a logic function that can be driven from a single
output without causing any false output. It is a characteristic of the logic family to which the device
belongs. It can be computed from [/l in the logic HIGH state and from Iy, /I;; in the logic LOW
state. If, in a certain case, the two values I,y/I; and I /I are different, the fan-out is taken as the
smaller of the two. This description of the fan-out is true for bipolar logic families like TTL and
ECL. When determining the fan-out of CMOS logic devices, we should also take into consideration
how much input load capacitance can be driven from the output without exceeding the acceptable
value of propagation delay.

® Noise margin. This is a quantitative measure of noise immunity offered by the logic family. When

the output of a logic device feeds the input of another device of the same family, a legal HIGH

logic state at the output of the feeding device should be treated as a legal HIGH logic state by the
input of the device being fed. Similarly, a legal LOW logic state of the feeding device should be
treated as a legal LOW logic state by the device being fed. We have seen in earlier paragraphs while
defining important characteristic parameters that legal HIGH and LOW voltage levels for a given
logic family are different for outputs and inputs. Figure 5.5 shows the generalized case of legal

HIGH and LOW voltage levels for output [Fig. 5.5(a)] and input [Fig. 5.5(b)]. As we can see from

the two diagrams, there is a disallowed range of output voltage levels from V{;; (max.) to Vo (min.)

and an indeterminate range of input voltage levels from V; (max.) to Vjy(min.). Since V; (max.) is
greater than Vg (max.), the LOW output state can therefore tolerate a positive voltage spike equal

to Vi (max.) — Vg (max.) and still be a legal LOW input. Similarly, Vy(min.) is greater than Vi

(min.), and the HIGH output state can tolerate a negative voltage spike equal to Vgoy(min.) — Vi

(min.) and still be a legal HIGH input. Here, V;; (max.) — V; (max.) and Vgy(min.) — Vi (min.)

are respectively known as the LOW-level and HIGH-level noise margin.

Let us illustrate it further with the help of data for the standard TTL family. The minimum legal
HIGH output voltage level in the case of the standard TTL is 2.4 V. Also, the minimum legal HIGH
input voltage level for this family is 2 V. This implies that, when the output of one device feeds the
input of another, there is an available margin of 0.4 V. That is, any negative voltage spikes of amplitude
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Figure 5.5 Noise margin.

less than or equal to 0.4V on the signal line do not cause any spurious transitions. Similarly, when
the output is in the logic LOW state, the maximum legal LOW output voltage level in the case of the
standard TTL is 0.4 V. Also, the maximum legal LOW input voltage level for this family is 0.8 V.
This implies that, when the output of one device feeds the input of another, there is again an available
margin of 0.4 V. That is, any positive voltage spikes of amplitude less than or equal to 0.4V on the
signal line do not cause any spurious transitions. This leads to the standard TTL family offering a noise
margin of 0.4 V. To generalize, the noise margin offered by a logic family, as outlined earlier, can be
computed from the HIGH-state noise margin, Vyy = Voyu(min.) — Vi (min.), and the LOW-state noise
margin, Vy, = Vi (max.) — Vg (max.). If the two values are different, the noise margin is taken as
the lower of the two.

Example 5.1

The data sheet of a quad two-input NAND gate specifies the following parameters: I,y(max.)=0.4
mA, Voy(min.)=2.7V, Vy(min.)=2V, V,(max.)=0.8V, V, (max.)=04V, I, (max.)=8mA,
Iy (max.)=0.4mA, I,y (max.)=20 pA, Iccy(max.)=1.6mA, Icci(max.)=4.4mA, t, g =1,y =15ns
and a supply voltage range of 5V. Determine (a) the average power dissipation of a single NAND
gate, (b) the maximum average propagation delay of a single gate, (c) the HIGH-state noise margin
and (d) the LOW-state noise margin

Solution

(a) The average supply current = (Iocy + I )2 = (1.6 + 4.4)/2 =3 mA.
The supply voltage Vo =5V.
Therefore, the power dissipation for all four gates in the IC=5 x 3=15mW.
The average power dissipation per gate =15/4 =3.75 mW.

(b) The propagation delay = 15ns.

(c) The HIGH-state noise margin = Vyy(min.) — Viy(min.)=2.7 — 2=0.7V.

(d) The LOW-state noise margin = Vj; (max.) — V; (max.)=0.8 — 0.4=04V.



124 Digital Electronics

Example 5.2

Refer to example 5.1. How many NAND gate inputs can be driven from the output of a NAND gate of
this type?

Solution

e This figure is given by the worst-case fan-out specification of the device.

e Now, the HIGH-state fan-out = Iy/I;; = 400/20 = 20.

e The LOW-state fan-out= I; /I;; = 8/0.4=20.

® Therefore, the number of inputs that can be driven from a single output = 20.

Example 5.3

Determine the fan-out of IC 74LS04, given the following data: input loading factor (HIGH
state) = 0.5 UL, input loading factor (LOW state)=0.25 UL, output loading factor (HIGH state) =10
UL, output loading factor (LOW state) =5 UL, where UL is the unit load.

Solution

e The HIGH-state fan-out can be computed from: fan-out = output loading factor (HIGH)/input loading
factor (HIGH) =10 UL/0.5 UL =20.

e The LOW-state fan-out can be computed from: fan-out = output loading factor (LOW)/input loading
factor (LOW) =15 UL/0.25 UL =20.

e Since the fan-out in the two cases turns out to be the same, it follows that the fan-out = 20.

Example 5.4

A certain TTL gate has I,y =20 pA, 1;; =0.1 mA, 1,4 =0.4 mA and 1,, =4 mA. Determine the input
and output loading in the HIGH and LOW states in terms of UL.

Solution

e | UL (LOW state)= 1.6 mA and 1 UL (HIGH state) =40 p.A.

e The input loading factor (HIGH state) =20 nA = 20/40=0.5 UL.

e The input loading factor (LOW state) =0.1 mA =0.1/1.6 = 1/16 UL
e The output loading factor (HIGH state) = 0.4 mA = 0.4/0.04 =10 UL.
e The output loading factor (LOW state) =4 mA =4/1.6 = 2.5 UL.

5.3 Transistor Transistor Logic (TTL)

TTL as outlined above stands for transistor transistor logic. It is a logic family implemented with
bipolar process technology that combines or integrates NPN transistors, PN junction diodes and diffused
resistors in a single monolithic structure to get the desired logic function. The NAND gate is the
basic building block of this logic family. Different subfamilies in this logic family, as outlined earlier,
include standard TTL, low-power TTL, high-power TTL, low-power Schottky TTL, Schottky TTL,
advanced low-power Schottky TTL, advanced Schottky TTL and fast TTL. In the following paragraphs,
we will briefly describe each of these subfamilies in terms of internal structure and characteristic
parameters.
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Figure 5.6 Standard TTL NAND gate.

5.3.1 Standard TTL

Figure 5.6 shows the internal schematic of a standard TTL NAND gate. It is one of the four circuits
of 5400/7400, which is a quad two-input NAND gate. The circuit operates as follows. Transistor Q, is
a two-emitter NPN transistor, which is equivalent to two NPN transistors with their base and emitter
terminals tied together. The two emitters are the two inputs of the NAND gate. Diodes D, and D5 are
used to limit negative input voltages. We will now examine the behaviour of the circuit for various
possible logic states at the two inputs.

5.3.1.1 Circuit Operation

When both the inputs are in the logic HIGH state as specified by the TTL family (Vi =2 V minimum),
the current flows through the base-collector PN junction diode of transistor Q, into the base of transistor
Q,. Transistor Q, is turned ON to saturation, with the result that transistor Q5 is switched OFF and
transistor Q, is switched ON. This produces a logic LOW at the output, with V{;; being 0.4 V maximum
when it is sinking a current of 16 mA from external loads represented by inputs of logic functions
being driven by the output. The current-sinking action is shown in Fig. 5.7(a). Transistor Q, is also
referred to as the current-sinking or pull-down transistor, for obvious reasons. Diode D, is used to
prevent transistor Q; from conducting even a small amount of current when the output is LOW. When
the output is LOW, Q, is in saturation and Q; will conduct slightly in the absence of D,. Also, the
input current I in the HIGH state is nothing but the reverse-biased junction diode leakage current
and is typically 40 pA.

When either of the two inputs or both inputs are in the logic LOW state, the base-emitter region of
0, conducts current, driving O, to cut-off in the process. When Q, is in the cut-off state, Q5 is driven
to conduction and Q, to cut-off. This produces a logic HIGH output with Vji(min.) =2.4 V guaranteed
for minimum supply voltage V¢ and a source current of 400 wA. The current-sourcing action is shown
in Fig. 5.7(b). Transistor Q; is also referred to as the current-sourcing or pull-up transistor. Also, the
LOW-level input current [, , given by (Ve — Vg )/R, is 1.6 mA (max.) for maximum V.
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Figure 5.7 (a) Current sinking action and (b) current sourcing action.

5.3.1.2 Totem-Pole Output Stage

Transistors Q; and Q, constitute what is known as a totem-pole output arrangement. In such an
arrangement, either Q; or Q, conducts at a time depending upon the logic status of the inputs. The
totem-pole arrangement at the output has certain distinct advantages. The major advantage of using
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a totem-pole connection is that it offers low-output impedance in both the HIGH and LOW output
states. In the HIGH state, Q5 acts as an emitter follower and has an output impedance of about 70 ().
In the LOW state, Q, is saturated and the output impedance is approximately 10 ). Because of the
low output impedance, any stray capacitance at the output can be charged or discharged very rapidly
through this low impedance, thus allowing quick transitions at the output from one state to the other.
Another advantage is that, when the output is in the logic LOW state, transistor Q, would need to
conduct a fairly large current if its collector were tied to V. through R; only. A nonconducting
Qs overcomes this problem. A disadvantage of the totem-pole output configuration results from the
switch-off action of Q, being slower than the switch-on action of Q5. On account of this, there will be
a small fraction of time, of the order of a few nanoseconds, when both the transistors are conducting,
thus drawing heavy current from the supply.

5.3.1.3 Characteristic Features

To sum up, the characteristic parameters and features of the standard TTL family of devices
include the following: V; =0.8V; Viy=2V; Il =40pA; I =1.6mA; Vo =24V; Vo =04V;
Iop =400 pA; Iy, =16 mA; Ve =4.75-525V (74-series) and 4.5-5.5V (54-series); propagation
delay (for a load resistance of 400 (), a load capacitance of 15pF and an ambient temperature
of 25°C)=22ns (max.) for LOW-to-HIGH transition at the output and 15ns (max.) for HIGH-
to-LOW output transition; worst-case noise margin=0.4V; fan-out=10; Iy (for all four
gates) =8 mA; I (for all four gates)=22mA; operating temperature range=0-70°C (74-
series) and —55 to 4+125°C (54-series); speed—power product= 100 pJ; maximum flip-flop toggle
frequency = 35 MHz.

5.3.2 Other Logic Gates in Standard TTL

As outlined earlier, the NAND gate is the fundamental building block of the TTL family. In the
following paragraphs we will look at the internal schematics of the other logic gates and find for
ourselves their similarity to the schematic of the NAND gate discussed in detail in earlier paragraphs.

5.3.2.1 NOT Gate (or Inverter)

Figure 5.8 shows the internal schematic of a NOT gate (inverter) in the standard TTL family. The
schematic shown is that of one of the six inverters in a hex inverter (type 7404/5404). The internal
schematic is just the same as that of the NAND gate except that the input transistor is a normal single
emitter NPN transistor instead of a multi-emitter one. The circuit is self-explanatory.

5.3.2.2 NOR Gate

Figure 5.9 shows the internal schematic of a NOR gate in the standard TTL family. The schematic
shown is that of one of the four NOR gates in a quad two-input NOR gate (type 7402/5402). On the
input side there are two separate transistors instead of the multi-emitter transistor of the NAND gate.
The inputs are fed to the emitters of the two transistors, the collectors of which again feed the bases of
the two transistors with their collector and emitter terminals tied together. The resistance values used
are the same as those used in the case of the NAND gate. The output stage is also the same totem-pole
output stage. The circuit is self-explanatory. The only input condition for which transistors Q5 and Q,
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Figure 5.8 Inverter in the standard TTL.
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Figure 5.9 NOR gate in the standard TTL.

remain in cut-off, thus driving Qg to cut-off and Qs to conduction, is the one when both the inputs
are in the logic LOW state. The output in such a case is logic HIGH. For all other input conditions,
either Q; or Q, will conduct, driving Q4 to saturation and Qs to cut-off, producing a logic LOW at
the output.

5.3.2.3 AND Gate

Figure 5.10 shows the internal schematic of an AND gate in the standard TTL family. The schematic
shown is that of one of the four AND gates in a quad two-input AND gate (type 7408/5408). In order
to explain how this schematic arrangement behaves as an AND gate, we will begin by investigating
the input condition that would lead to a HIGH output. A HIGH output implies Qg to be in cut-off and
Qs to be in conduction. This can happen only when Q, is in cut-off. Transistor O, can be in the cut-off
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Figure 5.10 AND gate in standard TTL.

state only when both O, and Q5 are in conduction. This is possible only when both inputs are in the
logic HIGH state. Let us now see what happens when either of the two inputs is driven to the LOW
state. This drives 0, and Q5 to the cut-off state, which forces Q, and subsequently Q, to saturation
and Qjs to cut-off.

5.3.2.4 OR Gate

Figure 5.11 shows the internal schematic of an OR gate in the standard TTL family. The schematic
shown is that of one of the four OR gates in a quad two-input OR gate (type 7432/5432). We will
begin by investigating the input condition that would lead to a LOW output. A LOW output demands
a saturated Qg and a cut-off Q. This in turn requires Q¢ to be in saturation and Qs, Q, and Q5 to
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Figure 5.11 OR gate in the standard TTL.
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be in cut-off. This is possible only when both Q, and Q, are in saturation. That is, both inputs are in
the logic LOW state. This verifies one of the entries of the truth table of the OR gate. Let us now see
what happens when either of the two inputs is driven to the HIGH state. This drives either of the two
transistors Q5 and Q, to saturation, which forces Qs to saturation and Qg to cut-off. This drives Q; to
conduction and Qg to cut-off, producing a logic HIGH output.

5.3.2.5 EXCLUSIVE-OR Gate

Figure 5.12 shows the internal schematic of an EX-OR gate in the standard TTL family. The schematic
shown is that of one of the four EX-OR gates in a quad two-input EX-OR gate (type 7486/5486).
We will note the similarities between this circuit and that of an OR gate. The only new element is
the interconnected pair of transistors Q; and Qg. We will see that, when both the inputs are either
HIGH or LOW, both Q; and Qg remain in cut-off. In the case of inputs being in the logic HIGH
state, the base and emitter terminals of both these transistors remain near the ground potential. In
the case of inputs being in the LOW state, the base and emitter terminals of both these transistors
remain near V. The result is conducting Qy and Q,; and nonconducting Q,,, which leads to a LOW
output. When either of the inputs is HIGH, either O, or Qg conducts. Transistor O, conducts when
input B is HIGH, and transistor Qg conducts when input A is HIGH. Conducting Q, or Qg turns off
Qo and Q,; and turns on Q,,, producing a HIGH output. This explains how this circuit behaves as
an EX-OR gate.

0+VCC

ng R10§
1.6K 130

Q10

Figure 5.12 EX-OR gate in the standard TTL.
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5.3.2.6 AND-OR-INVERT Gate

Figure 5.13 shows the internal schematic of a two-wide, two-input AND-OR-INVERT or AND-NOR
gate. The schematic shown is that of one of the two gates in a dual two-wide, two-input AND-OR-
INVERT gate (type 7450/5450). The two multi-emitter input transistors Q, and Q, provide ANDing
of their respective inputs. Drive splitters comprising Q3, Q,, R; and R, provide the OR function. The
output stage provides inversion. The number of emitters in each of the input transistors determines the
number of literals in each of the minterms in the output sum-of-products Boolean expression. How
wide the gate is going to be is decided by the number of input transistors, which also equals the number
of drive splitter transistors.

5.3.2.7 Open Collector Gate

An open collector gate in TTL is one that is without a totem-pole output stage. The output stage in
this case does not have the active pull-up transistor. An external pull-up resistor needs to be connected
from the open collector terminal of the pull-down transistor to the V. terminal. The pull-up resistor
is typically 10 k€. Figure 5.14 shows the internal schematic of a NAND gate with an open collector
output. The schematic shown is that of one of the four gates of a quad two-input NAND (type
74/5401). The advantage of open collector outputs is that the outputs of different gates can be wired
together, resulting in ANDing of their outputs. WIRE-AND operation was discussed in Chapter 4 on
logic gates.

It may be mentioned here that the outputs of totem-pole TTL devices cannot be tied together.
Although a common tied output may end up producing an ANDing of individual outputs, such a
connection is impractical. This is illustrated in Fig. 5.15, where outputs of two totem-pole output TTL
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Figure 5.13 Two-input, two-wide AND-OR-INVERT gate.
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Figure 5.14 NAND gate with an open collector output.
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Figure 5.15 Totem-pole output gates tied at the output.

gates have been tied together. Let us assume that the output of one of the gates, say gate-2, is LOW,
and the output of the other is HIGH. The result is that a relatively heavier current flows through Q5
and Qy,. This current, which is of the order of 50-60 mA, exceeds the I (max.) rating of Q,,. This
may eventually lead to both transistors getting damaged. Even if they survive, V; (max.) of Qy, is
no longer guaranteed. In view of this, although totem-pole output TTL gates are not tied together, an
accidental shorting of outputs is not ruled out. In such a case, both devices are likely to get damaged.
In the case of open collector devices, deliberate or nondeliberate, shorting of outputs produces ANDing
of outputs with no risk of either damage or compromised performance specifications.

5.3.2.8 Tristate Gate

Tristate gates were discussed in Chapter 4. A tristate gate has three output states, namely the logic
LOW state, the logic HIGH state and the high-impedance state. An external enable input decides
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Figure 5.16 Tristate inverter in the TTL.

whether the logic gate works according to its truth table or is in the high-impedance state. Figure 5.16
shows the typical internal schematic of a tristate inverter with an active HIGH enable input. The circuit
functions as follows. When the enable input is HIGH, it reverse-biases diode D, and also applies a
logic HIGH on one of the emitters of the input transistor Q,. The circuit behaves like an inverter.
When the enable input is LOW, diode D; becomes forward biased. A LOW enable input forces O, and
Q, to cut-off. Also, a forward-biased D, forces Q; to cut-off. With both output transistors in cut-off,
the output essentially is an open circuit and thus presents high output impedance.

5.3.3 Low-Power TTL

The low-power TTL is a low-power variant of the standard TTL where lower power dissipation is
achieved at the expense of reduced speed of operation. Figure 5.17 shows the internal schematic of a
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Figure 5.17 NAND gate in the low-power TTL.
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low-power TTL NAND gate. The circuit shown is that of one of the four gates inside a quad two-input
NAND (type 74L00 or 54L00). The circuit, as we can see, is the same as that of the standard TTL
NAND gate except for an increased resistance value of the different resistors used in the circuit.
Increased resistance values lead to lower power dissipation.

5.3.3.1 Characteristic Features

Characteristic features of this family are summarized as follows: Viy =2 V; V. =0.7V; [y =10 pA;
I, =0.18mA; Vo =2.4V; Vo =04V, oy =200 pA; Iy, =3.6mA; Vo = 4.75-5.25V (74-series)
and 4.5-5.5V (54-series); propagation delay (for a load resistance of 4000}, a load capacitance
of 50pF, Ve = 5V and an ambient temperature of 25°C)=60ns (max.) for both LOW-to-HIGH
and HIGH-to-LOW output transitions; worst-case noise margin = 0.3 V; fan-out=20; Iy (for all
four gates) =0.8 mA; I (for all four gates) =2.04 mA; operating temperature range = 0-70 °C (74-
series) and —55 to +125°C (54-series); speed—power product=33pJ; maximum flip-flop toggle
frequency =3 MHz.

5.3.4 High-Power TTL (74H/54H)

The high-power TTL is a high-power, high-speed variant of the standard TTL where improved speed
(reduced propagation delay) is achieved at the expense of higher power dissipation. Figure 5.18 shows
the internal schematic of a high-power TTL NAND gate. The circuit shown is that of one of the four
gates inside a quad two-input NAND (type 74HOO or 54H00). The circuit, as we can see, is nearly
the same as that of the standard TTL NAND gate except for the transistor Q;—diode D; combination
in the totem-pole output stage having been replaced by a Darlington arrangement comprising Qs, Qs
and Rs. The Darlington arrangement does the same job as diode D, in the conventional totem-pole
arrangement. It ensures that Qs does not conduct at all when the output is LOW. The decreased
resistance values of different resistors used in the circuit lead to higher power dissipation.

A—e Qs Qs .
B b
[T
D1 AD» Q4
% R4 Rs
470 4K
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Figure 5.18 NAND gate in the high-power TTL.
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5.3.4.1 Characteristic Features

Characteristic features of this family are summarized as follows: Viy = 2V; Vi =0.8V; Iy =50 pA;
Iy =2mA; Vou=24V; Vo, =04V; I5; =500nA; Io, =20mA; Voo = 4.75-5.25V (74-series)
and 4.5-5.5V (54-series); propagation delay (for a load resistance of 280 (), a load capacitance
of 25pF, V=5V and an ambient temperature of 25°C)=10ns (max.) for both LOW-to-HIGH
and HIGH-to-LOW output transitions; worst—case noise margin = 0.4V; fan-out=10; I (for
all four gates)=16.8 mA; I (for all four gates)=40mA; operating temperature range =0-70°C
(74-series) and —55 to +125°C (54-series); speed—power product=132pJ; maximum flip-flop
frequency = 50 MHz.

5.3.5 Schottky TTL (745/54S)

The Schottky TTL offers a speed that is about twice that offered by the high-power TTL for the
same power consumption. Figure 5.19 shows the internal schematic of a Schottky TTL NAND gate.
The circuit shown is that of one of the four gates inside a quad two-input NAND (type 74S00 or
54S00). The circuit, as we can see, is nearly the same as that of the high-power TTL NAND gate.
The transistors used in the circuit are all Schottky transistors with the exception of Q5. A Schottky
Qs would serve no purpose, with Q, being a Schottky transistor. A Schottky transistor is nothing
but a conventional bipolar transistor with a Schottky diode connected between its base and collector
terminals. The Schottky diode with its metal-semiconductor junction not only is faster but also offers
a lower forward voltage drop of 0.4 V as against 0.7 V for a P-N junction diode for the same value of
forward current. The presence of a Schottky diode does not allow the transistor to go to deep saturation.
The moment the collector voltage of the transistor tends to go below about 0.3 V, the Schottky diode
becomes forward biased and bypasses part of the base current through it. The collector voltage is thus
not allowed to go to the saturation value of 0.1 V and gets clamped around 0.3 V. While the power
consumption of a Schottky TTL gate is almost the same as that of a high-power TTL gate owing to
nearly the same values of the resistors used in the circuit, the Schottky TTL offers a higher speed on
account of the use of Schottky transistors.
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Figure 5.19 NAND gate in the Schottky TTL.
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5.3.5.1 Characteristic Features

Characteristic features of this family are summarized as follows: Viy = 2V; Vi =0.8V; Iy =50 pA;
Iy =2mA; Vo =2.7V; VoL =05V; Ipy =1mA; Iy, =20mA; Voo =4.75-5.25V (74-series) and
4.5-5.5V (54-series); propagation delay (for a load resistance of 280 (), a load capacitance of 15 pF,
Voe =5V and an ambient temperature of 25°C)=5ns (max.) for LOW-to-HIGH and 4.5 ns (max.)
for HIGH-to-LOW output transitions; worst-case noise margin=0.3V; fan-out=10; I-¢y (for all
four gates) =16 mA; I (for all four gates) =36 mA; operating temperature range =0-70°C (74-
series) and —55 to +125°C (54-series); speed—power product= 57 pJ; maximum flip-flop toggle
frequency = 125 MHz.

5.3.6 Low-Power Schottky TTL (74LS/54LS)

The low-power Schottky TTL is a low power consumption variant of the Schottky TTL. Figure 5.20
shows the internal schematic of a low-power Schottky TTL NAND gate. The circuit shown is that of
one of the four gates inside a quad two-input NAND (type 74LS00 or 54L.S00). We can notice the
significantly increased value of resistors R, and R, used to achieve lower power consumption. Lower
power consumption, of course, occurs at the expense of reduced speed or increased propagation delay.
Resistors R; and Rs, which primarily affect speed, have not been increased in the same proportion
with respect to the corresponding values used in the Schottky TTL as resistors R, and R,. That is why,
although the low-power Schottky TTL draws an average maximum supply current of 3 mA (for all four
gates) as against 26 mA for the Schottky TTL, the propagation delay is 15 ns in LS-TTL as against
5 ns for S-TTL. Diodes D; and D, reduce the HIGH-to-LOW propagation delay. While D; speeds
up the turn-off of Q,, D, sinks current from the load. Another noticeable difference in the internal
schematics of the low-power Schottky TTL NAND and Schottky TTL NAND is the replacement of the
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Figure 5.20 NAND gate in the low-power Schottky TTL.
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multi-emitter input transistor of the Schottky TTL by diodes D, and D, and resistor R;. The junction
diodes basically replace the two emitter-base junctions of the multi-emitter input transistor Q, of the
Schottky TTL NAND (Fig. 5.19). The reason for doing so is that Schottky diodes can be made smaller
than the transistor and therefore will have lower parasitic capacitances. Also, since Q, of LS-TTL (Fig.
5.20) cannot saturate, it is not necessary to remove its base charge with a bipolar junction transistor.

5.3.6.1 Characteristic Features

Characteristic features of this family are summarized as follows: Vi = 2V; V; =0.8V; I;; =20 nA;
I =04mA; Vo =2.7V; Vo =0.5V; Iog =0.4mA; I, =8mA; Vo =4.75-5.25V (74-series) and
4.5-5.5V (54-series); propagation delay (for a load resistance of 280(), a load capacitance of
15pF, Ve =5V and an ambient temperature of 25°C)=15ns (max.) for both LOW-to-HIGH and
HIGH-to-LOW output transitions; worst-case noise margin = 0.3 V; fan-out = 20; Iy (for all four
gates) = 1.6 mA; I (for all four gates) = 4.4mA; operating temperature range=0-70°C (74-
series) and —55 to +125°C (54-series); speed—power product= 18 pJ; maximum flip-flop toggle
frequency =45 MHz.

5.3.7 Advanced Low-Power Schottky TTL (74ALS/54ALS)

The basic ideas behind the development of the advanced low-power Schottky TTL (ALS-TTL) and
advanced Schottky TTL (AS-TTL) discussed in Section 5.3.8 were further to improve both speed
and power consumption performance of the low-power Schottky TTL and Schottky TTL families
respectively. In the TTL subfamilies discussed so far, we have seen that different subfamilies achieved
improved speed at the expense of increased power consumption, or vice versa. For example, the low-
power TTL offered lower power consumption over standard TTL at the cost of reduced speed. The
high-power TTL, on the other hand, offered improved speed over the standard TTL at the expense of
increased power consumption. ALS-TTL and AS-TTL incorporate certain new circuit design features
and fabrication technologies to achieve improvement of both parameters. Both ALS-TTL and AS-TTL
offer an improvement in speed—power product respectively over LS-TTL and S-TTL by a factor of 4.
Salient features of ALS-TTL and AS-TTL include the following:

1. All saturating transistors are clamped by using Schottky diodes. This virtually eliminates the storage
of excessive base charge, thus significantly reducing the turn-off time of the transistors. Elimination
of transistor storage time also provides stable switching times over the entire operational temperature
range.

2. Inputs and outputs are clamped by Schottky diodes to limit the negative-going excursions.

3. Both ALS-TTL and AS-TTL use ion implantation rather than a diffusion process, which allows
the use of small geometries leading to smaller parasitic capacitances and hence reduced switching
times.

4. Both ALS-TTL and AS-TTL use oxide isolation rather than junction isolation between transistors.
This leads to reduced epitaxial layer—substrate capacitance, which further reduces the switching
times.

5. Both ALS-TTL and AS-TTL offer improved input threshold voltage and reduced low-level input
current.

6. Both ALS-TTL and AS-TTL feature active turn-off of the LOW-level output transistor, producing
a better HIGH-level output voltage and thus a higher HIGH-level noise immunity.
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Figure 5.21 NAND gate in the ALS-TTL.

Figure 5.21 shows the internal schematic of an advanced low-power Schottky TTL NAND gate. The
circuit shown is that of one of the four gates inside a quad two-input NAND (type 74ALS00 or
54ALS00) The multi-emitter input transistor is replaced by two PNP transistors Q,, and Q,5. Diodes
D,, and D,y provide input clamping to negative excursions. Buffering offered by Q,, or Q5 and Q,
reduces the LOW-level input current by a factor of (1 + hgg of Q,,). HIGH-level output voltage is
determined primarily by V, transistors Q, and Q, and resistors R, and R, and is typically (V¢ —2)
V. LOW-level output voltage is determined by the turn-on characteristics of Qs. Transistor Qs gets
sufficient base drive through R; and a conducting Q; whose base terminal in turn is driven by a
conducting O, whenever either or both inputs are HIGH. Transistor Q, provides active turn-off for Qs.

5.3.7.1 Characteristic Features

Characteristic features of this family are summarized as follows: Viy =2V; V;; =0.8V; Iy =20 pA;
Iy =0.1mA; Vo = (Vee —2) Vi Vo =0.5V; Iy =0.4mA; I, =8 mA (74ALS) and 4 mA (54ALS);
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Voe =4.5-5.5 V; propagation delay (for a load resistance of 500, a load capacitance of 50 pF,
Voe =4.5-5.5V and an ambient temperature of minimum to maximum)=11ns/16ns (max.) for
LOW-to-HIGH and 8 ns/13 ns for HIGH-to-LOW output transitions (74ALS/54ALS); worst-case noise
margin = 0.3 V; fan-out = 20; Icy (for all four gates) = 0.85mA; I (for all four gates) =3 mA;

operating temperature range = 0-70°C (74-series) and —55 to +125°C (54-series); speed—power
product = 4.8 pJ; maximum flip-flop toggle frequency = 70 MHz.

5.3.8 Advanced Schottky TTL (74AS/54AS)

Figure 5.22 shows the internal schematic of an advanced Schottky TTL NAND gate. The circuit shown
is that of one of the four gates inside a quad two-input NAND (type 74AS00 or 54AS00). Salient
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Figure 5.22 NAND gate in the AS-TTL.
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features of ALS-TTL and AS-TTL have been discussed at length in the preceding paragraphs. As is
obvious from the internal circuit schematic of the AS-TTL NAND gate, it has some additional circuits
not found in ALS-TTL devices. These are added to enhance the throughput of AS-TTL family devices.
Transistor Q, provides a discharge path for the base-collector capacitance of Qs. In the absence of
0,o, a rising voltage across the output forces current into the base of Qs through its base-collector
capacitance, thus causing it to turn on. Transistor Q,, turns on through D, thus keeping transistor Qs
in the cut-off state.

5.3.8.1 Characteristic Features

Characteristic features of this family are summarized as follows: Viy =2V; Vi, =0.8V; Iy =20 pA;
I =0.5mA; Vo = (Ve —2) V; Vo =0.5V; oy =2 mA; I, =20 mA; Vo =4.5-5.5 V; propagation
delay (for a load resistance of 502, a load capacitance of 50pF, V.- =4.5-5.5V and an ambient
temperature of minimum to maximum) = 4.5 ns/5 ns (max.) for LOW-to-HIGH and 4 ns/5 ns (max.) for
HIGH-to-LOW output transitions (74AS/54AS); worst-case noise margin= 0.3 V; fan-out =40; Icy
(for all four gates) = 3.2 mA; I (for all four gates) = 17.4 mA; operating temperature range = 0-70 °C
(74-series) and —55 to +125 °C (54-series); speed—power product = 13.6 pJ; maximum flip-flop toggle
frequency =200 MHz.

5.3.9 Fairchild Advanced Schottky TTL (74F/54F)

The Fairchild Advanced Schottky TTL family, commonly known as FAST logic, is similar to the
AS-TTL family. Figure 5.23 shows the internal schematic of a Fairchild Advanced Schottky TTL
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Figure 5.23 NAND gate in the FAST TTL.
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NAND gate. The circuit shown is that of one of the four gates inside a quad two-input NAND (type
74F00 or 54F00). The DTL kind of input with emitter follower configuration of Q, provides a good
base drive to Q,. The ‘Miller killer’ configuration comprising varactor diode D,, transistor Oy and
associated components speeds up LOW-to-HIGH transition. During LOW-to-HIGH transition, voltage
at the emitter terminal of Q; begins to rise while Qs is still conducting. Varactor diode D; conducts,
thus supplying base current to Q4. A conducting Qg provides a discharge path for the charge stored in
the base-collector capacitance of Qs, thus expediting its turn-off.

5.3.9.1 Characteristic Features

Characteristic features of this family are summarized as follows: Viy =2V; Vi =0.8V; Ijy =20 pA;
I =0.6mA; Vou =2.7V; Vo =0.5V; Iy = 1mA; I5; =20mA; Vo =4.75-5.25V (74F) and 4.5-
5.5V (54F); propagation delay (a load resistance of 500 ), a load capacitance of 50 pF and full
operating voltage and temperature ranges)=>5.3ns/7ns (max.) for LOW-to-HIGH and 6ns/6.5ns
(max.) for HIGH-to-LOW output transitions (74AS/54AS); worst-case noise margin=0.3V; fan-
out =40; Iy (for all four gates) =2.8 mA; I (for all four gates) = 10.2 mA; operating temperature
range = 0-70°C (74F-series) and —55 to +125°C (54F-series); speed—power product= 10pJ;
maximum {flip-flop toggle frequency = 125 MHz.

5.3.10 Floating and Unused Inputs

The floating input of TTL family devices behaves as if logic HIGH has been applied to the input. Such
behaviour is explained from the input circuit of a TTL device. When the input is HIGH, the input
emitter-base junction is reverse biased and the current that flows into the input is the reverse-biased
diode leakage current. The input diode will be reverse biased even when the input terminal is left
unconnected or floating, which implies that a floating input behaves as if there were logic HIGH
applied to it.

As an initial thought, we may tend to believe that it should not make any difference if we leave
the unused inputs of NAND and AND gates as floating, as logic HIGH like behaviour of the floating
input makes no difference to the logical behaviour of the gate, as shown in Figs 5.24(a) and (b). In
spite of this, it is strongly recommended that the unused inputs of AND and NAND gates be connected
to a logic HIGH input [Fig. 5.24(c)] because floating input behaves as an antenna and may pick up
stray noise and interference signals, thus causing the gate to function improperly. 1 k() resistance is
connected to protect the input from any current spikes caused by any spikes on the power supply line.
More than one unused input (up to 50) can share the same 1 k() resistance, if needed.

In the case of OR and NOR gates, unused inputs are connected to ground (logic LOW), as shown in
Fig. 5.25(c), for obvious reasons. A floating input or an input tied to logic HIGH in this case produces
a permanent logic HIGH (for an OR gate) and LOW (for a NOR gate) at the output as shown in
Figs 5.25(a) and (b) respectively. An alternative solution is shown in Fig. 5.25(d), where the unused
input has been tied to one of the used inputs. This solution works well for all gates, but one has to be
conscious of the fact that the fan-out capability of the output driving the tied inputs is not exceeded.

If we recall the internal circuit schematics of AND and NAND gates, we will appreciate that, when
more than one input is tied together, the input loading, that is, the current drawn by the tied inputs
from the driving gate output, in the HIGH state is n times the loading of one input (Fig. 5.26); n is
the number of inputs tied together. When the output is LOW, the input loading is the same as that of
a single input. The reason for this is that, in the LOW input state, the current flowing out of the gate
is determined by the resistance R, as shown in Fig. 5.27. However, the same is not true in the case of
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Figure 5.24 Handling unused inputs of AND and NAND gates.

OR and NOR gates, which do not use a multi-emitter input transistor and use separate input transistors
instead, as shown in Fig. 5.28. In this case, the input loading is n times the loading of a single input
for both HIGH and LOW states.

5.3.11 Current Transients and Power Supply Decoupling

TTL family devices are prone to occurrence of narrow-width current spikes on the power supply line.
Current transients are produced when the totem-pole output stage of the device undergoes a transition
from a logic LOW to a logic HIGH state. The problem becomes severe when in a digital circuit a
large number of gates are likely to switch states at the same time. These current spikes produce voltage
spikes due to any stray inductance present on the line. On account of the large rate of change in current
in the current spike, even a small value of stray inductance produces voltage spikes large enough
adversely to affect the circuit performance.

Figure 5.29 illustrates the phenomenon. When the output changes from LOW to HIGH, there is
a small fraction of time when both the transistors are conducting because the pull-up transistor Q;
has switched on and the pull-down transistor Q, has not yet come out of saturation. During this
small fraction of time, there is an increase in current drawn from the supply; I experiences a
positive spike before it settles down to a usually lower I--y. The presence of any stray capacitance
C across the output owing to any stray wiring capacitance or capacitance loading of the circuit being
fed also adds to the problem. The problem of voltage spikes on the power supply line is usually
overcome by connecting small-value, low-inductance, high-frequency capacitors between V- terminal
and ground. It is standard practice to use a 0.01 or 0.1 wF ceramic capacitor from V. to ground. This
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Figure 5.25 Handling unused inputs of OR and NOR gates.

capacitor is also known by the name of power supply decoupling capacitor, and it is recommended
to use a separate capacitor for each IC. A decoupling capacitor is connected as close to the V¢
terminal as possible, and its leads are kept to a bare minimum to minimize lead inductance. In
addition, a single relatively large-value capacitor in the range of 1-22 wF is also connected between
Vee and ground on each circuit card to take care of any low-frequency voltage fluctuations in the
power supply line.

Example 5.5

Refer to Fig. 5.30. Determine the current being sourced by gate 1 when its output is HIGH and sunk
by it when its output is LOW. All gates are from the standard TTL family, given that I,;; = 40 uA and
I; = 1.6mA.
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Figure 5.27 Input loading in the case of LOW tied inputs of NAND and AND gates.

Solution

When the output is HIGH, the inputs of all gates draw current individually.

Therefore, the input loading factor = equivalent of seven gate inputs =7 x 40 WA =280 pA.

The current being sourced by the gate 1 output =280 pwA.

When the output is LOW, shorted inputs of AND and NAND gates offer a load equal to that of a
single input owing to a multi-emitter transistor at the input of the gate. The inputs of OR and NOR
gates draw current individually on account of the use of separate transistors at the input of the gate.

® Therefore, the input loading factor = equivalent of five gate inputs =5 x 1.6 =8 mA.
e The current being sunk by the gate 1 output =8 mA.
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Example 5.6

Refer to the logic diagram of Fig. 5.31. Gate 1 and gate 4 belong to the standard TTL family,
while gate 2 and gate 3 belong to the Schottky TTL family and the low-power Schottky TTL family
respectively. Determine whether the fan-out capability of gate 1 is being exceeded. Relevant data for
the three logic families are given in Table 5.1.
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Table 5.1 Example 5.6
Logic family Ig(nA)  Iog(mA) I (mA) Iy (mA)
Standard TTL 40 0.4 1.6 16
LS-TTL 20 0.4 0.4 8.0
S-TTL 50 1.0 2.0 20

Solution
e In the HIGH-state:

— the gate 1 output sourcing capability =400 pA;

— the gate 2 input requirement =50 x 4 =200 pA;

— the gate 3 input requirement =20 x 2=40pA;

— the gate 4 input requirement =40 x 4 =160 pwA;

— the total input current requirement =400 pA;

— therefore, the fan-out is not exceeded in the HIGH state.
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e In the LOW-state,

— the gate 1 output sinking capability = 16 mA;

— the gate 2 input sinking requirement =2 mA;

— the gate 3 input sinking requirement=0.4 x 2=0.8 mA;

— the gate 4 input sinking requirement = 1.6 mA;

— the total input current requirement =4.4 mA;

— since the output of gate 1 has a current sinking capability of 16 mA, the fan-out capability is not
exceeded in the LOW state either.

5.4 Emitter Coupled Logic (ECL)

The ECL family is the fastest logic family in the group of bipolar logic families. The characteristic
features that give this logic family its high speed or short propagation delay are outlined as follows:

1. It is a nonsaturating logic. That is, the transistors in this logic are always operated in the active
region of their output characteristics. They are never driven to either cut-off or saturation, which
means that logic LOW and HIGH states correspond to different states of conduction of various
bipolar transistors.

2. The logic swing, that is, the difference in the voltage levels corresponding to logic LOW and HIGH
states, is kept small (typically 0.85 V), with the result that the output capacitance needs to be
charged and discharged by a relatively much smaller voltage differential.

3. The circuit currents are relatively high and the output impedance is low, with the result that the
output capacitance can be charged and discharged quickly.

5.4.1 Different Subfamilies

Different subfamilies of ECL logic include MECL-I, MECL-1I, MECL-III, MECL 10K, MECL 10H
and MECL 10E (ECLinPS™and ECLinPS Lite™).

5.4.1.1 MECL-I, MECL-II and MECL-III Series

MECL-I was the first monolithic emitter coupled logic family introduced by ON Semiconductor
(formerly a division of Motorola SPS) in 1962. It was subsequently followed up by MECL-II in 1966.
Both these logic families have become obsolete and have been replaced by MECL-III (also called
the MC1600 series) introduced in 1968. Although, chronologically, MECL-III was introduced before
the MECL-10K and MECL-10H families, it features higher speed than both of its successors. With a
propagation delay of the order of 1 ns and a flip-flop toggle frequency of 500 MHz, MECL-III is used
in high-performance, high-speed systems.

The basic characteristic parameters of MECL-III are as follows: gate propagation delay =1 ns;
output edge speed (indicative of the rise and fall time of output transition)=1ns; flip-flop
toggle frequency =500MHz; power dissipation per gate=50mW; speed—power product= 60 pJ;
input voltage =0-Vgz (Vg is the negative supply voltage); negative power supply range (for
Voe =0)=—5.1V to —5.3 V; continuous output source current (max.) =40 mA; surge output source
current (max.) = 80 mA; operating temperature range = —30 °C to +85 °C.
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5.4.1.2 MECL-10K Series

The MECL-10K family was introduced in 1971 to meet the requirements of more general-purpose high-
speed applications. Another important feature of MECL-10K family devices is that they are compatible
with MECL-III devices, which facilitates the use of devices of the two families in the same system. The
increased propagation delay of 2ns in the case of MECL-10K comes with the advantage of reduced
power dissipation, which is less than half the power dissipation in MECL-III family devices.

The basic characteristic parameters of MECL-10K are as follows: gate propagation delay =2ns
(10100-series) and 1.5 ns (10200-series); output edge speed = 3.5 ns (10100-series) and 2.5 ns (10200-
series); flip-flop toggle frequency = 125 MHz (min.) in the 10100-series and 200 MHz (min.) in the
10200-series; power dissipation per gate =25 mW; speed—power product = 50 pJ (10100-series) and
37pJ (10200-series); input voltage = 0-Vg (Vg is the negative supply voltage); negative power
supply range (for V. =0)=—4.68 to —5.72V; continuous output source current (max.)=50mA;
surge output source current (max.) =100 mA; operating temperature range = —30 °C to +85 °C.

5.4.1.3 MECL-10H Series

The MECL-10H family, introduced in 1981, combines the high speed advantage of MECL-III with
the lower power dissipation of MECL-10K. That is, it offers the speed of MECL-III with the power
economy of MECL-10K. Backed by a propagation delay of 1ns and a power dissipation of 25 mW
per gate, MECL-10H offers one of the best speed—power product specifications in all available ECL
subfamilies. Another important aspect of this family is that many of the MECL-10H devices are pin-
out/functional replacements of MECL-10K series devices, which allows the users or the designers to
enhance the performance of existing systems by increasing speed in critical timing areas.

The basic characteristic parameters of MECL-10H are as follows: gate propagation delay =1 ns;
output edge speed=1ns; flip-flop toggle frequency=250MHz (min.); power dissipation per
gate =25 mW,; speed—power product=25pJ; input voltage=0-Vg; (Vg is the negative supply
voltage); negative power supply range (for Vo =0)=—4.94 to —5.46V; continuous output source
current (max.)=50mA; surge output source current (max.)=100mA; operating temperature
range =0°C to + 75°C.

5.4.1.4 MECL-10E Series (ECLinPS™ and ECLinPSLite™)

The ECLinPS™ family, introduced in 1987, has a propagation delay of the order of 0.5 ns.
ECLinPSLite™ is a recent addition to the ECL family. It offers a propagation delay of the order of
0.2 ns. The ECLPro™ family of devices is a rapidly growing line of high-performance ECL logic,
offering a significant speed upgrade compared with the ECLinPSLite™ devices.

5.4.2 Logic Gate Implementation in ECL

OR/NOR is the fundamental logic gate of the ECL family. Figure 5.32 shows a typical internal
schematic of an OR/NOR gate in the 10K-series MECL family. The circuit in essence comprises a
differential amplifier input circuit with one side of the differential pair having multiple transistors
depending upon the number of inputs to the gate, a voltage- and temperature-compensated bias network
and emitter follower outputs. The internal schematic of the 10H-series gate is similar, except that the
bias network is replaced with a voltage regulator circuit and the source resistor Ry of the differential
amplifier is replaced with a constant current source. Typical values of power supply voltages are
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Vee = 0 and Vgg=—5.2 V. The nominal logic levels are logic LOW =logic ‘0’ =—1.75 V and logic
HIGH = logic ‘1’ =—0.9 V, assuming a positive logic system. The circuit functions as follows.

The bias network configured around transistor Q4 produces a voltage of typically —1.29V at its
emitter terminal. This leads to a voltage of —2.09'V at the junction of all emitter terminals of various
transistors in the differential amplifier, assuming 0.8 V to be the required forward-biased P-N junction
voltage. Now, let us assume that all inputs are in a logic ‘0’ state, that is, the voltage at the base
terminals of various input transistors is —1.75 V. This means that the transistors Q,, Q,, Q3 and Q,
will remain in cut-off as their base-emitter junctions are not forward biased by the required voltage.
This leads us to say that transistor O, is conducting, producing a logic ‘0’ output, and transistor Qg is
in cut-off, producing a logic ‘1’ output.

In the next step, let us see what happens if any one or all of the inputs are driven to logic ‘1’ status,
that is, a nominal voltage of —0.9'V is applied to the inputs. The base-emitter voltage differential of
transistors Q,—Q, exceeds the required forward-biasing threshold, with the result that these transistors
start conducting. This leads to a rise in voltage at the common-emitter terminal, which now becomes
approximately —1.7V as the common-emitter terminal is now 0.8 V more negative than the base-
terminal voltage. With rise in the common-emitter terminal voltage, the base-emitter differential voltage
of Q5 becomes 0.31V, driving Qs to cut-off. The O, and Qg emitter terminals respectively go to logic
‘1’ and logic ‘0.

This explains how this basic schematic functions as an OR/NOR gate. We will note that the
differential action of the switching transistors (where one section is ON while the other is OFF) leads
to simultaneous availability of complementary signals at the output. Figure 5.33 shows the circuit
symbol and switching characteristics of this basic ECL gate. It may be mentioned here that positive
ECL (called PECL) devices operating at +5V and ground are also available. When used in PECL
mode, ECL devices must have their input/output DC parameters adjusted for proper operation. PECL
DC parameters can be computed by adding ECL levels to the new V.
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We will also note that voltage changes in ECL are small, largely governed by Vg of the various
conducting transistors. In fact, the magnitude of the currents flowing through various conducting
transistors is of greater relevance to the operation of the ECL circuits. It is for this reason that emitter
coupled logic is also sometimes called current mode logic (CML).

5.4.3 Salient Features of ECL

There are many features possessed by MECL family devices other than their high speed characteristics
that make them attractive for many high-performance applications. The major ones are as follows:

1. ECL family devices produce the true and complementary output of the intended function
simultaneously at the outputs without the use of any external inverters. This in turn reduces package
count, reduces power requirements and also minimizes problems arising out of time delays that
would be caused by external inverters.

2. The ECL gate structure inherently has high input impedance and low output impedance, which is
very conducive to achieving large fan-out and drive capability.

3. ECL devices with open emitter outputs allow them to have transmission line drive capability. The
outputs match any line impedance. Also, the absence of any pull-down resistors saves power.

4. ECL devices produce a near-constant current drain on the power supply, which simplifies power
supply design.

5. On account of the differential amplifier design, ECL devices offer a wide performance flexibility,
which allows ECL circuits to be used both as linear and as digital circuits.

6. Termination of unused inputs is easy. Resistors of approximately 50k() allow unused inputs to
remain unconnected.
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5.5 CMOS Logic Family

The CMOS (Complementary Metal Oxide Semiconductor) logic family uses both N-type and P-type
MOSFETs (enhancement MOSFETs, to be more precise) to realize different logic functions. The
two types of MOSFET are designed to have matching characteristics. That is, they exhibit identical
characteristics in switch-OFF and switch-ON conditions. The main advantage of the CMOS logic
family over bipolar logic families discussed so far lies in its extremely low power dissipation, which is
near-zero in static conditions. In fact, CMOS devices draw power only when they are switching. This
allows integration of a much larger number of CMOS gates on a chip than would have been possible
with bipolar or NMOS (to be discussed later) technology. CMOS technology today is the dominant
semiconductor technology used for making microprocessors, memory devices and application-specific
integrated circuits (ASICs). The CMOS logic family, like TTL, has a large number of subfamilies. The
prominent members of CMOS logic were listed in an earlier part of the chapter. The basic difference
between different CMOS logic subfamilies such as 4000A, 4000B, 4000UB, 74C, 74HC, 74HCT,
74AC and 74ACT is in the fabrication process used and not in the design of the circuits employed to
implement the intended logic function. We will firstly look at the circuit implementation of various
logic functions in CMOS and then follow this up with a brief description of different subfamilies of
CMOS logic.

5.5.1 Circuit Implementation of Logic Functions

In the following paragraphs, we will briefly describe the internal schematics of basic logic functions
when implemented in CMOS logic. These include inverter, NAND, NOR, AND, OR, EX-OR, EX-NOR
and AND-OR-INVERT functions.

5.5.1.1 CMOS Inverter

The inverter is the most fundamental building block of CMOS logic. It consists of a pair of N-channel
and P-channel MOSFETs connected in cascade configuration as shown in Fig. 5.34. The circuit
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Figure 5.34 CMOS inverter.
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functions as follows. When the input is in the HIGH state (logic ‘1°), P-channel MOSFET Q, is in
the cut-off state while the N-channel MOSFET Q, is conducting. The conducting MOSFET provides
a path from ground to output and the output is LOW (logic ‘0’). When the input is in the LOW state
(logic “0°), Q, is in conduction while Q, is in cut-off. The conducting P-channel device provides a path
for Vp, to appear at the output, so that the output is in HIGH or logic ‘1’ state. A floating input could
lead to conduction of both MOSFETs and a short-circuit condition. It should therefore be avoided. It
is also evident from Fig. 5.34 that there is no conduction path between Vj,;, and ground in either of
the input conditions, that is, when input is in logic ‘1’ and ‘O’ states. That is why there is practically
zero power dissipation in static conditions. There is only dynamic power dissipation, which occurs
during switching operations as the MOSFET gate capacitance is charged and discharged. The power
dissipated is directly proportional to the switching frequency.

5.5.1.2 NAND Gate

Figure 5.35 shows the basic circuit implementation of a two-input NAND. As shown in the figure, two
P-channel MOSFETs (Q, and Q,) are connected in parallel between Vp, and the output terminal, and
two N-channel MOSFETs (Q; and Q,) are connected in series between ground and output terminal.
The circuit operates as follows. For the output to be in a logic ‘0’ state, it is essential that both the
series-connected N-channel devices conduct and both the parallel-connected P-channel devices remain
in the cut-off state. This is possible only when both the inputs are in a logic ‘1’ state. This verifies
one of the entries of the NAND gate truth table. When both the inputs are in a logic ‘0’ state, both the
N-channel devices are nonconducting and both the P-channel devices are conducting, which produces
a logic ‘1’ at the output. This verifies another entry of the NAND truth table. For the remaining two
input combinations, either of the two N-channel devices will be nonconducting and either of the two
parallel-connected P-channel devices will be conducting. We have either Q; OFF and Q, ON or Q,
OFF and Q; ON. The output in both cases is a logic ‘1°, which verifies the remaining entries of the
truth table.

o Vpp

A 4
A 4

Qo

-

mEjl TI_T I

Q4

11

A 4

o
~

[oe]

L4

Figure 5.35 CMOS NAND.
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Figure 5.36 Three-input NAND in CMOS.

From the circuit schematic of Fig. 5.35 we can visualize that under no possible input combination
of logic states is there a direct conduction path between Vi, and ground. This further confirms that
there is near-zero power dissipation in CMOS gates under static conditions. Figure 5.36 shows how
the circuit of Fig. 5.35 can be extended to build a three-input NAND gate. Operation of this circuit
can be explained on similar lines. It may be mentioned here that series connection of MOSFETSs adds
to the propagation delay, which is greater in the case of P-channel devices than it is in the case of
N-channel devices. As a result, the concept of extending the number of inputs as shown in Fig. 5.36
is usually limited to four inputs in the case of NAND and to three inputs in the case of NOR. The
number is one less in the case of NOR because it uses series-connected P-channel devices. NAND and
NOR gates with larger inputs are realized as a combination of simpler gates.

5.5.1.3 NOR Gate

Figure 5.37 shows the basic circuit implementation of a two-input NOR. As shown in the figure, two
P-channel MOSFETs (Q, and Q,) are connected in series between Vpp, and the output terminal, and
two N-channel MOSFETS (Q; and Q,) are connected in parallel between ground and output terminal.
The circuit operates as follows. For the output to be in a logic ‘1’ state, it is essential that both the
series-connected P-channel devices conduct and both the parallel-connected N-channel devices remain
in the cut-off state. This is possible only when both the inputs are in a logic ‘0’ state. This verifies
one of the entries of the NOR gate truth table. When both the inputs are in a logic ‘1’ state, both the
N-channel devices are conducting and both the P-channel devices are nonconducting, which produces
a logic ‘0’ at the output. This verifies another entry of the NOR truth table. For the remaining two
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input combinations, either of the two parallel N-channel devices will be conducting and either of the
two series-connected P-channel devices will be nonconducting. We have either O, OFF and Q; ON
or O, OFF and Q, ON. The output in both cases is logic ‘0’, which verifies the remaining entries of
the truth table.

Figure 5.38 shows how the circuit of Fig. 5.37 can be extended to build a three-input NOR gate.
The operation of this circuit can be explained on similar lines. As already explained, NOR gates with
more than three inputs are usually realized as a combination of simpler gates.

5.5.1.4 AND Gate

An AND gate is nothing but a NAND gate followed by an inverter. Figure 5.39 shows the internal
schematic of a two-input AND in CMOS. A buffered AND gate is fabricated by using a NOR gate
schematic with inverters at both of its inputs and its output feeding two series-connected inverters.

5.5.1.5 OR Gate

An OR gate is nothing but a NOR gate followed by an inverter. Figure 5.40 shows the internal
schematic of a two-input OR in CMOS. A buffered OR gate is fabricated by using a NAND gate
schematic with inverters at both of its inputs and its output feeding two series-connected inverters.

5.5.1.6 EXCLUSIVE-OR Gate

An EXCLUSIVE-OR gate is implemented using the logic diagram of Fig. 5.41(a). As is evident from
the figure, the output of this logic arrangement can be expressed by

[(A+B)+A.B=(A.B+A.B)] =EX — OR function (5.1



Logic Families 155

°VbD
I
Q1 | —
A |
|_
Q2 | |—>—1
B —
—
Q3 | —
C —
Y=(A+B+C)
I I I
I I I
J |_’ J |_" J '_‘,
Qg Qs Q4
Figure 5.38 Three-input NOR.
°VDD
—Jay | —Jo — —1q
I 1 I 2 5
— —
L Y=A.B
- |
Q
A ¢ s ] 0
|_.
|_
B r:_04

Figure 5.39 Two-input AND in CMOS.



156 Digital Electronics

VDD
o)
I
Qq —
A I
—
—e
Q| F——
B 2 — E
Qs
¢ Y=(A+B)
| |
I I |_
I=gll =
| | —o
Q3 Q4 Qp

Figure 5.40 Two-input OR in CMOS.

Figure 5.41(b) shows the internal schematic of a two-input EX-OR gate. MOSFETs Q,-Q,
constitute the NOR gate. MOSFETS Qs and Q¢ simulate ANDing of A and B, and MOSFET
0, provides ORing of the NOR output with ANDed output. Since MOSFETs Q¢—Q,, make up
the complement of the arrangement of MOSFETs Qs—Q;, the final output is inverted. Thus, the
schematic of Fig. 5.41(b) implements the logic arrangement of Fig. 5.41(a) and hence a two-input
EX-OR gate.

5.5.1.7 EXCLUSIVE-NOR Gate

An EXCLUSIVE-NOR gate is implemented using the logic diagram of Fig. 5.42(a). As is evident
from the figure, the output of this logic arrangement can be expressed by

[(A.B).(A+B)] =[(A+B).(A+B)] = EX —NOR function (5.2)

Figure 5.42(b) shows the internal schematic of a two-input EX-NOR gate. MOSFETs Q,-Q,
constitute the NAND gate. MOSFETS Qs and Qg simulate ORing of A and B, and MOSFET
Q, provides ANDing of the NAND output with ORed output. Since MOSFETs Qg4—Q;, make up
the complement of the arrangement of MOSFETs Qs—Q,, the final output is inverted. Thus, the
schematic of Fig. 5.42(b) implements the logic arrangement of Fig. 5.42(a) and hence a two-input
EX-NOR gate.
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Figure 5.41 Two-input EX-OR in CMOS.

5.5.1.8 AND-OR-INVERT and OR-AND-INVERT Gates

Figure 5.43 shows the internal schematic of a typical two-wide, two-input AND-OR-INVERT gate.
The output of this gate can be logically expressed by the Boolean equation

Y =(A.B+C.D) (5.3)

From the above expression, we can say that the output should be in a logic ‘0’ state for the following
input conditions:

1. When either A.B=logic ‘1’ or C.D =logic ‘1’
2. When both A.B and C.D equal logic ‘1°.
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Figure 5.42 Two-input EX-NOR in CMOS.

For both these conditions there is a conduction path available from ground to output, which verifies
that the circuit satisfies the logic expression. Also, according to the logic expression for the AND-OR-
INVERT gate, the output should be in a logic ‘1’ state when both A.B and C.D equal logic ‘0’. This
implies that:

1. Either A or B or both are in a logic ‘0’ state.
2. Either C or D or both are in a logic ‘0’ state.
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Figure 5.43 Two-wide, two-input AND-OR-INVERT gate in CMOS.

If these conditions are applied to the circuit of Fig. 5.43, we find that the ground will remain
disconnected from the output and also that there is always a path from Vj,;, to output. This leads to
a logic ‘1’ at the output. Thus, we have proved that the given circuit implements the intended logic
expression for the AND-OR-INVERT gate.

The OR-AND-INVERT gate can also be implemented in the same way. Figure 5.44 shows a typical
internal schematic of a two-wide, two-input OR-AND-INVERT gate. The output of this gate can be
expressed by the Boolean equation

Y=(A+B).(C+D) (5.4)

It is very simple to draw the internal schematic of an AND-OR-INVERT or OR-AND-INVERT gate.
The circuit has two parts, that is, the N-channel MOSFET part of the circuit and the P-channel part
of the circuit. Let us see, for instance, how Boolean equation (5.4) relates to the circuit of Fig. 5.44.
The fact that we need (A OR B) AND (C OR D) explains why the N-channel MOSFETS representing
A and B inputs are in parallel and also why the N-channel MOSFETs representing C and D are
also in parallel. The two parallel arrangements are then connected in series to achieve an ANDing
operation. The complementary P-channel MOSFET section achieves inversion. Note that the P-channel
section is the complement of the N-channel section with N-channel MOSFETs replaced by P-channel
MOSFETs and parallel connection replaced by series connection, and vice versa. The operation of an
AND-OR-INVERT gate can be explained on similar lines to the case of an OR-AND-INVERT gate.
Expansion of both AND-OR-INVERT and OR-AND-INVERT gates should be obvious, ensuring that
we do not have more than three devices in series.
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Figure 5.44 Two-wide, two-input OR-AND-INVERT gate.

5.5.1.9 Transmission Gate

The transmission gate, also called the bilateral switch, is exclusive to CMOS logic and does not have
a counterpart in the TTL and ECL families. It is essentially a single-pole, single-throw (SPST) switch.
The opening and closing operations can be controlled by externally applied logic levels. Figure 5.45(a)
shows the circuit symbol. If a logic ‘0’ at the control input corresponds to an open switch, then a
logic ‘1’ corresponds to a closed switch, and vice versa. The internal schematic of a transmission gate
is nothing but a parallel connection of an N-channel MOSFET and a P-channel MOSFET with the
control input applied to the gates, as shown in Fig. 5.45(b). Control inputs to the gate terminals of two
MOSFETs are the complement of each other. This is ensured by an inbuilt inverter.

When the control input is HIGH (logic ‘1), both devices are conducting and the switch is closed.
When the control input is LOW (logic ‘0’), both devices are open and therefore the switch is open. It
may be mentioned here that there is no discrimination between input and output terminals. Either of
the two can be treated as the input terminal for the purpose of applying input. This is made possible
by the symmetry of the two MOSFETs.

It may also be mentioned here that the ON-resistance of a conducting MOSFET depends upon
drain and source voltages. In the case of an N-channel MOSFET, if the source voltage is close to
Vbps there is an increase in ON-resistance, leading to an increased voltage drop across the switch.
A similar phenomenon is observed when the source voltage of a P-channel MOSFET is close to
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Figure 5.45 Transmission gate.

ground. Such behaviour causes no problem in static CMOS logic gates, where source terminals of
all N-channel MOSFETs are connected to ground and source terminals of all P-channel MOSFETSs
are connected to Vpp. This would cause a problem if a single N-channel or P-channel device were
used as a switch. Such a problem is overcome with the use of parallel connection of N-channel and
P-channel devices. Transmission gate devices are available in 4000-series as well as 74HC series
of CMOS logic.

5.5.1.10 CMOS with Open Drain Outputs

The outputs of conventional CMOS gates should never be shorted together, as illustrated by the case of
two inverters shorted at the output terminals (Fig. 5.46). If the input conditions are such that the output
of one inverter is HIGH and that of the other is LOW, the output circuit is then like a voltage divider
network with two identical resistors equal to the ON-resistance of a conducting MOSFET. The output is
then approximately equal to V},,/2, which lies in the indeterminate range and is therefore unacceptable.
Also, an arrangement like this draws excessive current and could lead to device damage.

This problem does not exist in CMOS gates with open drain outputs. Such a device is the counterpart
to gates with open collector outputs in the TTL family. The output stage of a CMOS gate with an open
drain output is a single N-channel MOSFET with an open drain terminal, and there is no P-channel
MOSFET. The open drain terminal needs to be connected to Vp, through an external pull-up resistor.
Figure 5.47 shows the internal schematic of a CMOS inverter with an open drain output. The pull-up
resistor shown in the circuit is external to the device.
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5.5.1.11 CMOS with Tristate Outputs

Like tristate TTL, CMOS devices are also available with tristate outputs. The operation of tristate
CMOS devices is similar to that of tristate TTL. That is, when the device is enabled it performs its
intended logic function, and when it is disabled its output goes to a high-impedance state. In the high-
impedance state, both N-channel and P-channel MOSFETS are driven to an OFF-state. Figure 5.48
shows the internal schematic of a tristate buffer with active LOW ENABLE input. The circuit shown
is that of one of the buffers in CMOS hex buffer type CD4503B. The outputs of tristate CMOS devices
can be connected together in a bus arrangement, like tristate TTL devices with the same condition that
only one device is enabled at a time.

5.5.1.12 Floating or Unused Inputs

Unused inputs of CMOS devices should never be left floating or unconnected. A floating input is highly
susceptible to picking up noise and accumulating static charge. This can often lead to simultaneous
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conduction of P-channel and N-channel devices on the chip, which causes increased power dissipation
and overheating. Unused inputs of CMOS gates should either be connected to ground or Vp, or shorted
to another input. The same is applicable to the inputs of all those gates that are not in use. For example,
we may be using only two of the four gates available on an IC having four gates. The inputs of the
remaining two gates should be tied to either ground or Vpp,.

5.5.1.13 Input Protection

Owing to the high input impedance of CMOS devices, they are highly susceptible to static charge
build-up. As a result of this, voltage developed across the input terminals could become sufficiently
high to cause dielectric breakdown of the gate oxide layer. In order to protect the devices from this
static charge build-up and its damaging consequences, the inputs of CMOS devices are protected by
using a suitable resistor—diode network, as shown in Fig. 5.49(a). The protection circuit shown is
typically used in metal-gate MOSFETs such as those used in 4000-series CMOS devices. Diode D,
limits the positive voltage surges to Vpp 4+ 0.7 V, while diode D; clamps the negative voltage surges
to —0.7 V. Resistor R, limits the static discharge current amplitude and thus prevents any damagingly
large voltage from being directly applied to the input terminals. Diode D, does not contribute to input
protection. It is a distributed P-N junction present owing to the diffusion process used for fabrication
of resistor R,. The protection diodes remain reverse biased for the normal input voltage range of 0 to
Vbp» and therefore do not affect normal operation.

Figure 5.49(b) shows a typical input protection circuit used for silicon-gate MOSFETs used in 74C,
74HC, etc., series CMOS devices. A distributed P-N junction is absent owing to R, being a polysilicon
resistor. Diodes D and D, do the same job as diodes D, and Dj; in the case of metal-gate devices.
Diode D, is usually fabricated in the form of a bipolar transistor with its collector and base terminals
shorted.

5.5.1.14 Latch-up Condition

This is an undesired condition that can occur in CMOS devices owing to the existence of parasitic
bipolar transistors (NPN and PNP) embedded in the substrate. While N-channel MOSFETS lead to the
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Figure 5.49 (a) Input protection circuit-metal-gate devices and (b) input protection circuit-silicon-gate devices.

presence of NPN transistors, P-channel MOSFETs are responsible for the existence of PNP transistors.
If we look into the arrangement of different semiconductor regions in the most basic CMOS building
block, that is, the inverter, we will find that these parasitic NPN and PNP transistors find themselves
interconnected in a back-to-back arrangement, with the collector of one transistor connected to the base
of the other, and vice versa. Two such pairs of transistors connected in series exist between Vp, and
ground in the case of an inverter, as shown in Fig. 5.50. If for some reason these parasitic elements are
triggered into conduction, on account of inherent positive feedback they get into a latch-up condition
and remain in conduction permanently. This can lead to the flow of large current and subsequently
to destruction of the device. A latch-up condition can be triggered by high voltage spikes and ringing
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present at the device inputs and outputs. The device can also be prone to latch-up if its maximum
ratings are exceeded. Modern CMOS devices use improved fabrication techniques so as to minimize
factors that can cause this undesired effect. The use of external clamping diodes at inputs and outputs,
proper termination of unused inputs and regulated power supply with a current-limiting feature also
helps in minimizing the chances of occurrence of the latch-up condition and in minimizing its effects
if it occurs.

5.5.2 CMOS Subfamilies

In the following paragraphs, we will briefly describe various subfamilies of CMOS logic, including
subfamilies of the 4000 series and those of TTL pin-compatible 74C series.

5.5.2.1 4000-series

The 4000A-series CMOS ICs, introduced by RCA, were the first to arrive on the scene from the
CMOS logic family. The 4000A CMOS subfamily is obsolete now and has been replaced by 4000B
and 4000UB subfamilies. We will therefore not discuss it in detail. The 4000B series is a high-voltage
version of the 4000A series, and also all the outputs in this series are buffered. The 4000UB series
is also a high-voltage version of the 4000A series, but here the outputs are not buffered. A buffered
CMOS device is one that has constant output impedance irrespective of the logic status of the inputs.
If we recall the internal schematics of the basic CMOS logic gates described in the previous pages, we
will see that, with the exception of the inverter, the output impedance of other gates depends upon the
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logic status of the inputs. This variation in output impedance occurs owing to the varying combination
of MOSFETs that conduct for a given input combination. All buffered devices are designated by
the suffix ‘B’ and referred to as the 4000B series. The 4000-series devices that meet 4000B series
specifications except for the V;; and Vi specifications and that the outputs are not buffered are called
unbuffered devices and are said to belong to the 4000UB series.

Figures 5.51 and 5.52 show a comparison between the internal schematics of a buffered two-input
NOR (Fig. 5.51) and an unbuffered two-input NOR (Fig. 5.52). A buffered gate has been implemented
by using inverters at the inputs to a two-input NAND whose output feeds another inverter. This
is the typical arrangement followed by various manufacturers, as the inverters at the input enhance
noise immunity. Another possible arrangement would be a two-input NOR whose output feeds two
series-connected inverters.

Variation in the output impedance of unbuffered gates is larger for gates with a larger number of
inputs. For example, unbuffered gates have an output impedance of 200-400 () in the case of two-input
gates, 133400 () for three-input gates and 100—400 €} for gates with four inputs. Buffered gates have
an output impedance of 400 (). Since they have the same maximum output impedance, their minimum
11, and Iy specifications are the same.

Characteristic features of 4000B and 4000UB CMOS devices are as follows: Vj; (buffered
devices)=3.5V (for Vpp =5V), 7.0 V (for Vpp= 10 V) and 11.0V (for V= 15V); V; (unbuffered
devices)=4.0V (for Vpp= 5V), 8.0 V (for Vp, =10V) and 12.5V (for V,p =15V); iy = LOpA;
Iy =1.0pA; Iog=02mA (for Vpp=5V), 0.5mA (for Vo =10V) and 1.4mA (for Vpp=15V);
I, =0.52mA (for Vpp =5V), 1.3mA (for Vpp= 10V) and 3.6 mA (for Vpp =15V); V. (buffered
devices)=1.5V (for Vp =5V), 3.0V (for Vyp= 10V) and 4.0V (for Vpp= 15V); V. (unbuffered
devices)=1.0V (for Vpp=5V), 2.0V (for Vyp= 10V) and 2.5V (for Vpp=15V); V=495V

Vbb
Vbp T A%
o) o
— —
— — —
S B E e
— —
A
— R
< +—Y= (A+B)
—
—
— |
- —d —
Vbp _I:
:T =
fe—
+—
— ’_‘
B
—
pe—
—

Figure 5.51 Buffered two-input NOR.
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Figure 5.52 Unbuffered two-input NOR.

(for Vpp=5V), 995V (for Vpp =10V) and 14.95V (for Vpp=15V); Vo, =0.05V; Vpp=3-
15V; propagation delay (buffered devices)=150ns (for Vpp=5V), 65ns (for Vpp,=10V) and
50ns (for Vpp=15V); propagation delay (unbuffered devices)=60ns (for Vpp,=5V), 30ns (for
Vpp =10V) and 25ns (for Vpp=15V); noise margin (buffered devices)=1.0V (for Vpp=5V),
2.0V (for Vpp=10V) and 2.5V (for Vpp= 15V); noise margin (unbuffered devices)=0.5V (for
Vop =5V), 1.0V (for Vyp, =10V) and 1.5V (for V,p= 15 V); output transition time (for Vpp, =5V and
C. =50pF)=100ns (buffered devices) and 50-100 ns (for unbuffered devices); power dissipation per
gate (for f=100kHz)=0.1 mW; speed—power product (for f=100kHz)=>5 pJ; maximum flip-flop
toggle rate = 12 MHz.

5.5.2.2 74C Series

The 74C CMOS subfamily offers pin-to-pin replacement of the 74-series TTL logic functions. For
instance, if 7400 is a quad two-input NAND in standard TTL, then 74C00 is a quad two-input NAND
with the same pin connections in CMOS. The characteristic parameters of the 74C series CMOS are
more or less the same as those of 4000-series devices.

5.5.2.3 74HC/HCT Series

The 74HC/HCT series is the high-speed CMOS version of the 74C series logic functions. This is
achieved using silicon-gate CMOS technology rather than the metal-gate CMOS technology used in
earlier 4000-series CMOS subfamilies. The 74HCT series is only a process variation of the 74HC series.
The 74HC/HCT series devices have an order of magnitude higher switching speed and also a much
higher output drive capability than the 74C series devices. This series also offers pin-to-pin replacement
of 74-series TTL logic functions. In addition, the 74HCT series devices have TTL-compatible inputs.
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5.5.2.4 74AC/ACT Series

The 74AC series is presently the fastest CMOS logic family. This logic family has the best
combination of high speed, low power consumption and high output drive capability. Again, 74ACT
is only a process variation of 74AC. In addition, 74ACT series devices have TTL-compatible
inputs.

The characteristic parameters of the 74C/74HC/74HCT/74AC/74ACT series CMOS are summarized
as follows (for Vpp=5V): Vi (min.)=3.5V (74C), 3.5V (74HC and 74AC) and 2.0V (74HCT and
74ACT); Vo (min.)=4.5V (74C) and 4.9V (74HC, 74HCT, 74AC and 74ACT); Vy (max.)=1.5V
(74C), 1.0V (74HC), 0.8 V (74HCT), 1.5V (74AC) and 0.8 V (74ACT); V. (max.) = 0.5V (74C) and
0.1V (74HC, 74HCT, 74AC and 74ACT); Iiy(max.)=1pA; I (max.)=1 uA; Ioy (max.)=0.4mA
(74C), 4.0 mA (74HC and 74HCT) and 24 mA (74AC and 74ACT); I, (max.) = 0.4 mA (74C), 4.0 mA
(74HC and 74HCT) and 24 mA (74AC and 74ACT); Vyy = 1.4V (74C, 74HC and 74AC) and 29V
(74HCT and 74ACT); Vi, = 1.4V (74C), 0.9V (74HC), 0.7 V (74HCT and 74ACT) and 1.4 V (74AC);
propagation delay =50ns (74C), 8ns (74HC and 74HCT) and 4.7ns (74AC and 74ACT); power
dissipation per gate (for f=100kHz)=0.1 mW (74C), 0.17 mW (74HC and 74HCT) and 0.08 mW
(74AC and 74ACT); speed—power product (for f = 100kHz) =5 pJ (74C), 1.4 pJ (74HC and 74HCT)
and 0.37 pJ (74AC and 74ACT); maximum flip-flop toggle rate = 12 MHz (74C), 40 MHz (74HC and
74HCT) and 100 MHz (74AC and 74ACT).

Example 5.7

Draw the internal schematic of: (a) a two-wide, four-input AND-OR-INVERT logic function in CMOS
and (b) a two-wide, four-input OR-AND-INVERT logic function in CMOS.

Solution
(a) Let us assume that A, B, C, D, E, F, G and H are the logic variables. The output Y of this logic
function can then be expressed by the equation

Y=ABCD+EFG.H) (5.5)

Following the principles explained earlier in the text, the internal schematic is shown in Fig. 5.53(a).
Series connection of N-channel MOSFETs on the left simulates ANDing of A, B, C and D,
whereas series connection of N-channel MOSFETSs on the right simulates ANDing of E, F, G
and H. Parallel connection of two branches produces ORing of the ANDed outputs. Since the
P-channel MOSFET arrangement is the complement of the N-channel MOSFET arrangement, the
final output is what is given by Equation (5.5).

(b) The output Y of this logic function can be expressed by the equation

Y=(A+B+C+D).(E+F+G+H) (5.6)

Figure 5.53(b) shows the internal schematic, which can be explained on similar lines.

Example 5.8
Determine the logic function performed by the CMOS digital circuit of Fig. 5.54.
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Figure 5.54 Example 5.8.

Solution

The given circuit can be divided into two stages. The first stage comprises two inverters that produce
A and B. The second stage is a two-wide, two-input AND-OR-INVERT circuit. Inputs to the first
AND are A and B, and inputs to the second AND are A and B. The final output is therefore given by
Y=(A.B+ A.B), which is an EX-NOR function.

5.6 BiCMOS Logic

The BiCMOS logic family integrates bipolar and CMOS devices on a single chip with the objective
of deriving the advantages individually present in bipolar and CMOS logic families. While bipolar
logic families such as TTL and ECL have the advantages of faster switching speed and larger output
drive current capability, CMOS logic scores over bipolar counterparts when it comes to lower power
dissipation, higher noise margin and larger packing density. BICMOS logic attempts to get the best
of both worlds. Two major categories of BICMOS logic devices have emerged over the years since
its introduction in 1985. In one type of device, moderate-speed bipolar circuits are combined with
high-performance CMOS circuits. Here, CMOS circuitry continues to provide low power dissipation
and larger packing density. Selective use of bipolar circuits gives improved performance. In the other
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category, the bipolar component is optimized to produce high-performance circuitry. In the following
paragraphs, we will briefly describe the basic BICMOS inverter and NAND circuits.

5.6.1 BiCMOS Inverter

Figure 5.55 shows the internal schematic of a basic BICMOS inverter. When the input is LOW,
N-channel MOSFETs Q, and Q5 are OFF. P-channel MOSFET Q; and N-channel MOSFET Q, are
ON. This leads transistors Qs and Q4 to be in the ON and OFF states respectively. Transistor Q¢ is
OFF because it does not get the required forward-biased base-emitter voltage owing to a conducting
Q,. Conducting Qs drives the output to a HIGH state, sourcing a large drive current to the load. The
HIGH-state output voltage is given by the equation

Vou = Vop — VBE(QS) (5.7)

When the input is driven to a HIGH state, 0, and Q5 turn ON. Initially, Q, is also ON and the output
discharges through Q; and Q,. When Q, turns OFF owing to its gate-source voltage falling below
the required threshold voltage, the output continues to discharge until the output voltage equals the
forward-biased base-emitter voltage drop of Qq in the active region. The LOW-state output voltage is
given by the equation

VoL = Vge(Qg in active mode) = 0.7V (5.8)

5.6.2 BiCMOS NAND

Figure 5.56 shows the internal schematic of a two-input NAND in BiCMOS logic. The operation of
this circuit can be explained on similar lines to the case of an inverter. Note that MOSFETs Q -0,
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Figure 5.55 BiCMOS inverter.
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Figure 5.56 BiCMOS two-input NAND.

constitute a two-input NAND in CMOS. Also note the similarity of this circuit to the one shown in
Fig. 5.55. The CMOS inverter stage of Fig. 5.55 is replaced by CMOS NAND in Fig. 5.56. N-channel
MOSFET Q; in Fig. 5.55 is replaced by a series connection of N-channel MOSFETs Qs and Qg to
accommodate the two inputs. The HIGH-state and LOW-state output voltage levels of this circuit are
given by the equations

Von = (Vpp —0.7) (5.9
Vo =0.7 (5.10)

5.7 NMOS and PMOS Logic

Logic families discussed so far are the ones that are commonly used for implementing discrete logic
functions such as logic gates, flip-flops, counters, multiplexers, demultiplexers, etc., in relatively less
complex digital ICs belonging to the small-scale integration (SSI) and medium-scale integration (MSI)
level of inner circuit complexities. The TTL, the CMOS and the ECL logic families are not suitable
for implementing digital ICs that have a large-scale integration (LSI) level of inner circuit complexity
and above. The competitors for LSI-class digital ICs are the PMOS, the NMOS and the integrated
injection logic (I>L). The first two are briefly discussed in this section, and the third is discussed in
Section 5.8.
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5.7.1 PMOS Logic
The PMOS logic family uses P-channel MOSFETS. Figure 5.57(a) shows an inverter circuit using
PMOS logic. MOSFET @, acts as an active load for the MOSFET switch Q,. For the circuit shown,

GND and —Vp, respectively represent a logic ‘1’ and a logic ‘0’ for a positive logic system. When
the input is grounded (i.e. logic ‘1”), O, remains in cut-off and —Vp, appears at the output through
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Figure 5.57 (a) PMOS logic inverter and (b) PMOS logic two-input NOR
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the conducting Q,. When the input is at —Vp, or near —Vpp, O, conducts and the output goes to
near-zero potential (i.e. logic ‘1”).

Figure 5.57(b) shows a PMOS logic based two-input NOR gate. In the logic arrangement of
Fig. 5.57(b), the output goes to logic ‘1’ state (i.e. ground potential) only when both Q, and Q, are
conducting. This is possible only when both the inputs are in logic ‘0’ state. For all other possible
input combinations, the output is in logic ‘0’ state, because, with either Q; or Q, nonconducting, the
output is nearly —Vp, through the conducting Q5. The circuit of Fig. 5.57(b) thus behaves like a
two-input NOR gate in positive logic. It may be mentioned here that the MOSFET being used as load
[Q, in Fig. 5.57(a) and Q; in Fig. 5.57(b)] is designed so as to have an ON-resistance that is much
greater than the total ON-resistance of the MOSFETs being used as switches [Q, in Fig. 5.57(a) and
0, and Q, in Fig. 5.57(b)].

5.7.2 NMOS Logic

The NMOS logic family uses N-channel MOSFETS. N-channel MOS devices require a smaller chip
area per transistor compared with P-channel devices, with the result that NMOS logic offers a higher
density. Also, owing to the greater mobility of the charge carriers in N-channel devices, the NMOS
logic family offers higher speed too. It is for this reason that most of the MOS memory devices and
microprocessors employ NMOS logic or some variation of it such as VMOS, DMOS and HMOS.
VMOS, DMOS and HMOS are only structural variations of NMOS, aimed at further reducing the
propagation delay. Figures 5.58(a), (b) and (c) respectively show an inverter, a two-input NOR and a
two-input NAND using NMOS logic. The logic circuits are self-explanatory.

5.8 Integrated Injection Logic (IL) Family

Integrated injection logic (I’L), also known as current injection logic, is well suited to implementing
LSI and VLSI digital functions and is a close competitor to the NMOS logic family. Figure 5.59
shows the basic I>L family building block, which is a multicollector bipolar transistor with a current
source driving its base. Transistors Q; and Q, constitute current sources. The magnitude of current
depends upon externally connected R and applied +V. This current is also known as the injection
current, which gives it its name of injection logic. If input A is HIGH, the injection current through
Q; flows through the base-emitter junction of Q;. Transistor Q, saturates and its collector drops to
a low voltage, typically 50-100 mV. When A is LOW, the injection current is swept away from the
base-emitter junction of Q,. Transistor Q; becomes open and the injection current through Q, saturates
Q,, with the result that the Q, collector potential equals the base-emitter saturation voltage of Q,,
typically 0.7 V.

The speed of I>L family devices is a function of the injection current I and improves with increase in
current, as a higher current allows a faster charging of capacitive loads present at bases of transistors.
The programmable injection current feature is made use of in the I>L family of digital ICs to choose
the desired speed depending upon intended application. The logic ‘0’ level is Vg(sat.) of the driving
transistor (Q, in the present case), and the logic ‘1’ level is Vyg(sat.) of the driven transistor (Q,
in the present case). Typically, the logic ‘0’ and logic ‘1’ levels are 0.1 and 0.7 V respectively. The
speed—power product of the I>L family is typically under 1pJ.

Multiple collectors of different transistors can be connected together to form wired logic. Figure 5.60
shows one such arrangement, depicting the generation of OR and NOR outputs of two logic variables
A and B.
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Figure 5.58 (a) NMOS logic circuit inverter, (b) NMOS logic two-input NOR and (c) NMOS logic two-input

NAND.
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Figure 5.60 Wired logic in I’L.

5.9 Comparison of Different Logic Families

(A+B)

Table 5.2 gives a comparison of various performance characteristics of important logic families for
quick reference. The data given in the case of CMOS families are for V,, =5 V. In the case of ECL
families, the data are for Vgz= —5.2 V. The values of various parameters given in the table should be
used only for rough comparison. It is recommended that designers refer to the relevant data books for
detailed information on these parameters along with the conditions under which those values are valid.

5.10 Guidelines to Using TTL Devices

The following guidelines should be adhered to while using TTL family devices:

1. Replacing a TTL IC of one TTL subfamily with another belonging to another subfamily (the
type numbers remaining the same) should not be done blindly. The designer should ensure that
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Table 5.2 Comparison of various performance characteristics of important logic families.

Logic family Supply voltage  Typical Worst-case Speed—power ~ Maximum

V) propagation  noise product (pJ) flip-flop

delay (ns) margin (V) toggle

frequency

(MHz)

TTL Standard 45t05.5 17 0.4 100 35
L 45t05.5 60 0.3 33 3

H 45t05.5 10 0.4 132 50

S 45t05.5 5 0.3 57 125

LS 451t05.5 15 0.3 18 45

ALS 45t05.5 10 0.3 4.8 70

AS 45t05.5 4.5 0.3 13.6 200

F 45t05.5 6 0.3 10 125

CMOS 4000 3to 15 150 1.0 5 12
74C 3to 13 50 1.4 5 12

74HC 2 to -6 8 0.9 1.4 40

74HCT 45t05.5 8 1.4 1.4 40

T4AC 2t06 4.7 0.7 0.37 100

TAACT 45t05.5 4.7 0.72.9 0.37 100

ECL MECL III —5.1t0 5.3 1 0.2 60 500
MECL 10K —4.68 to -5.72 2.5 0.2 50 200

MECL 10H  —4.94 to -5.46 1 0.15 25 250
ECLINPS™ 42 (0 -5.5 0.5 0.15 10 1000

ECLINPS —4.2t0-5.5 0.2 0.15 10 2800

LITE™

the replacement device is compatible with the existing circuit with respect to parameters such
as output drive capability, input loading, speed and so on. As an illustration, let us assume that
we are using 74S00 (quad two-input NAND), the output of which drives 20 different NAND
inputs implemented using 74S00, as shown in Fig. 5.61. This circuit works well as the Schottky
TTL family has a fan-out of 20 with an output HIGH drive capability of 1 mA and an input
HIGH current requirement of 50 wA. If we try replacing the 74S00 driver with a 74LS00 driver,
the circuit fails to work as 74LS00 NAND has an output HIGH drive capability of 0.4 mA
only. It cannot feed 20 NAND input loads implemented using 74S00. By doing so, we will be
exceeding the HIGH-state fan-out capability of the device. Also, 74LS00 has an output current-
sinking specification of 8 mA, whereas the input current-sinking requirement of 74S00 is 2 mA.
This implies that 74L.S00 could reliably feed only four inputs of 74S00 in the LOW state. By feeding
as many as 20 inputs, we will be exceeding the LOW-state fan-out capability of 74L.S00 by a large
margin.

2. None of the inputs and outputs of TTL ICs should be driven by more than 0.5 V below ground
reference.

3. Proper grounding techniques should be used while designing the PCB layout. If the grounding is
improper, the ground loop currents give rise to voltage drops, with the result that different ICs will
not be at the same reference. This effectively reduces the noise immunity.



178 Digital Electronics

) ] ) 74500
74S00

74500

74500
20

Figure 5.61 Output of one TTL subfamily driving another.

4. The power supply rail must always be properly decoupled with appropriate capacitors so that there
is no drop in V( rail as the inputs and outputs make logic transitions. Usually, two capacitors
are used at the Vi point of each IC. A 0.1 wF ceramic disc should be used to take care of
high-frequency noise, while typically a 10-20 wF electrolytic is good enough to eliminate any low-
frequency variations resulting from variations in /. current drawn from V., depending upon logic
states of inputs and outputs. To be effective, the decoupling capacitors should be wired as close as
feasible to the V- pin of the IC.

5. The unused inputs should not be left floating. All unused inputs should be tied to logic HIGH in
the case of AND and NAND gates, and to ground in the case of OR and NOR gates. An alternative
is to connect the unused input to one of the used inputs.

6. While using open collector devices, resistive pull-up should be used. The value of pull-up resistance
should be determined from the following equations:

Ry = [Vee(max.) — Vo, 1/[IoL — N, (LOW) x 1.6] (5.11)

Ry(max.) = [Vee(min.) — Voul/[N, X Igy + N,(HIGH) x 40] (5.12)

where Ry is the external pull-up resistor; Ry(max.) is the maximum value of the external pull-up
resistor; N, is the number of WIRED-OR outputs; N, is the number of unit input loads being
driven; Iy is the output HIGH leakage current (in mA); Iy is the LOW-level output current of
the driving element (in mA); V is the LOW-level output voltage; and Vy is the HIGH-level
output voltage. One TTL unit load in the HIGH state =40 mA, and one TTL unit load in the
LOW-state = 1.6 mA.
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5.11 Guidelines to Handling and Using CMOS Devices
The following guidelines should be adhered to while using CMOS family devices:

1. Proper handling of CMOS ICs before they are used and also after they have been mounted on the PC
boards is very important as these ICs are highly prone to damage by electrostatic discharge. Although
all CMOS ICs have inbuilt protection networks to guard them against electrostatic discharge,
precautions should be taken to avoid such an eventuality. While handling unmounted chips, potential
differences should be avoided. It is good practice to cover the chips with a conductive foil. Once
the chips have been mounted on the PC board, it is good practice again to put conductive clips or
conductive tape on the PC board terminals. Remember that PC board is nothing but an extension
of the leads of the ICs mounted on it unless it is integrated with the overall system and proper
voltages are present.

2. All unused inputs must always be connected to either Vgg or V5, depending upon the logic involved.
A floating input can result in a faulty logic operation. In the case of high-current device types
such as buffers, it can also lead to the maximum power dissipation of the chip being exceeded,
thus causing device damage. A resistor (typically 220k to 1 MQ) should preferably be connected
between input and the Vg or Vi, if there is a possibility of device terminals becoming temporarily
unconnected or open.

3. The recommended operating supply voltage ranges are 3—-12V for A-series (3—15V being the
maximum rating) and 3-15V for B-series and UB-series (3—18 V being the maximum). For CMOS
IC application circuits that are operated in a linear mode over a portion of the voltage range, such
as RC or crystal oscillators, a minimum Vp, of 4V is recommended.

4. Input signals should be maintained within the power supply voltage range Vgg < V, < Vpp (=0.5V
<V, < Vpp + 0.5V being the absolute maximum). If the input signal exceeds the recommended
input signal range, the input current should be limited to ££100 mA.

5. CMOS ICs like active pull-up TTL ICs cannot be connected in WIRE-OR configuration. Paralleling
of inputs and outputs of gates is also recommended for ICs in the same package only.

6. The majority of CMOS clocked devices have maximum rise and fall time ratings of normally 5-15 ws.
The device may not function properly with larger rise and fall times. The restriction, however, does not
apply to those CMOS ICs that have inbuilt Schmitt trigger shaping in the clock circuit.

5.12 Interfacing with Different Logic Families

CMOS and TTL are the two most widely used logic families. Although ICs belonging to the same
logic family have no special interface requirements, that is, the output of one can directly feed the input
of the other, the same is not true if we have to interconnect digital ICs belonging to different logic
families. Incompatibility of ICs belonging to different families mainly arises from different voltage
levels and current requirements associated with LOW and HIGH logic states at the inputs and outputs.
In this section, we will discuss simple interface techniques that can be used for CMOS-to-TTL and
TTL-to-CMOS interconnections. Interface guidelines for CMOS-ECL, ECL-CMOS, TTL-ECL and
ECL-TTL are also given.

5.12.1 CMOS-to-TTL Interface

The first possible type of CMOS-to-TTL interface is the one where both ICs are operated from a
common supply. We have read in earlier sections that the TTL family has a recommended supply
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voltage of 5V, whereas the CMOS family devices can operate over a wide supply voltage range of
3-18 V. In the present case, both ICs would operate from 5 V. As far as the voltage levels in the two
logic states are concerned, the two have become compatible. The CMOS output has a Vq(min.) of
495V (for Vo =5V) and a V (max.) of 0.05V, which is compatible with V;(min.) and V}; (max.)
requirements of approximately 2 and 0.8 V respectively for TTL family devices. In fact, in a CMOS-to-
TTL interface, with the two devices operating on the same V., voltage level compatibility is always
there. It is the current level compatibility that needs attention. That is, in the LOW state, the output
current-sinking capability of the CMOS IC in question must at least equal the input current-sinking
requirement of the TTL IC being driven. Similarly, in the HIGH state, the HIGH output current drive
capability of the CMOS IC must equal or exceed the HIGH-level input current requirement of TTL
IC. For a proper interface, both the above conditions must be met. As a rule of thumb, a CMOS IC
belonging to the 4000B family (the most widely used CMOS family) can feed one LS TTL or two
low-power TTL unit loads. When a CMOS IC needs to drive a standard TTL or a Schottky TTL
device, a CMOS buffer (4049B or 4050B) is used. 4049B and 4050B are hex buffers of inverting
and noninverting types respectively, with each buffer capable of driving two standard TTL loads.
Figure 5.62(a) shows a CMOS-to-TTL interface with both devices operating from 5V supply and the
CMOS IC driving a low-power TTL or a low-power Schottky TTL device. Figure 5.62(b) shows a
CMOS-to-TTL interface where the TTL device in use is either a standard TTL or a Schottky TTL.
The CMOS-to-TTL interface when the two are operating on different power supply voltages can be
achieved in several ways. One such scheme is shown in Fig. 5.62(c). In this case, there is both a
voltage level as well as a current level compatibility problem.

5.12.2 TTL-to-CMOS Interface

In the TTL-to-CMOS interface, current compatibility is always there. The voltage level compatibility in
the two states is a problem. Vg (min.) of TTL devices is too low as regards the Vjy (min.) requirement
of CMOS devices. When the two devices are operating on the same power supply voltage, thatis, 5V,
a pull-up resistor of 10 kQ achieves compatibility [Fig. 5.63(a)]. The pull-up resistor causes the TTL
output to rise to about 5V when HIGH. When the two are operating on different power supplies, one
of the simplest interface techniques is to use a transistor (as a switch) in-between the two, as shown in
Fig. 5.63(b). Another technique is to use an open collector type TTL buffer [Fig. 5.63(c)].

5.12.3 TTL-to-ECL and ECL-to-TTL Interfaces

TTL-to-ECL and ECL-to-TTL interface connections are not as straightforward as TTL-to-CMOS and
CMOS-to-TTL connections owing to widely different power supply requirements for the two types and
also because ECL devices have differential inputs and differential outputs. Nevertheless, special chips
are available that can take care of all these aspects. These are known as level translators. MC10124
is one such quad TTL-to-ECL level translator. That is, there are four independent single-input and
complementary-output translators inside the chip. Figure 5.64(a) shows a TTL-to-ECL interface using
MC10124.

MC10125 is a level translator for ECL-to-TTL interfaces; it has differential inputs and a single-ended
output. Figure 5.64(b) shows a typical interface schematic using MC10125. Note that in the interface
schematics of Figs 5.64(a) and (b), only one of the available four translators has been used.
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Figure 5.64 TTL-to-ECL and ECL-to-TTL interfaces.

5.12.4 CMOS-to-ECL and ECL-to-CMOS Interfaces

CMOS-to-ECL and ECL-to-CMOS interfaces are similar to the TTL-to-ECL and ECL-to-TTL
interfaces described. Again, dedicated level translators are available. MC10352, for instance, is a quad
CMOS-to-ECL level translator chip. A CMOS-to-ECL interface is also possible by having firstly
a CMOS-to-TTL interface followed by a TTL-to-ECL interface using MC10124 or a similar chip.
Figure 5.65(a) shows the arrangement. Similarly, an ECL-to-CMOS interface is possible by having
an ECL-to-TTL interface using MC10125 or a similar chip followed by a TTL-to-CMOS interface.
Figure 5.65(b) shows a typical interface schematic.

5.13 Classification of Digital ICs

We are all familiar with terms like SSI, MSI, LSI, VLSI and ULSI being used with reference to digital
integrated circuits. These terms refer to groups in which digital ICs are divided on the basis of the
complexity of the circuitry integrated on the chip. It is common practice to consider the complexity of
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Figure 5.65 CMOS-to-ECL and ECL-to-CMOS interfaces.

a logic gate as a reference for defining the complexities of the other digital IC functions. A broadly
accepted definition of different groups of ICs mentioned above is as follows.

A small-scale integration (SSI) chip is one that contains circuitry equivalent in complexity to less
than or equal to 10 logic gates. This category of digital ICs includes basic logic gates and flip-flops.
A medium-scale integration (MSI) chip is one that contains circuitry equivalent in complexity to
10-100 gates. This category of digital ICs includes multiplexers, demultiplexers, counters, registers,
small memories, arithmetic circuits and others. A large-scale integration (LSI) chip is one that contains
circuitry equivalent in complexity to 100-10 000 gates. A very-large-scale integration (VLSI) chip
contains circuitry equivalent in complexity to 10 000-100 000 gates. Large-sized memories and
microprocessors come in the category of LSI and VLSI chips. An ultralarge-scale integration (ULSI)
chip contains circuitry equivalent in complexity to more than 100 000 gates. Very large memories,
larger microprocessors and larger single-chip computers come into this category.

5.14 Application-Relevant Information

Table 5.3 lists the commonly used type numbers of level translator ICs, along with the functional
description. The pin connection diagrams and functional tables for TTL-to-ECL level translator IC type
MC10124 and ECL-to-TTL level translator IC type MC10125 are given in the companion website.

Table 5.3 Functional index of level translators

Type number Function

10124 Quad TTL-to-ECL translator
10125 Quad ECL-to-TTL translator
10177 Triple ECL-to-CMOS translator

10352 Quad CMOS-to-ECL translator
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Review Questions

1. What do you understand by the term logic family? What is the significance of the logic family
with reference to digital integrated circuits (ICs)?

2. Briefly describe propagation delay, power dissipation, speed—power product, fan-out and noise
margin parameters, with particular reference to their significance as regards the suitability of the
logic family for a given application.

3. Compare the standard TTL, low-power Schottky TTL and Schottky TTL on the basis of speed,
power dissipation and fan-out capability.

4. What is the totem-pole output stage? What are its advantages?

5. What are the basic differences between buffered and unbuffered CMOS devices? How is a buffered
NAND usually implemented in 4000B-series CMOS logic?

6. With the help of relevant circuit schematics, briefly describe the operation of CMOS NAND and
NOR gates.

7. Compare standard TTL and 4000B CMOS families on the basis of speed and power dissipation
parameters.

8. Why is ECL called nonsaturating logic? What is the main advantage accruing from this? With the
help of a relevant circuit schematic, briefly describe the operation of ECL OR/NOR logic.

9. What is the main criterion for the suitability of a logic family for use in fabricating LSI and VLSI
logic functions? Name any two popular candidates and compare their features.

10. Why is it not recommended to leave unused logic inputs floating? What should we do to such
inputs in the case of TTL and CMOS logic gates?

11. What special precautions should we observe in handling and using CMOS ICs?

12. With the help of suitable schematics, briefly describe how you would achieve TTL-to-CMOS and
CMOS-to-TTL interfaces?

13. What is Bi-CMOS logic? What are its advantages?

14. What in a logic family decides the fan-out, speed of operation, noise immunity and power
dissipation?

Problems

1.

The data sheet of a quad two-input AND gate (type 74S08) specifies the propagation delay and

power supply parameters as V- = 5.0V (typical), Iy (for all four gates) = 18 mA, I, (for all four

gates) =32mA, f,; y= 4.5ns and #,5; =5.0ns. Determine the speed—power product specification.
148.4pJ

. How many inputs of a low-power Schottky TTL NAND can be reliably driven from a single output

of a Schottky TTL NAND, given the following relevant specifications for the devices of two TTL
subfamilies:
Schottky TTL: /oy =1.0mA; Iiy= 0.05mA; I5; =20.0mA; I;; =2.0mA
Low-power Schottky TTL: Iy =0.4mA; Ijy= 0.02mA; I5; =8.0mA; I;; =0.4mA
50

. Refer to the logic diagram in Fig. 5.66. Determine the current being sourced by the NAND gate

when its output is HIGH and also the current sunk by it when its output is LOW, given that
Iy (AND gate) =0.02mA, I;; (AND gate)=0.4 mA, I;; (OR gate)=0.04 mA, I;; (OR gate) =
1.6 mA, I,5(NAND gate) = 1.0 mA, I, (NAND gate) =20.0 mA.

HIGH-state current=0.08 mA; LOW-state current=2.0mA
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Figure 5.67 Problem 5.
4. Write the logic expression for the CMOS circuit of Fig. 5.67.
Y =(A.B+A.B)

5. Refer to the data given for 4000B-series CMOS, 74LS-TTL and 74HCT CMOS logic. Determine:
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(a) the number of 74LS-TTL inputs that can be reliably driven from a single 4000B output;
(b) the number of 74LS-TTL inputs that can be reliably driven from a single 74HCT output.
4000B: Ioy =0.4mA; Iy =1.0pA; I5,= 04 pA; I;; =1.0pA
T4HCT: Iop= 4.0mA; Ijy =1.0pA; Iop=4.0pA; Iy =1.0pA
74LS-TTL: Ioy= 0.4mA; Iy =20.0pA; Iop= 8.0pA; I} = 0.4mA
(a) 1; (b) 10
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Boolean Algebra and
Simplification Techniques

Boolean algebra is mathematics of logic. It is one of the most basic tools available to the logic designer
and thus can be effectively used for simplification of complex logic expressions. Other useful and
widely used techniques based on Boolean theorems include the use of Karnaugh maps in what is known
as the mapping method of logic simplification and the tabular method given by Quine-McCluskey. In
this chapter, we will have a closer look at the different postulates and theorems of Boolean algebra
and their applications in minimizing Boolean expressions. We will also discuss at length the mapping
and tabular methods of minimizing fairly complex and large logic expressions.

6.1 Introduction to Boolean Algebra

Boolean algebra, quite interestingly, is simpler than ordinary algebra. It is also composed of a set of
symbols and a set of rules to manipulate these symbols. However, this is the only similarity between
the two. The differences are many. These include the following:

1. In ordinary algebra, the letter symbols can take on any number of values including infinity. In
Boolean algebra, they can take on either of two values, that is, 0 and 1.

2. The values assigned to a variable have a numerical significance in ordinary algebra, whereas in its
Boolean counterpart they have a logical significance.

3. While °.” and ‘+’ are respectively the signs of multiplication and addition in ordinary algebra, in
Boolean algebra ‘.” means an AND operation and ‘+’ means an OR operation. For instance, A+ B
in ordinary algebra is read as A plus B, while the same in Boolean algebra is read as A OR B. Basic
logic operations such as AND, OR and NOT have already been discussed at length in Chapter 4.

Digital Electronics: Principles, Devices and Applications ~Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5
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4. More specifically, Boolean algebra captures the essential properties of both logic operations such
as AND, OR and NOT and set operations such as intersection, union and complement. As an
illustration, the logical assertion that both a statement and its negation cannot be true has a
counterpart in set theory, which says that the intersection of a subset and its complement is a null
(or empty) set.

5. Boolean algebra may also be defined to be a set A supplied with two binary operations of logical
AND (A), logical OR (V), a unary operation of logical NOT (—) and two elements, namely
logical FALSE (0) and logical TRUE (1). This set is such that, for all elements of this set,
the postulates or axioms relating to the associative, commutative, distributive, absorption and
complementation properties of these elements hold good. These postulates are described in the
following pages.

6.1.1 Variables, Literals and Terms in Boolean Expressions

Variables are the different symbols in a Boolean expression. They may take on the value ‘0’ or ‘1.
For instance, in expression (6.1), A, B and C are the three variables. In expression (6.2), P, Q, R and
S are the variables:

A+AB+ACH+AB.C (6.1)

(P+0).(R+S3).(P+0Q+R) (6.2)

The complement of a variable is not considered as a separate variable. Each occurrence of a variable
or its complement is called a literal. In expressions (6.1) and (6.2) there are eight and seven literals

respectively. A term is the expression formed by literals and operations at one level. Expression (6.1)
has five terms including four AND terms and the OR term that combines the first-level AND terms.

6.1.2 Equivalent and Complement of Boolean Expressions

Two given Boolean expressions are said to be equivalent if one of them equals ‘1’ only when the
other equals ‘1’ and also one equals ‘0O’ only when the other equals ‘0’. They are said to be the
complement of each other if one expression equals ‘1’ only when the other equals ‘0’, and vice versa.
The complement of a given Boolean expression is obtained by complementing each literal, changing
all *’ to ‘4’ and all ‘4’ to ‘., all Os to 1s and all 1s to Os. The examples below give some Boolean
expressions and their complements:

Given Boolean expression

AB+AB (6.3)
Corresponding complement

(A+B).(A+B) (6.4)
Given Boolean expression

(A+B).(A+B) (6.5)
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Corresponding complement
AB+AB (6.6)

When ORed with its complement the Boolean expression yields a ‘1’, and when ANDed with its
complement it yields a ‘0’. The °.” sign is usually omitted in writing Boolean expressions and is
implied merely by writing the literals in juxtaposition. For instance, A.B would normally be written
as AB.

6.1.3 Dual of a Boolean Expression

il

The dual of a Boolean expression is obtained by replacing all ‘.’ operations with ‘+’ operations, all
‘4’ operations with ‘. operations, all Os with 1s and all 1s with Os and leaving all literals unchanged.
The examples below give some Boolean expressions and the corresponding dual expressions:

Given Boolean expression

AB+AB 6.7)
Corresponding dual
(A+B).(A+B) (6.8)
Given Boolean expression
(A+B).(A+B) (6.9)
Corresponding dual
AB+AB (6.10)

Duals of Boolean expressions are mainly of interest in the study of Boolean postulates and theorems.
Otherwise, there is no general relationship between the values of dual expressions. That is, both of
them may equal ‘1’ or ‘0’. One may even equal ‘1’ while the other equals ‘0’. The fact that the dual
of a given logic equation is also a valid logic equation leads to many more useful laws of Boolean
algebra. The principle of duality has been put to ample use during the discussion on postulates and
theorems of Boolean algebra. The postulates and theorems, to be discussed in the paragraphs to follow,
have been presented in pairs, with one being the dual of the other.

Example 6.1
Find (a) the dual of A.B+ B.C + C.D and (b) the complement of [(A.B+C).D+E|.F.

Solution B -
(a) The dual of A.B+B.C -f;C.éis given by (A +B).(B +£).(C+5).7 B
(b) The complement of [(A.B+ C).D+ E].F is given by [(A+B).C+ D].E+F.
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Example 6.2
Simplify (A.B+ C.D).[(A+B).(C+D)).

Solution

e Let (A.B4+C.D)=X.

o Then the given expression reduces to X.X.

o Therefore, (A.B+C.D).[(A+ B).(C+D)] = 0.

6.2 Postulates of Boolean Algebra

The following are the important postulates of Boolean algebra:

1. .1=1,0+0=0.

2.10=01=0,0+1=14+0=1.

3.00=0,1+1=1.

4. 1=0and0=1.

Many theorems of Boolean algebra are based on these postulates, which can be used to simplify
Boolean expressions. These theorems are discussed in the next section.

6.3 Theorems of Boolean Algebra

The theorems of Boolean algebra can be used to simplify many a complex Boolean expression and
also to transform the given expression into a more useful and meaningful equivalent expression. The
theorems are presented as pairs, with the two theorems in a given pair being the dual of each other.
These theorems can be very easily verified by the method of ‘perfect induction’. According to this
method, the validity of the expression is tested for all possible combinations of values of the variables
involved. Also, since the validity of the theorem is based on its being true for all possible combinations
of values of variables, there is no reason why a variable cannot be replaced with its complement, or
vice versa, without disturbing the validity. Another important point is that, if a given expression is
valid, its dual will also be valid. Therefore, in all the discussion to follow in this section, only one of
the theorems in a given pair will be illustrated with a proof. Proof of the other being its dual is implied.

6.3.1 Theorem 1 (Operations with ‘0’ and ‘I’)
(0)0.X=0 and (b)1+X=1 (6.11)

where X is not necessarily a single variable — it could be a term or even a large expression.
Theorem 1(a) can be proved by substituting all possible values of X, that is, 0 and 1, into the given
expression and checking whether the LHS equals the RHS:

e For X =0,LHS =0.X = 0.0 =0 = RHS.
e For X =1, LHS = 0.1 = 0 = RHS.

Thus, 0.X =0 irrespective of the value of X, and hence the proof.

Theorem 1(b) can be proved in a similar manner. In general, according to theorem 1, 0.(Boolean
expression) =0 and 1+ (Boolean expression) = 1. For example, 0.(A.B+B.C+ C.D) = 0 and 1+
(A.B+B.C+C.D) =1, where A, B and C are Boolean variables.
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6.3.2 Theorem 2 (Operations with ‘0’ and ‘I’)
(a1.X=X and (b)0+X=X (6.12)

where X could be a variable, a term or even a large expression. According to this theorem, ANDing a
Boolean expression to ‘1’ or ORing ‘0’ to it makes no difference to the expression:

e For X =0, LHS = 1.0 = 0 = RHS.
e For X =1,LHS = 1.1 =1 = RHS.

Also, 1.(Boolean expression) = Boolean expression and 0 + (Boolean expression) = Boolean expression.
For example,

1. (A+B.C+C.D)=0+ (A+B.C+C.D) = A+B.C+C.D.

6.3.3 Theorem 3 (Idempotent or Identity Laws)

(a) X.X.X..... X=X and O)X+X+X+---+X=X (6.13)
Theorems 3(a) and (b) are known by the name of idempotent laws, also known as identity laws.
Theorem 3(a) is a direct outcome of an AND gate operation, whereas theorem 3(b) represents an OR
gate operation when all the inputs of the gate have been tied together. The scope of idempotent laws

can be expanded further by considering X to be a term or an expression. For example, let us apply
idempotent laws to simplify the following Boolean expression:

(A.B.B+C.C).(ABB+AB+C.C)=(AB+C).(A.B+A.B+C)
=(A.B+C).(AB+C)=AB+C

6.3.4 Theorem 4 (Complementation Law)
() XX=0 and (b)X+X=1 (6.14)

According to this theorem, in general, any Boolean expression when ANDed to its complement yields
a ‘0’ and when ORed to its complement yields a ‘1°, irrespective of the complexity of the expression:

e For X =0, X = 1. Therefore, X.X =0.1 =0.
e For X =1, X = 0. Therefore, X.X = 1.0 =0.

Hence, theorem 4(a) is proved. Since theorem 4(b) is the dual of theorem 4(a), its proof is implied.
The example below further illustrates the application of complementation laws:

(A+B.C)(A+B.C)=0 and (A+B.C)+(A+B.C)=1
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Example 6.3
Simplify the following:

[1+L.M~+LM+LM][(L+M).(L.M)+L.M.(L+M)).

Solution

e We know that (1 + Boolean expression) = 1.

e Also, (L.M) is the complement of (L+ M) and (L.M) is the complement of (L + M).
e Therefore, the given expression reduces to 1.(0 + 0) = 1.0 = 0.

6.3.5 Theorem 5 (Commutative Laws)
(a)X+Y=Y+X and (b)X.Y=YX (6.15)
Theorem 5(a) implies that the order in which variables are added or ORed is immaterial. That is, the

result of A OR B is the same as that of B OR A. Theorem 5(b) implies that the order in which variables
are ANDed is also immaterial. The result of A AND B is same as that of B AND A.

6.3.6 Theorem 6 (Associative Laws)
@QX+Y+2)=Y+Z+X)=Z+(X+Y)

and
b) X.(Y.2)=Y.(ZX)=Z.(XY) (6.16)

Theorem 6(a) says that, when three variables are being ORed, it is immaterial whether we do this by
ORing the result of the first and second variables with the third variable or by ORing the first variable
with the result of ORing of the second and third variables or even by ORing the second variable with
the result of ORing of the first and third variables. According to theorem 6(b), when three variables
are being ANDed, it is immaterial whether you do this by ANDing the result of ANDing of the first
and second variables with the third variable or by ANDing the result of ANDing of the second and
third variables with the first variable or even by ANDing the result of ANDing of the third and first
variables with the second variable.
For example,

AB+(C.D+EF)=CD+(AB+EF)=E.F+(A.B+C.D)
Also

A.B.(C.D.EF)=C.D.(A.B.E.F)=E.F.(A.B.C.D)

Theorems 6(a) and (b) are further illustrated by the logic diagrams in Figs 6.1(a) and (b).



Boolean Algebra and Simplification Techniques

195

Y% —s X:D—D
X+(Y+2) Z+(X+Y)
Z Y

X 4

)

X.(Y.2)
—

Figure 6.1 Associative laws.

6.3.7 Theorem 7 (Distributive Laws)

() X.(Y+Z)=X.Y+XZ and (b)X+Y.Z=(X+Y).(X+2) (6.17)

Theorem 7(b) is the dual of theorem 7(a). The distribution law implies that a Boolean expression can
always be expanded term by term. Also, in the case of the expression being the sum of two or more
than two terms having a common variable, the common variable can be taken as common as in the case
of ordinary algebra. Table 6.1 gives the proof of theorem 7(a) using the method of perfect induction.
Theorem 7(b) is the dual of theorem 7(a) and therefore its proof is implied. Theorems 7(a) and (b) are
further illustrated by the logic diagrams in Figs 6.2(a) and (b). As an illustration, theorem 7(a) can be

used to simplify A.B+A.B+ A.B+ A.B as follows:

AB+AB+AB+AB=A.(B+B)+A.(B+B)=Al+Al=A+A=1

Table 6.1 Proof of distributive law.

X Y z Y427 XY XZ X(Y+Z) XY+XZ
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1
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Figure 6.2 Distributive laws.

Theorem 7(b) can be used to simplify (A -+ B).(A+ B).(A+ B).(A+ B) as follows:

(A+B).(A+B).(A+B).(A+B)=(A+B.B).(A+B.B) = (A+0).(A+0) =A.A=0

6.3.8 Theorem 8
(@ XY+XY=X and (b)(X+DV.(X+Y)=X

This is a special case of theorem 7 as
XY+XY=X(Y+Y)=X1=X and (X+1.(X+Y)=X+VY=X+0=X

This theorem, however, has another very interesting interpretation. Referring to theorem 8(a), there
are two two-variable terms in the LHS expression. One of the variables, Y, is present in all possible
combinations in this expression, while the other variable, X, is a common factor. The expression
then reduces to this common factor. This interpretation can be usefully employed to simplify many a
complex Boolean expression.

As an illustration, let us consider the following Boolean expression:

AB.CD+ABC.D+ABCD+AB.CD+ABCD+ABC.D+A.B.CD+A.B.C.D
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In the above expression, variables B, C and D are present in all eight possible combinations, and
variable A is the common factor in all eight product terms. With the application of theorem 8(a),
this expression reduces to A. Similarly, with the application of theorem 8(b), (A+B+C).(A+ B+
C).(A+B+C).(A+B+C) also reduces to A as the variables B and C are present in all four possible
combinations in sum terms and variable A is the common factor in all the terms.

6.3.9 Theorem 9
() (X+Y).Y=XY and (b) XY+Y=X+7Y (6.18)
X+Y)Y=XY+Y.Y=XY

Theorem 9(b) is the dual of theorem 9(a) and hence stands proved.

6.3.10 Theorem 10 (Absorption Law or Redundancy Law)

(A X+XY=X and (b) X.(X+V)=X (6.19)
The proof of absorption law is straightforward:
X+XY=X(14+=X1=X

Theorem 10(b) is the dual of theorem 10(a) and hence stands proved.
The crux of this simplification theorem is that, if a smaller term appears in a larger term, then the
larger term is redundant. The following examples further illustrate the underlying concept:

A+AB+ABC+ABC+CBA=A
and

(A+B+C).(A+B).(C+B+A)=A+B

6.3.11 Theorem 11

@) ZX+ZXY=ZX+ZY

and

®)(Z+X).(Z+X+N=(Z+X).(Z+Y) (6.20)

Table 6.2 gives the proof of theorem 11(a) using the method of perfect induction. Theorem 11(b) is the
dual of theorem 11(a) and hence stands proved. A useful interpretation of this theorem is that, when
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Table 6.2 Proof of theorem 11(a).

X Y Z zX zY zZX ZXY ZX+ZXY ZX+ZY

—— = OO OO
_—O O == OO
—_— o= OO =0
— o, O 00O oo
— o o0 —~Oo o0
S oo o ~,OoO~—Oo
S ooco—~0o0oO0
_—0 = O =0 o0
—_— o=, O ~=O0O o0

a smaller term appears in a larger term except for one of the variables appearing as a complement in
the larger term, the complemented variable is redundant.
As an example, (A + B).(A+B+ C).(A+ B+ D) can be simplified as follows:
(A+B).(A+B+C).(A+B+D)
=(A+B).(B+C).(A+B+D)=(A+B).(B+C).(B+D)

6.3.12 Theorem 12 (Consensus Theorem)
(@) XY+XZ+YZ=XY+X.Z

and

®)X+N.X+2).(Y+Z2)=(X+V.(X+2) (6.21)

Table 6.3 shows the proof of theorem 12(a) using the method of perfect induction. Theorem 12(b) is
the dual of theorem 12(a) and hence stands proved.

A useful interpretation of theorem 12 is as follows. If in a given Boolean expression we can identify
two terms with one having a variable and the other having its complement, then the term that is formed
by the product of the remaining variables in the two terms in the case of a sum-of-products expression

Table 6.3 Proof of theorem 12(a).

X Y 4 XY XZ YZ XY+XZ+YZ XY +

>
N

—_——_———_— 00O
—_——O O = = O O
—_— o= O —=0O =0
_——_0 0O oo oo
[eNelNelel =l ]
—_—0 OO0 =0 OO0
—_——_ o O, O~ O
—_—_ 0 O, O~ O
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or by the sum of the remaining variables in the case of a product-of-sums expression will be redundant.
The following example further illustrates the point:

A.B.C+A.C.D+B.C.D+B.C.D+A.CD=ABC+A.CD+B.C.D

If we consider the first two terms of the Boolean expression, B.C.D becomes redundant. If we consider
the first and third terms of the given Boolean expression, A.C.D becomes redundant.
Example 6.4

Prove that A.B.C.D+A.B.C.D+A.B.C.D+A.B.C.D+A.B.C.D.E+A.B.C.D.E+A.B.C.D.E can
be simplified to A.B.

Solution
A.B.C.D+AB.C.D+AB.CD+ABC.D+ABCD.E+ABCDE+AB.CD.E

=A.B.C.D+A.BCD+A.BCD+A.B.C.D
=A.B.(C.D+C.D+C.D+C.D)=A.B

e A.B.C.D appears in A.B.C.D.E, A.B.C.D appears in A.B.C.D.E and A.B.C.D appears in
A.B.C.D.E.

e As a result, all three five-variable terms are redundant.

® Also, variables C and D appear in all possible combinations and are therefore redundant.

6.3.13 Theorem 13 (DeMorgan’s Theorem)

@[X+X+X+... +X,]=X.X%X.... X, (6.22)

O [X %X . X=X+ X%+ X+... +X,] (6.23)

According to the first theorem the complement of a sum equals the product of complements, while
according to the second theorem the complement of a product equals the sum of complements. Figures
6.3(a) and (b) show logic diagram representations of De Morgan’s theorems. While the first theorem
can be interpreted to say that a multi-input NOR gate can be implemented as a multi-input bubbled
AND gate, the second theorem, which is the dual of the first, can be interpreted to say that a multi-input
NAND gate can be implemented as a multi-input bubbled OR gate.

DeMorgan’s theorem can be proved as follows. Let us assume that all variables are in a logic ‘0’
state. In that case

LHS=[X,+X,+X;+ - +X,]=[0+0+0+ --- +0]=0=1
RHS=X,.X.X;.... .X,=000.....0=11L1....1=1

Therefore, LHS = RHS.
Now, let us assume that any one of the n variables, say X,, is in a logic HIGH state:
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Figure 6.3 DeMorgan’s theorem.

LHS = [X, + X, + X; + - X, ] = [[+0+0+--+0] =T=0

RHS=X,.X,.X;.... . X,=100.... .0=0.1.1.....1=0

n

Therefore, again LHS = RHS.

The same holds good when more than one or all variables are in the logic ‘1’ state. Therefore,
theorem 13(a) stands proved. Since theorem 13(b) is the dual of theorem 13(a), the same also stands
proved. Theorem 13(b), though, can be proved on similar lines.

6.3.14 Theorem 14 (Transposition Theorem)

@ XY+X.Z=(X+2).X+V)
and
b)) (X+VN.X+2)=XZ+X.Y (6.24)

This theorem can be applied to any sum-of-products or product-of-sums expression having two terms,
provided that a given variable in one term has its complement in the other. Table 6.4 gives the proof
of theorem 14(a) using the method of perfect induction. Theorem 14(b) is the dual of theorem 14(a)
and hence stands proved.

As an example,

AB+AB=(A+B).(A+B) and A.B+A.B=(A+B).(A+B)

Incidentally, the first expression is the representation of a two-input EX-OR gate, while the second
expression gives two forms of representation of a two-input EX-NOR gate.
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Table 6.4 Proof of theorem 13(a).

X Y Z XY XZ X+Z X+Y XY+XZ (X+2D)X+Y)

0 0 0 0 0 0 1 0 0

0 0 1 0 1 1 1 1 1

0 1 0 0 0 0 1 0 0

0 1 1 0 1 1 1 1 1

1 0 0 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0

1 1 0 1 0 1 1 1 1

1 1 1 1 0 1 1 1 1

6.3.15 Theorem 15

(@) X.f(X,X,Y,Z,...)=X.f(1,0,Y,Z,...) (6.25)
b) X+ f(X,X,Y,Z,..)=X+£0,1,Y,Z,...) (6.26)

According to theorem 15(a), if a variable X is multiplied by an expression containing X and X in
addition to other variables, then all Xs and Xs can be replaced with 1s and Os respectively. This would
be valid as X.X = X and X.1 = X. Also, X.X = 0 and X.0 = 0. According to theorem 15(b), if a
variable X is added to an expression containing terms having X and X in addition to other variables,
then all Xs can be replaced with Os and all Xs can be replaced with Is. This is again permissible as
X + X as well as X +0 equals X. Also, X+ X and X + 1 both equal 1.

This pair of theorems is very useful in eliminating redundancy in a given expression. An important
corollary of this pair of theorems is that, if the multiplying variable is X in theorem 15(a), then all
Xs will be replaced by Os and all Xs will be replaced by Is. Similarly, if the variable being added in
theorem 15(b) is X, then Xs and Xs in the expression are replaced by 1s and Os respectively. In that
case the two theorems can be written as follows:

(@) X.f(X,X,Y,Z,..)=X.f(0,1,Y,Z,...) (6.27)
O X+fX.X,Y,Z,..)=X+f(1,0,Y,Z,...) (6.28)

The theorems are further illustrated with the help of the following examples:

B+A.C+(A+D).(A+E)|=A.[0.B+1.C+(0+D).(1+E)] = A.(C+ D).

Al
A+[AB+A.C+(A+B).(A+E)|=A+[0.B+1.C+(0+B).(1+E)]=A+C+B.

1.
2.
6.3.16 Theorem 16

(@) (X, X,Y,...,2)=X.f(1,0,Y,...,2) + X.f(0,1,Y,...,Z) (6.29)
) X, X, Y,...,Z2)=[X+£0,1,Y,...,2)][X+ £(1,0,7,...,2)] (6.30)
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The proof of theorem 16(a) is straightforward and is given as follows:

XX, Y,....2)=Xf(X,X.,Y,..., )+ X.f(X,X,Y,...,2)
=X.f(1,0,Y,...,Z)+X.f(0,1,7,..., Z)[(Theorem 15(a)]

Also

fXX, Y, ..., 2)=[X+fXX,Y, ..., DX +.f(X.X,Y,...,Z)]
=[X+£0,1,7,...,2)][X+f(1,0,Y,...,Z)][Theorem 15(b)]

6.3.17 Theorem 17 (Involution Law)

>

=X (6.31)

Involution law says that the complement of the complement of an expression leaves the expression
unchanged. Also, the dual of the dual of an expression is the original expression. This theorem forms
the basis of finding the equivalent product-of-sums expression for a given sum-of-products expression,
and vice versa.

Example 6.5

Prove the following:

I L(M+N)+LP.Q=(L+P.Q).(L+M+N). B
2. [AB+C+D)[D+(E+F).G]=D.(AB+C)+D.G.(E+F).

Solution

1. Let us assume that L=X,(M +N) =Y and P.Q = Z.
The LHS of the given Boolean equation then reduces to X.Y +X.Z.
Applying the transposition theorem,

XY+XZ=(X+2).(X+Y)=(L+P.Q)(L+M+N)=RHS

2. Letus assume D=X,AB+C=Y and (E+F).G=Z.
The LHS of given the Boolean equation then reduces to (X + Y).(X + Z).
Applying the transposition theorem,

(X+Y.(X+2Z2)=XZ+X.Y=D.G.(E+F)+D.(A.B+C) =RHS
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Figure 6.4 Example 6.6.
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Example 6.6

Starting with the Boolean expression for a two-input OR gate, apply Boolean laws and theorems to
modify it in such a way as to facilitate the implementation of a two-input OR gate by using two-input
NAND gates only.

Solution
e A two-input OR gate is represented by the Boolean equation Y = (A + B),
where A and B are the input logic variables and Y is the output.
® Now,(A+B)=(A+B) Involution law
=(A.B) DeMorgan’s theorem

=[(A.A).(B.B)] Idempotent law
e Figure 6.4 shows the NAND gate implementation of a two-input OR gate.

Example 6.7

Apply suitable Boolean laws and theorems to modify the expression for a two-input EX-OR gate in
such a way as to implement a two-input EX-OR gate by using the minimum number of two-input NAND
gates only.

Solution B
e A two-input EX-OR gate is represented by the Boolean expression ¥ = A.B+ A.B.

® Now,AB+AB=AB+AB Involution law
—A.BAB DeMorgan’s law
=[B.(A+B)].[A.(A+B)]
= (B.A.B).(AA.B) (6.32)

e Equation (6.32) is in a form that can be implemented with NAND gates only.
® Figure 6.5 shows the logic diagram.
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AB } AB+AB

Figure 6.5 Example 6.7.

6.4 Simplification Techniques

In this section, we will discuss techniques other than the application of laws and theorems of Boolean
algebra discussed in the preceding paragraphs of this chapter for simplifying or more precisely
minimizing a given complex Boolean expression. The primary objective of all simplification procedures
is to obtain an expression that has the minimum number of terms. Obtaining an expression with the
minimum number of literals is usually the secondary objective. If there is more than one possible
solution with the same number of terms, the one having the minimum number of literals is the choice.
The techniques to be discussed include:

(a) the Quine—McCluskey tabular method;
(b) the Karnaugh map method.

Before we move on to discuss these techniques in detail, it would be relevant briefly to describe
sum-of-products and product-of-sums Boolean expressions. The given Boolean expression will be in
either of the two forms, and the objective will be to find a minimized expression in the same or the
other form.

6.4.1 Sum-of-Products Boolean Expressions

A sum-of-products expression contains the sum of different terms, with each term being either a
single literal or a product of more than one literal. It can be obtained from the truth table directly
by considering those input combinations that produce a logic ‘1’ at the output. Each such input
combination produces a term. Different terms are given by the product of the corresponding literals.
The sum of all terms gives the expression. For example, the truth table in Table 6.5 can be represented
by the Boolean expression

Y=A B.C+ABC+AB.C+AB.C (6.33)

Considering the first term, the output is ‘1’ when A =0, B=0 and C = 0. This is possible only when
A, B and C are ANDed. Also, for the second term, the output is ‘1’ only when B, C and A are ANDed.
Other terms can be explained similarly. A sum-of-products expression is also known as a minterm
expression.
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Table 6.5 truth table of boolean expression of
equation 6.33.

A

®
a
~

—_—_—_—_-o o000
—_——_—0 o= =00
— o~ 0o =0 =0
O~ =0 =00 -

6.4.2 Product-of-Sums Expressions

A product-of-sums expression contains the product of different terms, with each term being either a
single literal or a sum of more than one literal. It can be obtained from the truth table by considering
those input combinations that produce a logic ‘0’ at the output. Each such input combination gives a
term, and the product of all such terms gives the expression. Different terms are obtained by taking
the sum of the corresponding literals. Here, ‘0’ and ‘1’ respectively mean the uncomplemented and
complemented variables, unlike sum-of-products expressions where ‘0’ and ‘1’ respectively mean
complemented and uncomplemented variables.

To illustrate this further, consider once again the truth table in Table 6.5. Since each term in the
case of the product-of-sums expression is going to be the sum of literals, this implies that it is going
to be implemented using an OR operation. Now, an OR gate produces a logic ‘0’ only when all its
inputs are in the logic ‘0’ state, which means that the first term corresponding to the second row of
the truth table will be A+ B+ C. The product-of-sums Boolean expression for this truth table is given
by (A+B+C).(A+B+C).(A+B+C).(A+B+C).

Transforming the given product-of-sums expression into an equivalent sum-of-products expression
is a straightforward process. Multiplying out the given expression and carrying out the obvious
simplification provides the equivalent sum-of-products expression:

(A+B+C).(A+B+0C).(A+B+C).(A+B+C)

=(A.A+AB+A.C+B.A+BB+B.C+C.A+C.B+C.C).(A.A+A.
+B.C+CA+CB+C.C

=(A+B.C+B.C).(A+B.C+C.B)=AB.C+AB.C+ABC+AB.C

+A.C+B.A+B.B

o]

A given sum-of-products expression can be transformed into an equivalent product-of-sums expression
by (a) taking the dual of the given expression, (b) multiplying out different terms to get the sum-of-
products form, (c) removing redundancy and (d) taking a dual to get the equivalent product-of-sums
expression. As an illustration, let us find the equivalent product-of-sums expression of the sum-of-
products expression

AB+AB
The dual of the given expression = (A + B).(A + B):

(A+B).(A+B)=AA+AB+BA+BB=0+AB+BA+0=AB+AB
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The dual of (A.B+ A.B) = (A+ B).(A+ B). Therefore

AB+AB=(A+B).(A+B)

6.4.3 Expanded Forms of Boolean Expressions

Expanded sum-of-products and product-of-sums forms of Boolean expressions are useful not only
in analysing these expressions but also in the application of minimization techniques such as the
Quine—McCluskey tabular method and the Karnaugh mapping method for simplifying given Boolean
expressions. The expanded form, sum-of-products or product-of-sums, is obtained by including all
possible combinations of missing variables.

As an illustration, consider the following sum-of-products expression:

A.B+B.C+AB.C+A.C
It is a three-variable expression. Expanded versions of different minterms can be written as follows:

AB=AB.(C+C)=AB.C+AB.C
B.C=B.C.(A+4)=B.C.A+B.C.A.
A.B.C is a complete term and has no missing variable.
A.C=A.C.(B+B)=A.C.B+A.CB.

The expanded sum-of-products expression is therefore given by

AB.C+ABC+ABC+ABC+ABC+ABC+ABC=ABC+ABC
+ABC+ABC+ABC+ABC

As another illustration, consider the product-of-sums expression
(A+B).(A+B+C+D)

It is four-variable expression with A, B, C and D being the four variables. A+ B in this case expands
to (A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D).
The expanded product-of-sums expression is therefore given by

(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D)
=(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D)

6.4.4 Canonical Form of Boolean Expressions

An expanded form of Boolean expression, where each term contains all Boolean variables in their true
or complemented form, is also known as the canonical form of the expression.

As an illustration, f(A.B,C) = A.B.C+ A.B.C+ A.B.C is a Boolean function of three variables
expressed in canonical form. This function after simplification reduces to A.B+ A.B.C and loses its
canonical form.
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6.4.5 3 and Il Nomenclature

3, and IT notations are respectively used to represent sum-of-products and product-of-sums Boolean
expressions. We will illustrate these notations with the help of examples. Let us consider the following
Boolean function:

f(A,B,C,D)=AB.C+A.B.CD+A.B.C.D+A.B.C.D

We will represent this function using 3 notation. The first step is to write the expanded sum-of-products
given by
f(A,B,C,D)=A.B.C.(D+D)+A.B.CD+A.B.C.D+A.B.C.D
=AB.C.D+AB.C.D+AB.CD+A.B.C.D+AB.C.D
Different terms are then arranged in ascending order of the binary numbers represented by various

terms, with true variables representing a ‘1’ and a complemented variable representing a ‘0’. The
expression becomes

f(A,B,C,D)=AB.C.D+A.B.C.D+A.B.C.D+AB.C.D+A.B.C.D
The different terms represent 0001, 0101, 1000, 1001 and 1111. The decimal equivalent of these terms
enclosed in the 3 then gives the X notation for the given Boolean function. That is, f(A, B, C, D) =
> 1,5,8,9,15.

The complement of f(A, B, C, D), thatis,f’(A, B, C, D), can be directly determined from 3, notation
by including the left-out entries from the list of all possible numbers for a four-variable function.
That is,

f'(A,B,C,D)=3"0,2,3,4,6,7,10,11,12,13, 14

Let us now take the case of a product-of-sums Boolean function and its representation in II
nomenclature. Let us consider the Boolean function

f(A,B,C,D)=(B+C+D).(A+B+C+D).(A+B+C+D)
The expanded product-of-sums form is given by
(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D)
The binary numbers represented by the different sum terms are 0011, 1011, 1100 and 0111 (true and
complemented variables here represent 0 and 1 respectively). When arranged in ascending order, these
numbers are 0011, 0111, 1011 and 1100. Therefore,

f(A,B,C,D)=]]3,7,11,12 and f'(A,B,C,D)=]]0,1,2,4,5,6,8,9, 10,13, 14, 15

An interesting corollary of what we have discussed above is that, if a given Boolean function
f(A,B,C) is given by f(A,B,C)=3"0,1,4,7, then

f(A,B,C)=]]2.3,5,6 and f'(A,B,C)=Y2,3,5,6=[]0,1,4,7



208 Digital Electronics

Optional combinations can also be incorporated into 3, and IT nomenclature using suitable identifiers;
¢ or d are used as identifiers. For example, if f(A, B, C) =A.B.C+A.B.C+A.B.C and A.B.C, A.B.C
are optional combinations, then

f(A,B,C)=)0,4,5+3,7=).0,4,5+) 3,7
¢ d

f(A, B, C):]_[1,2,6+]_[3,7:]_[1,2,6+]_[3,7
¢ d

Example 6.8
For a Boolean function f(A, B)=3_0,2, prove that f(A,B)=[]1,3 and f'(A,B)=3.1,3=]]0, 2.

Solution
® f(A,B)=Y0,2=AB+AB=B.(A+A)=B.
e Now, [[1,3=(A+B).(A+B)=AA+AB+BA+
® Now, Y 1,3=AB+AB=B.(A+A)=B.
and [10,2=(A+B).(A+B)=A.A+AB+BA+BB=AB+AB+B=B.
e Therefore, > 1,3 =T]0, 2.
e Also, f(A, B) =B.
e Therefore, f'(A,B)=Bor f'(A,B)=)1,3=[]0,2.

ol

.B=AB+A.B+B=B.

6.5 Quine-McCluskey Tabular Method

The Quine-McCluskey tabular method of simplification is based on the complementation theorem,
which says that

XY+XY=X (6.34)

where X represents either a variable or a term or an expression and Y is a variable. This theorem
implies that, if a Boolean expression contains two terms that differ only in one variable, then they can
be combined together and replaced with a term that is smaller by one literal. The same procedure is
applied for the other pairs of terms wherever such a reduction is possible. All these terms reduced
by one literal are further examined to see if they can be reduced further. The process continues
until the terms become irreducible. The irreducible terms are called prime implicants. An optimum
set of prime implicants that can account for all the original terms then constitutes the minimized
expression. The technique can be applied equally well for minimizing sum-of-products and product-
of-sums expressions and is particularly useful for Boolean functions having more than six variables as
it can be mechanized and run on a computer. On the other hand, the Karnaugh mapping method, to be
discussed later, is a graphical method and becomes very cumbersome when the number of variables
exceeds six.

The step-by-step procedure for application of the tabular method for minimizing Boolean expressions,
both sum-of-products and product-of-sums, is outlined as follows:

1. The Boolean expression to be simplified is expanded if it is not in expanded form.
2. Different terms in the expression are divided into groups depending upon the number of 1s they have.
True and complemented variables in a sum-of-products expression mean ‘1’ and ‘0’ respectively.
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The reverse is true in the case of a product-of-sums expression. The groups are then arranged,

beginning with the group having the least number of Is in its included terms. Terms within the

same group are arranged in ascending order of the decimal numbers represented by these terms.
As an illustration, consider the expression

AB.C+A.B.C+A.B.C+AB.C+A.B.C

The grouping of different terms and the arrangement of different terms within the group are shown
below:

AB.C 000  First group
AB.C 100 Second group
—_— — e —
A.B.C 011  Third group
A.B.C 101

ABC 111 Fourth group

As another illustration, consider a product-of-sums expression given by
(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D).
(A+B+C+D.(A+B+C+D)

The formation of groups and the arrangement of terms within different groups for the product-of-
sums expression are as follows:

A.B.C.D 0000
A.B.C.D 0011
A.B.C.D 0101

ABC.D —> 1010

A.B.C.D 0111
AB.C.D 1110

ABC.D 1111

It may be mentioned here that the Boolean expressions that we have considered above did not
contain any optional terms. If there are any, they are also considered while forming groups. This
completes the first table.

3. The terms of the first group are successively matched with those in the next adjacent higher-
order group to look for any possible matching and consequent reduction. The terms are considered
matched when all literals except for one match. The pairs of matched terms are replaced with a
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single term where the position of the unmatched literals is replaced with a dash (—). These new
terms formed as a result of the matching process find a place in the second table. The terms in the
first table that do not find a match are called the prime implicants and are marked with an asterisk
(). The matched terms are ticked (v').

4. Terms in the second group are compared with those in the third group to look for a possible match.
Again, terms in the second group that do not find a match become the prime implicants.

5. The process continues until we reach the last group. This completes the first round of matching.
The terms resulting from the matching in the first round are recorded in the second table.

6. The next step is to perform matching operations in the second table. While comparing the terms for
a match, it is important that a dash (—) is also treated like any other literal, that is, the dash signs
also need to match. The process continues on to the third table, the fourth table and so on until the
terms become irreducible any further.

7. An optimum selection of prime implicants to account for all the original terms constitutes the terms
for the minimized expression. Although optional (also called ‘don’t care’) terms are considered for
matching, they do not have to be accounted for once prime implicants have been identified.

Let us consider an example. Consider the following sum-of-products expression:
AB.C+ABD+ACD+B.C.D+A.B.C.D (6.35)
In the first step, we write the expanded version of the given expression. It can be written as follows:

A.B.C.D+
+

2|
o

C.D+ C.D+AB.C.D+A.B.C.D+A.B.C.D+A.B.C.D

.B.
.B.C.D

|

.B.
.B.C.D+

|

The formation of groups, the placement of terms in different groups and the first-round matching are
shown as follows:

A B C D A B C D A B C D
0 0 0 1 0 0 0 1 v 0 0 - 1 v
0 0 1 1 0 1 0 0 v 0 - 0 1 v
0 1 0 0 — 0 0 1 v
0 1 0 1 0 0 1 1 v 0 1 0 - v
0 1 1 0 0 1 0 1 v 0 1 - 0 v
0 1 1 1 0 1 1 0 v - 1 0 0 v
1 0 0 1 1 0 0 1 v
1 1 0 0 1 1 0 0 v 0 - 1 1
1 1 0 1 0 1 1 1 v 0 1 - 1

1 1 0 1 v - 1 0 1

—_

S NN




Boolean Algebra and Simplification Techniques 211

The second round of matching begins with the table shown on the previous page. Each term in the first
group is compared with every term in the second group. For instance, the first term in the first group
00—1 matches with the second term in the second group 01—1 to yield 0——1, which is recorded in
the table shown below. The process continues until all terms have been compared for a possible match.
Since this new table has only one group, the terms contained therein are all prime implicants. In the
present example, the terms in the first and second tables have all found a match. But that is not always
the case.

A B c D
0 - - 1 *
0 1 - - *
- 1 0 - *

The next table is what is known as the prime implicant table. The prime implicant table contains all the
original terms in different columns and all the prime implicants recorded in different rows as shown
below:

0001 0011 0100 0101 0110 0111 1001 1100 1101
v v v v 0——1 P— A.D
v v v v ——01 00— C.D
v v v v 0l—— R— A.B
v v v v -10— S — B.C

Each prime implicant is identified by a letter. Each prime implicant is then examined one by one and
the terms it can account for are ticked as shown. The next step is to write a product-of-sums expression
using the prime implicants to account for all the terms. In the present illustration, it is given as follows.

(P+Q).(P).(R+S).(P+Q+R+S5).(R).(P+R).(Q).(5.(0+9)

Obvious simplification reduces this expression to PQRS which can be interpreted to mean that all
prime implicants, that is, P, Q, R and S, are needed to account for all the original terms.

Therefore, the minimized expression = A.D+C.D+ A.B+ B.C.

What has been described above is the formal method of determining the optimum set of prime
implicants. In most of the cases where the prime implicant table is not too complex, the exercise can
be done even intuitively. The exercise begins with identification of those terms that can be accounted
for by only a single prime implicant. In the present example, 0011, 0110, 1001 and 1100 are such
terms. As a result, P, O, R and S become the essential prime implicants. The next step is to find out if
any terms have not been covered by the essential prime implicants. In the present case, all terms have
been covered by essential prime implicants. In fact, all prime implicants are essential prime implicants
in the present example.

As another illustration, let us consider a product-of-sums expression given by

(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D)

The procedure is similar to that described for the case of simplification of sum-of-products expressions.
The resulting tables leading to identification of prime implicants are as follows:
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A B C D A B C D A B C D A B C D

o 1 0 1 o 1 0 1 Vv o 11 - 1 v -1 - 1 *

o 1 1 1 -1 0 1 Vv

1 1 0 1 o 1 1 1 Vv

1 1 1 0 1 1 0 1 Vv - 1 1 1 Vv

1 1 1 1 1 1 1 v 11 - 1 Vv
11 1 - %

1 1 1 1 v

The prime implicant table is constructed after all prime implicants have been identified to look for
the optimum set of prime implicants needed to account for all the original terms. The prime implicant
table shows that both the prime implicants are the essential ones:

0101 0111 1101 1110 1111 Prime implicants
v v 111—
v v v v —-1-1

The minimized expression = (A+ B+ C).(B+ D).

6.5.1 Tabular Method for Multi-Output Functions

When it comes to a multi-output logic network, a network that has more than one output, sharing of
some logic blocks between different functions is highly probable. For an optimum logic implementation
of the multi-output function, different functions cannot be and should not be minimized in isolation
because a possible common term that could have been shared may not turn out to be a prime implicant
if the functions are worked out individually. The method of applying the tabular approach to multi-
output functions is to get a minimized set of expressions that would lead to an optimum overall system.
The method is illustrated by the following example.
Consider a logic system with two outputs that is described by the following Boolean expressions:

2|

Y,=A.B.D+A.CD+A.C.D (6.36)
Y,=A.B.C+A.C.D+AB.CD+AB.CD (6.37)

The expanded forms of the two functions are as follows:

Sl

C.

o
Sl
>

=A.B.C.D+A.B.C.D+A.B.C.D+A.B.C.D+A.B. +A.

Y, =A.B.C.D+A.B.C.D+A.B.CD+A.B.C.D+A.B.

ol

=l
o

C.
=AB.CD+ABCD+ABCD+ABCD+ABCD+AB.C.

The rows representing different terms are arranged in the usual manner, with all the terms contained
in the two functions finding a place without repetition, as shown in the table below:
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ABCD 1 2

0000 v

0010 v
0100

0011
0101
0110
1010

SN

0111 v
1011

NN N NN IENENE IEN

NI IENENE IENEN

1111

Each term is checked under the column or columns depending upon the functions in which it is
contained. For instance, if a certain term is contained in the logic expressions for both output 1
and output 2, it will be checked in both output columns. The matching process begins in the same
way as described earlier for the case of single-output functions, with some modifications outlined
as follows:

1. Only those terms can be combined that have at least one check mark in the output column in
common. For instance, 0000 cannot combine with 0010 but can combine with 0100.

2. In the resulting row, only the common outputs are checked. For instance, when 0101 is matched
with 0111, then, in the resulting term 01-1, only output 1 will be checked.

3. A combining term can be checked off only if the resulting term accounts for all the outputs in
which the term is contained.

The table below shows the results of the first round of matching:

ABCD 1 2

0—-00 v *
0-10 v *
—010 v *
010— *
0—-11 v *
01-1 v *
011—- ' *
101— v *
—111 v *
1-11 v

No further matching is possible. The prime implicant table is shown below:
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Output 1 Output 2

0000 0011 0100 0101 O111 0010 0110 o111 1010 1011 1111 ABCD
v v 0-00
v v 0-10

v v —010

v v 010—

v v 0—11

v v 01-1

v v 011—

v v 101—

v v —111

v v 1-11

For each prime implicant, check marks are placed only in columns that pertain to the outputs checked
off for this prime implicant. For instance, 0-00 has only output 1 checked off. Therefore, the relevant
terms under output 1 will be checked off. The completed table is treated as a whole while marking
the required prime implicants to be considered for writing the minimized expressions. The minimized
expressions are as follows:

Y,=A.CD+A.CD+AB.C and Y,=B.CD+AB.C+A.CD
Example 6.9

Using the Quine—McCluskey tabular method, find the minimum sum of products for f(A, B, C, D) =
> (1,2,3,9,12,13,14)+ > (0,7, 10, 15).
¢

Solution

The different steps to finding the solution to the given problem are tabulated below. As we can see,
eight prime implicants have been identified. These prime implicants along with the inputs constitute
the prime implicant table. Remember that optional inputs are not considered while constructing the
prime implicant table:

A B C D A B C D A B C D
0o 0 0 0 V o o0 0o - v o 0 - -
0 0 0 v |
0 0 1 v 0 0 - 1 v
o o 1 0 v - 0 0 1 =
o o 1 - v
o o 1 1 v - 0 1 0 =
1 0o o 1 v
1 o 1 0 v 0 11
1 1 o0 o0 v 1 — 0 1 =
1 - 1 0
o 1 1 1 v 1 1 0 - v
1 1 0 1 v 1 1 - 0 v
11 1 0 v
- 1 11 o
| I ES TR BV

|
ANEN
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The product-of-sums expression that tells about the combination of prime implicants required to
account for all the terms is given by the expression

(L+8).(M+S5).(N+S).(L+P).(T).(P+T).(Q+T) (6.38)
After obvious simplification, this reduces to the expression
T.(L4S).(M+S).(N+S).(L+P)
=T.(LM+LS+MS+S).(LN+PN+LS+PS)
=T.(LM+S).(LN+PN+LS+PS)
=T.(LMN + LMPN + LMS + LMPS + LNS + PNS + LS + PS)

=T.(LMN + LMPN + LS + PS)
=TLMN +TLMPN +TLS+TPS (6.39)
0001 0010 0011 1001 1100 1101 1110 Prime implicants
v v —001 L
v —010 M
v 0-11 N
v v 1-01 P
v 1-10 Q
—111 R
v v v 00—— S
v v v 11— T

The sum-of-products Boolean expression (6.39) states that all the input combinations can be accounted
for by the prime implicants (7, L, M, N) or (T, L, M, P,N) or (T, L, S) or (T, P, S). The most
optimum expression would result from either 7LS or TPS. Therefore, the minimized Boolean function
is given by

f(A,B,C,D)=A.B+B.C.D+A.B (6.40)
or by

f(A,B,C,D)=A.B+A.B+A.C.D (6.41)

Example 6.10

A logic system has three inputs A, B and C and two outputs Y, and Y,. The output functions Y, and Y,
are expressed by Y| =A.B.C+B.C+A.C+AB.C+ABCandY,=A.B+A.C+A.B.C. Determine
the minimized output logic functions using the Quine—McCluskey tabular method.

Solution
The expanded forms of Y; and Y, are written as follows:
Y,=A.B.C+AB.C+ABC+ABC+ABC+AB.C+AB.C
=AB.C+ABC+ABC+ABC+ABC+AB.C

Y,=ABC+ABC+ABC+ABC+AB.C
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The different steps leading to construction of the prime implicant table are given in tabular form below:

A B C 1 2 A B C 1 2 A B C 1 2
0 0 0 Vv v 0o - 0 v * -1 - v v
01 0 v v v o1 - v v oV
1 0 < -1 0 v v v
1 - 0 v oo
(T BV VN
1 0 1 v v -1 1 v v
11 v v | *
11 - vV
111 v v
Y, Y, ABC
000 010 o011 101 110 111 010 011 100 110 111
v v 00
v v 1-0
v v 1-1
v v v v v v v —1-

From the prime implicant table, the minimized output Boolean functions can be written as follows:

Y,=B+A.C+A.C (6.42)

Y,=B+A.C (6.43)

6.6 Karnaugh Map Method

A Karnaugh map is a graphical representation of the logic system. It can be drawn directly from either
minterm (sum-of-products) or maxterm (product-of-sums) Boolean expressions. Drawing a Karnaugh
map from the truth table involves an additional step of writing the minterm or maxterm expression
depending upon whether it is desired to have a minimized sum-of-products or a minimized product-
of-sums expression.

6.6.1 Construction of a Karnaugh Map

An n-variable Karnaugh map has 2" squares, and each possible input is allotted a square. In the case
of a minterm Karnaugh map, ‘1’ is placed in all those squares for which the output is ‘1°, and ‘0’
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is placed in all those squares for which the output is ‘0’. Os are omitted for simplicity. An ‘X’ is
placed in squares corresponding to ‘don’t care’ conditions. In the case of a maxterm Karnaugh map,
a ‘1’ is placed in all those squares for which the output is ‘0’, and a ‘0’ is placed for input entries
corresponding to a ‘1’ output. Again, Os are omitted for simplicity, and an ‘X’ is placed in squares
corresponding to ‘don’t care’ conditions.

The choice of terms identifying different rows and columns of a Karnaugh map is not unique for a
given number of variables. The only condition to be satisfied is that the designation of adjacent rows
and adjacent columns should be the same except for one of the literals being complemented. Also, the
extreme rows and extreme columns are considered adjacent. Some of the possible designation styles for
two-, three- and four-variable minterm Karnaugh maps are given in Figs 6.6, 6.7 and 6.8 respectively.

The style of row identification need not be the same as that of column identification as long as it
meets the basic requirement with respect to adjacent terms. It is, however, accepted practice to adopt a
uniform style of row and column identification. Also, the style shown in Figs 6.6(a), 6.7(a) and 6.8(a)
is more commonly used. Some more styles are shown in Fig. 6.9. A similar discussion applies for
maxterm Karnaugh maps.

Having drawn the Karnaugh map, the next step is to form groups of 1s as per the following
guidelines:

1. Each square containing a ‘1’ must be considered at least once, although it can be considered as
often as desired.

2. The objective should be to account for all the marked squares in the minimum number of groups.

3. The number of squares in a group must always be a power of 2, i.e. groups can have 1, 2, 4, 8, 16,

. squares.

4. Each group should be as large as possible, which means that a square should not be accounted for
by itself if it can be accounted for by a group of two squares; a group of two squares should not be
made if the involved squares can be included in a group of four squares and so on.

5. ‘Don’t care’ entries can be used in accounting for all of 1-squares to make optimum groups. They
are marked ‘X’ in the corresponding squares. It is, however, not necessary to account for all ‘don’t
care’ entries. Only such entries that can be used to advantage should be used.

B B B B
A A
A A
(a) (b)
B B B B
A A
A A

(© ()

Figure 6.6 Two-variable Karnaugh map.
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BC BC BC BC BC BC BC BC
A A
A A
(a) (b)
BC BC BC BC BC BC BC BC
A A
A A
(©) (d)

Figure 6.7 Three-variable Karnaugh map.

CD ChD CD CD Cbh CD cD cD
AB AB
AB AB
AB AB
AB AB
(a) (b)
cb cb Cb CD Db €D cD c¢b

>l

(o]}
>l
[o¢]

b

vs)
>l
(os]}

AB AB

Figure 6.8 Four-variable Karnaugh map.
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o _ C D
CD CD CD cb A .
AB 3
A
AB _
- ~<B B
AB
A
AB
\_W\/
D
CcD
Cb Cb cD ¢CD AB 00 ol 1 10
‘AB 00
AB 01
AB 11
AB 10

Figure 6.9 Different styles of row and column identification.

Having accounted for groups with all 1s, the minimum ‘sum-of-products’ or ‘product-of-sums’
expressions can be written directly from the Karnaugh map.

Figure 6.10 shows the truth table, minterm Karnaugh map and maxterm Karnaugh map of the

Boolean function of a two-input OR gate. The minterm and maxterm Boolean expressions for the
two-input OR gate are as follows:

Y = A+ B (maxterm or product-of-sums) (6.44)
Y = A.B+ A.B+ A.B (minterm or sum-of-products) (6.45)

Figure 6.11 shows the truth table, minterm Karnaugh map and maxterm Karnaugh map of the three-
variable Boolean function

Y=AB.C+ABC+ABC+AB.C (6.46)

Y=(A+B+C).(A+B+C).(A+B+C).(A+B+C) (6.47)
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Truth table : B B
A 1
A B Y Al 1 1
0 0 0 Sum-of-products K-map
0 1 1 _
11 o [ 1 4 B B
1 1 1 A "

Product-of-sums K-map

Figure 6.10 Two-variable Karnaugh maps.

A B C Y BC BC BC BC
0 0 0 1 Al 1 1

0 0 1 0 Al 1 1
0 1 0 1 Sum-of-products K-map
0 1 1 0

1 0 0 1 B+C B+C B+C B+C
1 0 1 0 Al 1 1

1 1 0 1 Al 1 1

1 1 1 0

Product-of-sums K-map

Figure 6.11 Three-variable Karnaugh maps.

Figure 6.12 shows the truth table, minterm Karnaugh map and maxterm Karnaugh map of the four-
variable Boolean function

Y=AB.C.D+A.B.C.D+A.B.C.D+A.B.C.D+A.B.C.D+A.B.C.D+A.B.C.D+A.B.C.D (6.48)
Y=(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D)

_ _ _ _ T I (6.49)
(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D)

To illustrate the process of forming groups and then writing the corresponding minimized Boolean
expression, Figs 6.13(a) and (b) respectively show minterm and maxterm Karnaugh maps for the
Boolean functions expressed by equations (6.50) and (6.51). The minimized expressions as deduced
from Karnaugh maps in the two cases are given by Equation (6.52) in the case of the minterm Karnaugh
map and Equation (6.53) in the case of the maxterm Karnaugh map:

Y=AB.CD+AB.CD+ABCD+AB.CD+AB.CD+AB.CD+A.B.C.D+A.B.C.D (6.50)

Y=(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D)
(A4+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D).(A+B+C+D) (651
Y=B.D+B.D (6.52)

Y=D.(A+B) (6.53)
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Truth table
A B C D Y
0 0 0 0 1 —— —
5 ] ] CD CD CD
0 0 A5 1 1
0 0 1 0 0 _ ] ]
0 0 1 1 0 AB . .
0 1 0 0 1 A? ] ]
o | 1 o | 1 1 AB
0 1 1 0 0 Sum-of-products K-map
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1 _ _ _
] 0 ] 0 0 L C+D C+D C+D C+D
1 | o | 1 T ] o A+B L 1
1] 1 o | o | 1 A+B ! !
1 1 0 1 1 A+B ! !
1] 1 1 oo A+B 1 1
1 1 1 1 0 Product-of-sums K-map
Figure 6.12 Four-variable Karnaugh maps.
CD CD CD ch C+D C+D C+D C+D
f1_ )
AB 1 1 A+B
AB | 1 1 | A+B [ 1 1 1 )
AB A+B
1 1 1
— 1 1 —
AB A+B 1
———
y=BD+BD Y=D. (A+B)

Figure 6.13 Group formation in minterm and maxterm Karnaugh maps.
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6.6.2 Karnaugh Map for Boolean Expressions with a Larger Number of
Variables

The construction of Karnaugh maps for a larger number of variables is a complex and cumbersome
exercise, although manageable up to six variables. Five- and six-variable representative Karnaugh
maps are shown in Figs 6.14(a) and (b) respectively. One important point to remember while forming
groups in Karnaugh maps involving more than four variables is that terms equidistant from the
central horizontal and central vertical lines are considered adjacent. These lines are shown thicker
in Figs 6.14(a) and (b). Squares marked ‘X’ in Figs 6.14(a) and (b) are adjacent and therefore
can be grouped.

Boolean expressions with more than four variables can also be represented by more than one four-
variable map. Five-, six-, seven- and eight-variable Boolean expressions can be represented by two,
four, eight and 16 four-variable maps respectively. In general, an n-variable Boolean expression can
be represented by 2"~* four-variable maps. In such multiple maps, groups are made as before, except
that, in addition to adjacencies discussed earlier, corresponding squares in two adjacent maps are also
considered adjacent and can therefore be grouped. We will illustrate the process of formation of groups
in multiple Karnaugh maps with a larger number of variables with the help of examples. Consider the
five-variable Boolean function given by the equation

Y=AB.CD.E+

B.C.D.E4+A.B.CD.E+ABC.DE+ABCDE+AB.CDE+ABCDE
B.C.

B
]

A.
B.C.D.E+ E (6.54)

DEF
ABC\_ 000 001 011 010 110 111 101 100
000 x X)
001
011 ()
ASNCDE X
000 001 011 010 110 111 101 100 010
00 [X X] 110
01 111 X
\_/
11 101
10 100

(a) (b)

Figure 6.14 Five-variable and six-variable Karnaugh maps.
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AB AB

AB 1 AB 1 1 |

Figure 6.15 Multiple Karnaugh map for a five-variable Boolean function.

The multiple Karnaugh map for this five-variable expression is shown in Fig. 6.15. The construction
of the Karnaugh map and the formation of groups are self-explanatory.
The minimized expression is given by the equation

Y=CD.E+AB.CD+A.CDE+ABD.E (6.55)
As another illustration, consider a six-variable Boolean function given by the equation

F+AB.C.D.EF+AB.C.D.EF+AB.CD.EF
.D.E.F (6.56)
Figure 6.16 gives the Karnaugh map for this six-variable Boolean function, comprising four four-

variable Karnaugh maps. The figure also shows the formation of groups. The minimized expression is
given by the equation

Y=ABCD.E+AB.CD.F+AB.CD.EF+ABC.D.EF+A.B.C.D.EF (6.57)

Example 6.11

Minimize the Boolean function

f(A,B,C)=50,1,3,5+3.2,7
¢

using the mapping method in both minimized sum-of-products and product-of-sums forms.
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AB AB

CD CD CD cD cb CD cD ch
10 -
AB AB
F
Jli[c 11O
AB AB
Figure 6.16 Multiple Karnaugh map for a six-variable Boolean function.
Solution

* f(A,B,C)=Y0,1,3,5+32,7=[14,6+]]2.7.
é ¢

e From given Boolean functions in 2 and IT notation, we can write sum-of-products and product-of-
sums Boolean expressions as follows:

f(A,B,C)=AB.C+AB.C+AB.C+A.B.C (6.58)

f(A,B,C)=(A+B+C).(A+B+0) (6.59)
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X)

\—J

(=

(@

A+B A+B A+B A+B

G | <

(b)

ol
X

Figure 6.17 Example 6.11.

The ‘don’t care’ input combinations for the sum-of-products Boolean expression are A.B.C, A.B.C.
The ‘don’t care’ input combinations for the product-of-sums expression are (A+B+C).(A+B+C).
The Karnaugh maps for the two cases are shown in Figs 6.17(a) and (b).

The minimized sum-of-products and product-of-sums Boolean functions are respectively given by
the equations

f(A,B,C)=C+A (6.60)
f(A,B,C)=A+C (6.61)

6.6.3 Karnaugh Maps for Multi-Output Functions

Karnaugh maps can be used for finding minimized Boolean expressions for multi-output functions. To
begin with, a Karnaugh map is drawn for each function following the guidelines described in the earlier
pages. In the second step, two-function Karnaugh maps are drawn. In the third step, three-function
Karnaugh maps are drawn. The process continues until we have a single all-function Karnaugh map.
As an illustration, for a logic system having four outputs, the first step would give four Karnaugh maps
for individual functions. The second step would give six two-function Karnaugh maps (1-2, 1-3,
1—4, 2—3, 2—4 and 3—4). The third step would yield four three—function Karnaugh maps (1—2—3,
1-2—4, 1-3—4 and 2—3—4) and lastly we have one four-function Karnaugh map. A multifunction
Karnaugh map is basically an intersection of the Karnaugh maps of the functions involved. That is, a
‘1’ appears in a square of a multifunction map only if a ‘1’ appears in the corresponding squares of the
maps of all the relevant functions. To illustrate further, a two-function map involving functions 1 and
2 would be an intersection of maps for functions 1 and 2. In the two-function map, squares will have
a ‘1’ only when the corresponding squares in functions 1 and 2 also have a ‘1°. Figure 6.18 illustrates
the formation of a three-function Karnaugh map from three given individual functions.



226 Digital Electronics

CD CD CD CD CD CD CD CD CD CD cDh CD CD CD cD CD
AB| 1 1| AB| 1| 1 1| AB 1| AB 1
AB| 1| 1 AB 1| AB 111 AB
AB 1] AB 1| AB 1| AB 1
AB| 1 1| AB| 1 1| AB| 1 AB| 1

Function-1 Function-2 Function-3 Function-1-2-3

Figure 6.18 Three-function Karnaugh map.

The formation of groups begins with the largest multifunction map, which is nothing but the
intersection of maps of all individual functions. Then we move to the Karnaugh maps one step down
the order. The process continues until we reach the maps corresponding to individual functions. The
groups in all the Karnaugh maps other than the largest map are formed subject to the condition that,
once a group is identified in a certain function, then the same cannot be identified in any map of a
subset of that function. For example, a group identified in a four-function map cannot be identified
in a three-, two- or one-function map. With the formation of groups, prime implicants are identified.
These prime implicants can be compiled in the form of a table along with input combinations of
different output functions in the same way as for the tabular method to write minimized expressions. If
the expressions corresponding to different output functions are not very complex, then the minimized
expressions can even be written directly from the set of maps.

Example 6.12

Using Karnaugh maps, write the minimized Boolean expressions for the output functions of a two-output
logic system whose outputs Y, and Y, are given by the following Boolean functions:

AB.C (6.62)
AB.C+AB.C (6.63)

Solution

The individual Karnaugh maps and the two-function map are shown in Fig. 6.19 along with the
formation of groups. The prime implicant table along with the input combinations for the two output
functions is given below:

Y, Y, Prime implicants
000 010 100 111 000 001 101 110 111

SN
\

\

[« [«

— O

(= e

<\
\

o - o |
|
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AB AB AB AB AB AB AB AB AB AB AB AB
onSERRRINE
c : o[ ) G e 0
Y1 Y2 Y21
Figure 6.19 Example 6.12.
The minimized expressions for Y, and Y, are as follows:

Y, =B.C+A.C+A.B.C (6.64)
Y,=A.B+AB.C+B.C (6.65)

Example 6.13
Write the simplified Boolean expression given by the Karnaugh map shown in Fig. 6.20.
Solution

e The Karnaugh map is shown in Fig. 6.21. L
e Consider the group of four 1s at the top left of the map. It yields a term A.C.

e Consider the group of four 1s, two on the extreme left and two on the extreme right. This group

yields a term A.D.

® The third group of two 1s is in the third row of the map. The third row corresponds to the intersection

of A and B, as is clear from the map. Therefore, this group yields a term ABC.
e The simplified Boolean expression is given by A.C+A.D+ A.B.C.

c
/\/\_’_\
1 1 1
1 1 1
B
1 1
A

\_’V\/

Figure 6.20 Example 6.13.
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Figure 6.21 Solution to example 6.13.

Example 6.14

Minimizing a given Boolean expression using the Quine—McCluskey tabular method yields the following
prime implicants: —0—0, —1—1, 1—10 and 0—00. Draw the corresponding Karnaugh map.

Solution
® Asis clear from the prime implicants, the expression has four variables. If the variables are assumed

to be A, B, C and D, then the given prime implicants correspond to the following terms:

—0-0 — B.
—1-1— B.
1-10 — A.
0—00 — A.

ﬁ\ﬁb ol

Rl S
S~

e The Karnaugh map can now be drawn as shown in Fig. 6.22.

Example 6.15

A.B+C.D is a simplified Boolean expression of the expression A.B.C.D+ A.B.C.D+ A.B. Determine
if there are any ‘don’t care’ entries.

Solution
The expanded version of the given expression is given by the equation
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CD CD CD CD
AB 1 1
A
AB | 1 1 1
B| B
AB 1 1 1
A
AB 1 1
Figure 6.22 Solution to example 6.14.
CD CD CD CD
AB 1
A8 (1 1 1 1)
AB 1
_ X
AB
Figure 6.23 Example 6.15.
A.B.C.D+AB.C.D+AB.(CD+C.D+C.D+C.D) (6.66)
=AB.CD+AB.CD+ABCD+ABCD+AB.CD+A.B.CD (6.63)

The Karnaugh map for this Boolean expression is shown in Fig. 6.23. Now, if it is to be a simplified
version of the expression A.B+ C.D, then the lowermost square in the CD column should not be
empty. This implies that there is a ‘don’t care’ entry. This has been reflected in the map by putting
X in the relevant square. With the groups formed along with the ‘don’t care’ entry, the simplified
expression becomes the one stated in the problem.
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Review Questions

1.

Read the following statements carefully. For each one of these, identify the law associated with it.
Define the law and illustrate the same with one or two examples.

(a) While a NAND gate is equivalent to a bubbled OR gate, a NOR gate is equivalent to a bubbled
AND gate.

(b) When all the inputs of an AND gate or an OR gate are tied together to get a single-input,
single-output gate, both AND and OR gates with all their inputs tied together produce an output
that is the same as the input.

(c) When a variable is ORed with its complement the result is a logic ‘1°, and when it is ANDed
with its complement the result is a logic ‘0’, irrespective of the logic status of the variable.

(d) When two variables are ANDed and the result of the AND operation is ORed with one of the
variables, the result is that variable. Also, when two variables are ORed and the result of the
OR operation is ANDed with one of the variables, the result is that variable.

Write both sum-of-products and product-of-sums Boolean expressions for (a) a two-input AND
gate, (b) a two-input NAND-gate, (c) a two-input EX-OR gate and (d) a two-input NOR gate from
their respective truth tables.

What do you understand by canonical and expanded forms of Boolean expressions? Illustrate with
examples.

With the help of an example, prove that in an n-variable Karnaugh map, a group formed with 2"~
1s will yield a term having m literals, where m = 1,2, 3, ..., n.

With the help of an example, prove that the dual of the complement of a Boolean expression is the
same as the complement of the dual of the same.

Problems

1.

Simplify the following Boolean expressions:

(a) AAB.C+A.B.C+AB.C+AB.C+ABC+AB.C+AB.C+AB.C;
() (A+B+C).(A+B+0C).(C+D).(C+D+E). B
(a) 1; (b) (A+B).(C+D)

(a) Find the dual of A.B.C.D+ A.B.C.D+ A.B.C.D.
(b) Find the complement of A+[(B+C).D+E].F
(a) (A+B+C+D).(A+B+C+D).(A+B+C+D); (b)A.[(B.C+D).E+F]
The dual of the complement of a certain Boolean expression is given by A.B.C 4+ D.E + B.C.E.
Find the expression.
AB.C+D.E+B.CE

Consider the Boolean expression given by

B.CE4+ABCDE+ABCDE+ABC.D.E+ABDE

ﬁ \

B.CDE+BCD.E+A.B
.C.DE+ABC.DE

°’ \
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The simplified version of this Boolean expression is given by B.E + B.D.E + B.D.E. Determine if
there are any ‘don’t care’ entries. If yes, find them.
Yes, A.B.C.D.E,A.B.C.D.E,A.B.C.D.E
5. Write minterm and maxterm Boolean functions expressed by f(A, B, C) =110, 3,7
minterm: A.B.C+A.B.C+A.B.C+A.B.C+A.B.C
maxterm:(A+B+C).(A+B+C).(A+B+C)

6. Write a simplified maxterm Boolean expression for II 0, 4, 5, 6, 7, 10, 14 using the Karnaugh
mapping method. B L
(A+B).(A+B+C+D).(A+C+D)

7. Simplify the following Boolean functions using the Quine—-McCluskey tabulation method:

(a) f(A, B, C,D,E F, G) =3 (20, 21, 28, 29, 52, 53, 60, 61);
(b) f(A, B, C, D, E, F) == (6,9, 13,18,19, 25, 26, 27, 29, 41, 45, 57, 61). L
(a) A.CEF; (b) CEF+ABD.E+A.B.C.D.EF

8. (a) Simplify the Boolean function f(X, Y, Z) = Y.Z 4 X.Z for the ‘don’t care’ condition expressed
as X.Y+XYZ+XY.Z.
(b) Simplify the Boolean function given by f(A, B, C) = (A+B+C).(A+B+C).(A+B+C) for
the don’t care condition expressed as (A + B).(A+ B+ C).
(a) 1; (b) A.C

Further Reading
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Arithmetic Circuits

Beginning with this chapter, and in the two chapters following, we will take a comprehensive look
at various building blocks used to design more complex combinational circuits. A combinational
logic circuit is one where the output or outputs depend upon the present state of combination of
the logic inputs. The logic gates discussed in Chapter 4 constitute the most fundamental building
block of a combinational circuit. More complex combinational circuits such as adders and subtractors,
multiplexers and demultiplexers, magnitude comparators, etc., can be implemented using a combination
of logic gates. However, the aforesaid combinational logic functions and many more, including more
complex ones, are available in monolithic IC form. A still more complex combinational circuit may
be implemented using a combination of these functions available in IC form. In this chapter, we
will cover devices used to perform arithmetic and other related operations. These include adders,
subtractors, magnitude comparators and look-ahead carry generators. Particular emphasis is placed
upon the functioning and design of these combinational circuits. The text has been adequately
illustrated with the help of a large number of solved problems, the majority of which are design
oriented.

7.1 Combinational Circuits

A combinational circuit is one where the output at any time depends only on the present combination
of inputs at that point of time with total disregard to the past state of the inputs. The logic gate is the
most basic building block of combinational logic. The logical function performed by a combinational
circuit is fully defined by a set of Boolean expressions. The other category of logic circuits, called
sequential logic circuits, comprises both logic gates and memory elements such as flip-flops. Owing to
the presence of memory elements, the output in a sequential circuit depends upon not only the present
but also the past state of inputs. Basic building blocks of sequential logic circuits are described in
detail in Chapters 10 and 11.

Figure 7.1 shows the block schematic representation of a generalized combinational circuit having
n input variables and m output variables or simply outputs. Since the number of input variables is

Digital Electronics: Principles, Devices and Applications ~Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5
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E—— |————>
n Combinational 'm
Inputs Logic Outputs

Figure 7.1 Generalized combinational circuit.

n, there are 2" possible combinations of bits at the input. Each output can be expressed in terms of
input variables by a Boolean expression, with the result that the generalized system of Fig. 7.1 can be
expressed by m Boolean expressions. As an illustration, Boolean expressions describing the function
of a four-input OR/NOR gate are given as

Y, (OR output) =A+B+C+D and Y, (NOR output) =A+B+C+D

Also, each of the input variables may be available as only the normal input on the input line
designated for the purpose. In that case, the complemented input, if desired, can be generated by using
an inverter, as shown in Fig. 7.2(a), which illustrates the case of a four-input, two-output combinational
function. Also, each of the input variables may appear in two wires, one representing the normal literal
and the other representing the complemented one, as shown in Fig. 7.2(b).

In combinational circuits, input variables come from an external source and output variables feed an
external destination. Both source and destination in the majority of cases are storage registers, and these

1o
Combinational
Logic
1o B
(a)
- |
——
Combinational
Logic
—_—]
—>—9 —

(b)

Figure 7.2 Combinational circuit with normal and complemented inputs.
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Half

5 Adder-Subtractor |—— Y3

— Yo

Figure 7.3 Two-input, four-output combinational circuit.

storage devices provide both normal as well as complemented outputs of the stored binary variable. As
an illustration, Fig. 7.3 shows a simple two-input (A, B), four-output (Y, Y, Y3, ¥,) combinational logic
circuit described by the following Boolean expressions

Y,=A.B+A.B (7.1)
Y,=A.B+A.B (7.2)
Y,=A.B (7.3)
Y,=A.B (7.4)

The implementation of these Boolean expressions needs both normal as well as complemented
inputs. Incidentally, the combinational circuit shown is that of a half-adder—subtractor, with A and B
representing the two bits to be added or subtracted and Y;, Y,, Y3, ¥, representing SUM, DIFFERENCE,
CARRY and BORROW outputs respectively. Adder and subtractor circuits are discussed in Sections
7.3, 7.4 and 7.5.

7.2 Implementing Combinational Logic

The different steps involved in the design of a combinational logic circuit are as follows:

. Statement of the problem.

. Identification of input and output variables.

. Expressing the relationship between the input and output variables.

. Construction of a truth table to meet input—output requirements.

. Writing Boolean expressions for various output variables in terms of input variables.
. Minimization of Boolean expressions.

. Implementation of minimized Boolean expressions.

~N NN RN =

These different steps are self-explanatory. One or two points, however, are worth mentioning here. There
are various simplification techniques available for minimizing Boolean expressions, which have been
discussed in the previous chapter. These include the use of theorems and identities, Karnaugh mapping,
the Quinne-McCluskey tabulation method and so on. Also, there are various possible minimized forms
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of Boolean expressions. The following guidelines should be followed while choosing the preferred
form for hardware implementation:

1. The implementation should have the minimum number of gates, with the gates used having the
minimum number of inputs.

2. There should be a minimum number of interconnections, and the propagation time should be the
shortest.

3. Limitation on the driving capability of the gates should not be ignored.

It is difficult to generalize as to what constitutes an acceptable simplified Boolean expression. The
importance of each of the above-mentioned aspects is governed by the nature of application.

7.3 Arithmetic Circuits — Basic Building Blocks

In this section, we will discuss those combinational logic building blocks that can be used to perform
addition and subtraction operations on binary numbers. Addition and subtraction are the two most
commonly used arithmetic operations, as the other two, namely multiplication and division, are
respectively the processes of repeated addition and repeated subtraction, as was outlined in Chapter
2 dealing with binary arithmetic. We will begin with the basic building blocks that form the basis of
all hardware used to perform the aforesaid arithmetic operations on binary numbers. These include
half-adder, full adder, half-subtractor, full subtractor and controlled inverter.

7.3.1 Half-Adder

A half-adder is an arithmetic circuit block that can be used to add two bits. Such a circuit thus has two
inputs that represent the two bits to be added and two outputs, with one producing the SUM output
and the other producing the CARRY. Figure 7.4 shows the truth table of a half-adder, showing all
possible input combinations and the corresponding outputs.

The Boolean expressions for the SUM and CARRY outputs are given by the equations

SUM S=AB+A.B (7.5)
CARRY C=A.B (7.6)

An examination of the two expressions tells that there is no scope for further simplification. While
the first one representing the SUM output is that of an EX-OR gate, the second one representing the

Al e [0S
Adder

A o o ofl»
- O = O

o =~ o~ o|lm
-~ o o of|lo

Figure 7.4 Truth table of a half-adder.
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Figure 7.5 Logic implementation of a half-adder.

CARRY output is that of an AND gate. However, these two expressions can certainly be represented
in different forms using various laws and theorems of Boolean algebra to illustrate the flexibility that
the designer has in hardware-implementing as simple a combinational function as that of a half-adder.
We have studied in Chapter 6 on Boolean algebra how various logic gates can be implemented in the
form of either only NAND gates or NOR gates. Although the simplest way to hardware-implement a
half-adder would be to use a two-input EX-OR gate for the SUM output and a two-input AND gate
for the CARRY output, as shown in Fig. 7.5, it could also be implemented by using an appropriate
arrangement of either NAND or NOR gates. Figure 7.6 shows the implementation of a half-adder with
NAND gates only.

A close look at the logic diagram of Fig. 7.6 reveals that one part of the circuit implements
a two-input EX-OR gate with two-input NAND gates. EX-OR implementation using NAND was
discussed in the previous chapter. The AND gate required to generate CARRY output is implemented
by complementing an already available NAND output of the input variables.

7.3.2 Full Adder

A full adder circuit is an arithmetic circuit block that can be used to add three bits to produce a
SUM and a CARRY output. Such a building block becomes a necessity when it comes to adding
binary numbers with a large number of bits. The full adder circuit overcomes the limitation of the
half-adder, which can be used to add two bits only. Let us recall the procedure for adding larger
binary numbers. We begin with the addition of LSBs of the two numbers. We record the sum under
the LSB column and take the carry, if any, forward to the next higher column bits. As a result,
when we add the next adjacent higher column bits, we would be required to add three bits if there
were a carry from the previous addition. We have a similar situation for the other higher column bits

Dl D
DErsﬂ

5 [B.(A.

— y—

Figure 7.6 Half-adder implementation using NAND gates.
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A B Cin SUM(S) Cout
0 0 0 0 0
A S 0 0 1 1 0
Full 0 1 0 1 0
B Adder 0 1 1 0 1
Cp— | | 1 0 0 1 0
in out 1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 7.7 Truth table of a full adder.

also until we reach the MSB. A full adder is therefore essential for the hardware implementation of
an adder circuit capable of adding larger binary numbers. A half-adder can be used for addition of
LSBs only.

Figure 7.7 shows the truth table of a full adder circuit showing all possible input combinations and
corresponding outputs. In order to arrive at the logic circuit for hardware implementation of a full
adder, we will firstly write the Boolean expressions for the two output variables, that is, the SUM
and CARRY outputs, in terms of input variables. These expressions are then simplified by using any
of the simplification techniques described in the previous chapter. The Boolean expressions for the
two output variables are given in Equation (7.7) for the SUM output (S) and in Equation (6.6) for the
CARRY output (C,,):

S=AB.C,+AB.C,+AB.C,+AB.C, (7.7)
C,.=A.B.C,, +A.B.C,,+A.B.C,,+A.B.C,, (7.8)

The next step is to simplify the two expressions. We will do so with the help of the Karnaugh mapping
technique. Karnaugh maps for the two expressions are given in Fig. 7.8(a) for the SUM output and
Fig. 7.8(b) for the CARRY output. As is clear from the two maps, the expression for the SUM (S)
output cannot be simplified any further, whereas the simplified Boolean expression for C,, is given
by the equation

C

out

=B.C,,+A.B+A.C, (7.9)

Figure 7.9 shows the logic circuit diagram of the full adder. A full adder can also be seen to comprise
two half-adders and an OR gate. The expressions for SUM and CARRY outputs can be rewritten as
follows:

S=C,.(A.B+A.B)+C,.(A.B+A.B)
§=C,.(A.B+AB)+C,.(A.B+A.B) (7.10)

Similarly, the expression for CARRY output can be rewritten as follows:

C

out

=B.C,.(A+A)+A.B+A.C,.(B+B) B B
=A.B+A.B.C,+A.B.C,+ABC,+ABC,=AB+ABC,+ABC,+ABC,
=A.B.(1+C,)+C,.(A.B+ A.B)
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Figure 7.8 Karnaugh maps for the sum and carry-out of a full adder.

C

ot =A.B+C;,.(A.B+ A.B) (7.11)
Boolean expression (7.10) can be implemented with a two-input EX-OR gate provided that one of
the inputs is C;, and the other input is the output of another two-input EX-OR gate with A and B
as its inputs. Similarly, Boolean expression (7.11) can be implemented by ORing two minterms. One
of them is the AND output of A and B. The other is also the output of an AND gate whose inputs
are C;, and the output of an EX-OR operation on A and B. The whole idea of writing the Boolean
expressions in this modified form was to demonstrate the use of a half-adder circuit in building a full
adder. Figure 7.10(a) shows logic implementation of Equations (7.10) and (7.11). Figure 7.10(b) is
nothing but Fig. 7.10(a) redrawn with the portion of the circuit representing a half-adder replaced with a
block.

The full adder of the type described above forms the basic building block of binary adders. However,
a single full adder circuit can be used to add one-bit binary numbers only. A cascade arrangement of
these adders can be used to construct adders capable of adding binary numbers with a larger number
of bits. For example, a four-bit binary adder would require four full adders of the type shown in Fig.
7.10 to be connected in cascade. Figure 7.11 shows such an arrangement. (A;A, A, A,) and (B;B,B, B,)
are the two binary numbers to be added, with A, and B representing LSBs and A; and B; representing
MSBs of the two numbers.
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Figure 7.9 Logic circuit diagram of a full adder.

7.3.3 Half-Subtractor

We have seen in Chapter 3 on digital arithmetic how subtraction of two given binary numbers can
be carried out by adding 2’s complement of the subtrahend to the minuend. This allows us to do
a subtraction operation with adder circuits. We will study the use of adder circuits for subtraction
operations in the following pages. Before we do that, we will briefly look at the counterparts of
half-adder and full adder circuits in the half-subtractor and full subtractor for direct implementation of
subtraction operations using logic gates.

A half-subtractor is a combinational circuit that can be used to subtract one binary digit from another
to produce a DIFFERENCE output and a BORROW output. The BORROW output here specifies
whether a ‘1’ has been borrowed to perform the subtraction. The truth table of a half-subtractor, as
shown in Fig. 7.12, explains this further. The Boolean expressions for the two outputs are given by
the equations
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Figure 7.10 Logic implementation of a full adder with half-adders.
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Figure 7.11 Four-bit binary adder.
D=AB+AB (7.12)
B,=A.B (7.13)

It is obvious that there is no further scope for any simplification of the Boolean expressions given
by Equations (7.12) and (7.13). While the expression for the DIFFERENCE (D) output is that of
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A B D Bo
A—> L > D=A-B 0 0 0 0
Half 0 1 1 1
Subtractor
B— - > BO 1 0 1 0
1 1 0 0
Figure 7.12 Half-subtractor.
A

>

Figure 7.13 Logic diagram of a half-subtractor.

an EX-OR gate, the expression for the BORROW output (B,) is that of an AND gate with input
A complemented before it is fed to the gate. Figure 7.13 shows the logic implementation of a
half-subtractor. Comparing a half-subtractor with a half-adder, we find that the expressions for the
SUM and DIFFERENCE outputs are just the same. The expression for BORROW in the case of
the half-subtractor is also similar to what we have for CARRY in the case of the half-adder. If
the input A, that is, the minuend, is complemented, an AND gate can be used to implement the
BORROW output. Note the similarities between the logic diagrams of Fig. 7.5 (half-adder) and Fig. 7.13
(half-subtractor).

7.3.4 Full Subtractor

A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and also takes
into consideration whether a ‘1’ has already been borrowed by the previous adjacent lower minuend bit
or not. As a result, there are three bits to be handled at the input of a full subtractor, namely the two bits
to be subtracted and a borrow bit designated as B;,. There are two outputs, namely the DIFFERENCE
output D and the BORROW output B,. The BORROW output bit tells whether the minuend bit needs
to borrow a ‘1’ from the next possible higher minuend bit. Figure 7.14 shows the truth table of a full
subtractor.
The Boolean expressions for the two output variables are given by the equations

D=A.B.B,+A.B.B,,+A.B.B,,+AB.B, (7.14)
B

.B,+A.B.B,+A.B.B,+A.B.B, (7.15)
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Minuend | Subtrahend Borrow Difference Borrow

(A) (B) In (Bin) (D) Out (Bo)
0 0 0 0 0
0 0 1 1 1
A— Ful ——>D 0 1 0 1 1
B—1 suotractor 0 ! ! 0 !
Bin —— L > BO 1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Figure 7.14 Truth table of a full subtractor.

(b)

Figure 7.15 Karnaugh maps for difference and borrow outputs.

The Karnaugh maps for the two expressions are given in Fig. 7.15(a) for DIFFERENCE output D and
in Fig. 7.15(b) for BORROW output B,. As is clear from the two Karnaugh maps, no simplification
is possible for the difference output D. The simplified expression for B, is given by the equation

B,=A.B+A.B,+B.B, (7.16)
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Figure 7.16 Logic implementation of a full subtractor with half-subtractors.

If we compare these expressions with those derived earlier in the case of a full adder, we find that the
expression for DIFFERENCE output D is the same as that for the SUM output. Also, the expression for
BORROW output B, is similar to the expression for CARRY-OUT C,. In the case of a half-subtractor,
the A input is complemented. By a similar analysis it can be shown that a full subtractor can be
implemented with half-subtractors in the same way as a full adder was constructed using half-adders.
Relevant logic diagrams are shown in Figs 7.16(a) and (b) corresponding to Figs 7.10(a) and (b)
respectively for a full adder.

Again, more than one full subtractor can be connected in cascade to perform subtraction on two
larger binary numbers. As an illustration, Fig. 7.17 shows a four-bit subtractor.

7.3.5 Controlled Inverter

A controlled inverter is needed when an adder is to be used as a subtractor. As outlined earlier,
subtraction is nothing but addition of the 2’s complement of the subtrahend to the minuend. Thus, the
first step towards practical implementation of a subtractor is to determine the 2’s complement of the
subtrahend. And for this, one needs firstly to find 1’s complement. A controlled inverter is used to find
1’s complement. A one-bit controlled inverter is nothing but a two-input EX-OR gate with one of its
inputs treated as a control input, as shown in Fig. 7.18(a). When the control input is LOW, the input
bit is passed as such to the output. (Recall the truth table of an EX-OR gate.) When the control input
is HIGH, the input bit gets complemented at the output. Figure 7.18(b) shows an eight-bit controlled
inverter of this type. When the control input is LOW, the output (¥, ¥, Y5 ¥, ¥; Y, Y, Y,) is the same as
the input (A; A As A, A3 A, A Ay). When the control input is HIGH, the output is 1’s complement
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Figure 7.17 Four-bit subtractor.
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Figure 7.18 (a) One-bit controlled inverter and (b) eight-bit controlled inverter.

of the input. As an example, 11010010 at the input would produce 00101101 at the output when the

control input is in a logic ‘1’ state.

7.4 Adder-Subtractor

Subtraction of two binary numbers can be accomplished by adding 2’s complement of the subtrahend
to the minuend and disregarding the final carry, if any. If the MSB bit in the result of addition is
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Figure 7.19 Four-bit adder-subtractor.

a ‘0’, then the result of addition is the correct answer. If the MSB bit is a ‘1°, this implies that the
answer has a negative sign. The true magnitude in this case is given by 2’s complement of the result of
addition.

Full adders can be used to perform subtraction provided we have the necessary additional hardware
to generate 2’s complement of the subtrahend and disregard the final carry or overflow. Figure 7.19
shows one such hardware arrangement. Let us see how it can be used to perform subtraction of two
four-bit binary numbers. A close look at the diagram would reveal that it is the hardware arrangement
for a four-bit binary adder, with the exception that the bits of one of the binary numbers are fed through
controlled inverters. The control input here is referred to as the SUB input. When the SUB input is in
logic ‘0’ state, the four bits of the binary number (B; B, B, B,) are passed on as such to the B inputs of
the corresponding full adders. The outputs of the full adders in this case give the result of addition of the
two numbers. When the SUB input is in logic ‘1” state, four bits of one of the numbers, (B; B, B, B) in
the present case, get complemented. If the same ‘1’ is also fed to the CARRY-IN of the LSB full adder,
what we finally achieve is the addition of 2’s complement and not 1’s complement. Thus, in the adder
arrangement of Fig. 7.19, we are basically adding 2’s complement of (B; B, B; B;) to (A3 A, A, A,). The
outputs of the full adders in this case give the result of subtraction of the two numbers. The arrangement
shown achieves A — B. The final carry (the CARRY-OUT of the MSB full adder) is ignored if it is not
displayed.

For implementing an eight-bit adder—subtractor, we will require eight full adders and eight two-input
EX-OR gates. Four-bit full adders and quad two-input EX-OR gates are individually available in
integrated circuit form. A commonly used four-bit adder in the TTL family is the type number 7483.
Also, type number 7486 is a quad two-input EX-OR gate in the TTL family. Figure 7.20 shows a
four-bit binary adder—subtractor circuit implemented with 7483 and 7486. Two each of 7483 and 7486
can be used to construct an eight-bit adder—subtractor circuit.

7.5 BCD Adder

A BCD adder is used to perform the addition of BCD numbers. A BCD digit can have any of the
ten possible four-bit binary representations, that is, 0000, 0001, . .., 1001, the equivalent of decimal
numbers 0, 1,..., 9. When we set out to add two BCD digits and we assume that there is an input
carry too, the highest binary number that we can get is the equivalent of decimal number 19 (949 + 1).
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Figure 7.20 Four-bit adder-subtractor.

This binary number is going to be (10011),. On the other hand, if we do BCD addition, we would
expect the answer to be (0001 1001)gcp. And if we restrict the output bits to the minimum required, the
answer in BCD would be (1 1001)g¢p. Table 7.1 lists the possible results in binary and the expected
results in BCD when we use a four-bit binary adder to perform the addition of two BCD digits. It is
clear from the table that, as long as the sum of the two BCD digits remains equal to or less than 9, the
four-bit adder produces the correct BCD output.

The binary sum and the BCD sum in this case are the same. It is only when the sum is greater than
9 that the two results are different. It can also be seen from the table that, for a decimal sum greater
than 9 (or the equivalent binary sum greater than 1001), if we add 0110 to the binary sum, we can
get the correct BCD sum and the desired carry output too. The Boolean expression that can apply the
necessary correction is written as

C=K+2,72,+7;.Z, (7.17)
Equation (7.17) implies the following. A correction needs to be applied whenever K = 1. This takes

care of the last four entries. Also, a correction needs to be applied whenever both Z; and Z, are ‘1°.
This takes care of the next four entries from the bottom, corresponding to a decimal sum equal to
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Table 7.1 Results in binary and the expected results in BCD using a four-bit binary adder to perform the addition
of two BCD digits.

Decimal sum Binary sum BCD sum
K Z, Z, Z, Zy C S5 S, S So
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1
2 0 0 0 1 0 0 0 0 1 0
3 0 0 0 1 1 0 0 0 1 1
4 0 0 1 0 0 0 0 1 0 0
5 0 0 1 0 1 0 0 1 0 1
6 0 0 1 1 0 0 0 1 1 0
7 0 0 1 1 1 0 0 1 1 1
8 0 1 0 0 0 0 1 0 0 0
9 0 1 0 0 1 0 1 0 0 1
10 0 1 0 1 0 1 0 0 0 0
11 0 1 0 1 1 1 0 0 0 1
12 0 1 1 0 0 1 0 0 1 0
13 0 1 1 0 1 1 0 0 1 1
14 0 1 1 1 0 1 0 1 0 0
15 0 1 1 1 1 1 0 1 0 1
16 1 0 0 0 0 1 0 1 1 0
17 1 0 0 0 1 1 0 1 1 1
18 1 0 0 1 0 1 1 0 0 0
19 1 0 0 1 1 1 1 0 0 1

12, 13, 14 and 15. For the remaining two entries corresponding to a decimal sum equal to 10 and
11, a correction is applied for both Z; and Z,, being ‘1’. While hardware-implementing, 0110 can be
added to the binary sum output with the help of a second four-bit binary adder. The correction logic as
dictated by the Boolean expression (7.17) should ensure that (0110) gets added only when the above
expression is satisfied. Otherwise, the sum output of the first binary adder should be passed on as such
to the final output, which can be accomplished by adding (0000) in the second adder. Figure 7.21
shows the logic arrangement of a BCD adder capable of adding two BCD digits with the help of two
four-bit binary adders and some additional combinational logic.

The BCD adder described in the preceding paragraphs can be used to add two single-digit
BCD numbers only. However, a cascade arrangement of single-digit BCD adder hardware can be
used to perform the addition of multiple-digit BCD numbers. For example, an n-digit BCD adder
would require n such stages in cascade. As an illustration, Fig. 7.22 shows the block diagram of
a circuit for the addition of two three-digit BCD numbers. The first BCD adder, labelled LSD
(Least Significant Digit), handles the least significant BCD digits. It produces the sum output
(85 8,S,Sy), which is the BCD code for the least significant digit of the sum. It also produces
an output carry that is fed as an input carry to the next higher adjacent BCD adder. This BCD
adder produces the sum output (S;SeSsS,), which is the BCD code for the second digit of the
sum, and a carry output. This output carry serves as an input carry for the BCD adder representing
the most significant digits. The sum outputs (S,; S, Sy Sg) represent the BCD code for the MSD of
the sum.
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Figure 7.22 Three-digit BCD adder.
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Example 7.1

For the half-adder circuit of Fig. 7.23(a), the inputs applied at A and B are as shown in Fig. 7.23(b).
Plot the corresponding SUM and CARRY outputs on the same scale.

Solution
The SUM and CARRY waveforms can be plotted from our knowledge of the truth table of the half-
adder. All that we need to remember to solve this problem is that 0+ 0 yields a ‘0’ as the SUM output
and a ‘0’ as the CARRY. 0+ 1 or 140 yield ‘1’ as the SUM output and ‘0’ as the CARRY. 1+1
produces a ‘0’ as the SUM output and a ‘1’ as the CARRY. The output waveforms are as shown in
Fig. 7.24.

A S
Half Adder
B C
(@)
A
: I
|
1
B |
(b)
Figure 7.23 Example 7.1.
Sum-output

Carry-output

Figure 7.24 Solution to example 7.1.
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Example 7.2

Given the relevant Boolean expressions for half-adder and half-subtractor circuits, design a half-
adder—subtractor circuit that can be used to perform either addition or subtraction on two one-bit
numbers. The desired arithmetic operation should be selectable from a control input.

Solution
Boolean expressions for the half-adder and half-subtractor are given as follows:
Half-adder

SUM output= AB+AB and CARRY output= AB
Half-subtractor
DIFFERENCE output = AB+AB and BORROW output= AB

If we use a controlled inverter for complementing A in the case of the half-subtractor circuit, then
the same hardware can also be used to add two one-bit numbers. Figure 7.25 shows the logic circuit
diagram. When the control input is ‘0’, input variable A is passed uncomplemented to the input of the
NAND gate. In this case, the AND gate generates the CARRY output of the addition operation. The
EX-OR gate generates the SUM output. On the other hand, when the control input is ‘1’, the AND
gate generates the BORROW output and the EX-OR gate generates the DIFFERENCE output. Thus,
‘0’ at the control input makes it a half-adder, while ‘1’ at the control input makes it a half-subtractor.

Example 7.3
Refer to Fig. 7.26. Write the simplified Boolean expressions for DIFFERENCE and BORROW outputs.

A \
) Sum/Difference
B y/
\
Control:0/1 )
/ Carry/Borrow
Figure 7.25 Solution to example 7.2.
A——A SUM DIFFERENCE
B HA HS
C BORROW

Figure 7.26 Example 7.3.
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Solution

Let us assume that the two inputs to the half-subtractor circuit are X and Y, with X equal to the
SUM output of the half-adder and Y equal to C. DIFFERENCE and BORROW outputs can then be
expressed as follows:

DIFFERENCE output=X @Y = X.Y+X.Y and BORROW output= X.Y

Also, X=AB+ABand Y =C.
Substituting the values of X and Y, we obtain

DIFFERENCE output = (A.B+ A.B).C+(A.B+A.B).C = (A.B+A.B).C+(A.B+A.B).C
=AB.C+AB.C+ABC+AB.C

BORROW output = X.Y = (A.B+A.B).C=(A.B+A.B).C=A.B.C+AB.C

Example 7.4

Design an eight-bit adder—subtractor circuit using four-bit binary adders, type number 7483, and quad
two-input EX-OR gates, type number 7486. Assume that pin connection diagrams of these ICs are
available to you.

Solution

IC 7483 is a four-bit binary adder, which means that it can add two four-bit binary numbers. In order to
add two eight-bit numbers, we need to use two 7483s in cascade. That is, the CARRY-OUT (pin 14) of
the 7483 handling less significant four bits is fed to the CARRY-IN (pin 13) of the 7483 handling more
significant four bits. Also, if (A, ... A;) and (B, ... B;) are the two numbers to be operated upon, and
if the objective is to compute A — B, bits B, B, B,, B3, B,, Bs, Bg and B; are complemented using
EX-OR gates. One of the inputs of all EX-OR gates is tied together to form the control input. When
the control input is in logic ‘1’ state, bits B, to B; get complemented. Also, feeding this logic ‘1’ to the
CARRY-IN of lower 7483 ensures that we get 2’s complement of bits (B, ... B;). Therefore, when
the control input is in logic ‘1” state, the two’s complement of (B, . .. B;) is added to (4, ... A;). The
output is therefore A — B. A logic ‘0’ at the control input allows (B, ... B;) to pass through EX-OR
gates uncomplemented, and the output in that case is A+ B. Figure 7.27 shows the circuit diagram.

Example 7.5

The logic diagram of Fig. 7.28 performs the function of a very common arithmetic building block.
Identify the logic function.

Solution
Writing Boolean expressions for X and Y,

X =(A.B).(AB)=(AB+AB)=AB+AB and Y=(A+B)=A.B

Boolean expressions for X and Y are those of a half-adder. X and Y respectively represent SUM and
CARRY outputs.
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Figure 7.27 Solution to example 7.4.

Figure 7.28 Example 7.5.

Example 7.6

Design a BCD adder circuit capable of adding BCD equivalents of two-digit decimal numbers. Indicate
the IC type numbers used if the design has to be TTL logic family compatible.

Solution

The desired BCD adder is a cascaded arrangement of two stages of the type of BCD adder discussed
in the previous pages. Figure 7.29 shows the logic diagram, and it follows the generalized cascaded
arrangement discussed earlier and shown in Fig. 7.22 for a three-digit BCD adder. The BCD adder
of Fig. 7.21 can be used to add four-bit BCD equivalents of two single-digit decimal numbers. A
cascaded arrangement of two such stages, where the output C of Fig. 7.21 (CARRY-OUT) is fed to
the CARRY-IN of the second stage, is shown in Fig. 7.29. In terms of IC type numbers, IC 7483 can
be used for four-bit binary adders as shown in the diagram, IC 7408 can be used for implementing
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Figure 7.29 Example 7.6.

the required four two-input AND gates (IC 7408 is a quad two-input AND) and IC 7432 can be used
to implement the required two three-input OR gates. IC 7432 is a quad two-input OR. Two two-input
OR gates can be connected in cascade to get a three-input OR gate.

7.6 Carry Propagation-Look-Ahead Carry Generator

The four-bit binary adder described in the previous pages can be used to add two four-bit binary
numbers. Multiple numbers of such adders are used to perform addition operations on larger-bit binary
numbers. Each of the adders is composed of four full adders (FAs) connected in cascade. The block
schematic arrangement of a four-bit adder is reproduced in Fig. 7.30(a) for reference and further
discussion. This type of adder is also called a parallel binary adder because all the bits of the augend
and addend are present and are fed to the full adder blocks simultaneously. Theoretically, the addition
operation in various full adders takes place simultaneously. What is of importance and interest to users,
more so when they are using a large number of such adders in their overall computation system, is
whether the result of addition and carry-out are available to them at the same time. In other words, we
need to see if this addition operation is truly parallel in nature. We will soon see that it is not. It is in
fact limited by what is known as carry propagation time. Refer to Figs 7.30(a) and (b). Figure 7.30(b)
shows the logic diagram of a full adder. Here, C; and C,, are the input and output CARRY; P; and
G, are two new binary variables called CARRY PROPAGATE and CARRY GENERATE and will be
addressed a little later.

For i=1, the diagram in Fig. 7.30(b) is that of the LSB full adder of Fig. 7.30(a). We can see here that
C,, which is the output CARRY of FA (1) and the input CARRY for FA (2), will appear at the output after
a minimum of two gate delays plus delay due to the half adder after application of A;, B; and C; inputs.
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Figure 7.30 Four-bit binary adder.

The steady state of C, will be delayed by two gate delays after the appearance of C,. Similarly, C; and C,
steady state will be four and six gate delays respectively after C,. And final carry C; will appear after eight
gate delays.

Extending it a little further, let us assume that we are having a cascade arrangement of two four-bit
adders to be able to handle eight-bit numbers. Now, Cs will form the input CARRY to the second
four-bit adder. The final output CARRY C, will now appear after 16 gate delays. This carry propagation
delay limits the speed with which two numbers are added. The outputs of any such adder arrangement
will be correct only if signals are given enough time to propagate through gates connected between
input and output. Since subtraction is also an addition process and operations like multiplication and
division are also processes involving successive addition and subtraction, the time taken by an addition
process is very critical.

One of the possible methods for reducing carry propagation delay time is to use faster logic gates.
But then there is a limit below which the gate delay cannot be reduced. There are other hardware-
related techniques, the most widely used of which is the concept of look-ahead carry. This concept
attempts to look ahead and generate the carry for a certain given addition operation that would



256 Digital Electronics

otherwise have resulted from some previous operation. In order to explain the concept, let us define
two new binary variables: P; called CARRY PROPAGATE and G; called CARRY GENERATE.
Binary variable G, is so called as it generates a carry whenever A; and B; are ‘1°. Binary variable
P; is called CARRY PROPAGATE as it is instrumental in propagation of C; to C;, ;. CARRY,
SUM, CARRY GENERATE and CARRY PROPAGATE parameters are given by the following

expressions:

P,=A, ®B, (7.18)
G,=A,.B, (7.19)

S, =P,&C, (7.20)
Ci =P.Ci+G, (7.21)

In the next step, we write Boolean expressions for the CARRY output of each full adder stage in the
four-bit binary adder. We obtain the following expressions:

C,=G,+P,.C (7.22)

C;=G,+P,.C,=G,+P,.(G,+P,.C}) = G, 4+ P,.G, + P,.P,.C, (7.23)
C,=G3+Py.C;=Gy+P;.(Gy+P,.G, + P,.P,.C))

C, =G5+ Py.G,+ Py.P,.G, + P,.P,.P;.C, (7.24)

From the expressions for C,, C; and C, it is clear that C, need not wait for C; and C, to propagate.
Similarly, C; does not wait for C, to propagate. Hardware implementation of these expressions gives
us a kind of look-ahead carry generator. A look-ahead carry generator that implements the above
expressions using AND-OR logic is shown in Fig. 7.31.

Figure 7.32 shows the four-bit adder with the look-ahead carry concept incorporated. The block
labelled look-ahead carry generator is similar to that shown in Fig. 7.31. The logic gates shown to the
left of the block represent the input half-adder portion of various full adders constituting the four-bit
adder. The EX-OR gates shown on the right are a portion of the output half-adders of various full
adders.

All sum outputs in this case will be available at the output after a delay of two levels of logic
gates. 74182 is a typical look-ahead carry generator IC of the TTL logic family. This IC can be
used to generate relevant carry inputs for four four-bit binary adders connected in cascade to perform
operation on two 16-bit numbers. Of course, the four-bit adders should be of the type so as to produce
CARRY GENERATE and CARRY PROPAGATE outputs. Figure 7.33 shows the arrangement. In
the figure shown, C, is the CARRY input, G,, G,, G, and G; are CARRY GENERATE inputs
for 74182 and P,, Py, P, and P; are CARRY PROPAGATE inputs for 74182. C,,, C,,, and
C,.. are the CARRY outputs generated by 74182 for the four-bit adders. The G and P outputs
of 74182 need to be cascaded. Figure 7.34 shows the arrangement needed for adding two 64-bit
numbers.
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Figure 7.31 Look-ahead carry generator.

Example 7.7

If the CARRY GENERATE G; and CARRY PROPAGATE P; are redefined as P; = (A;+ B;) and
G; = A;B;, show that the CARRY output C;,, and the SUM output S; of a full adder can be expressed

=i

by the following Boolean functions:
Ci1=(C.G;+P)=G,+P.C; and S;=(P.G)&C,

Solution

Ciy1 =(C.G;+P) =[C..(A; B) + (A, +B))]

= [E(ﬁ)(/& +Bi)]
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Figure 7.32 Four-bit full adder with a look-ahead carry generator.

=(C,+A,.B)).(A;+B,) = C,.(A,+B;))+ A,.B,.(A; + B)
= Ci.(A[ +B[) +A,'~B1 = Pi-Ci + Gi
Si = (Az @Bt) &) Ci = (XIB, —I—A,E) S Ci
Also

(P.G)®C;=[(A;+B).(A;.B)]® C;
= [(Ai + Bz)(E‘*’E)] &C = (Xi'Bi +Ai'Ei) &G

Therefore, S; = (P,.G,) ® C..
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Figure 7.34 Look-ahead carry generation for adding 64-bit numbers.
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7.7 Arithmetic Logic Unit (ALU)

The arithmetic logic unit (ALU) is a digital building block capable of performing both arithmetic as
well as logic operations. Arithmetic logic units that can perform a variety of arithmetic operations
such as addition, subtraction, etc., and logic functions such as ANDing, ORing, EX-ORing, etc., on
two four-bit numbers are usually available in IC form. The function to be performed is selectable from
function select pins. Some of the popular type numbers of ALU include 74181, 74381, 74382, 74582
(all from the TTL logic family) and 40181 (from the CMOS logic family). Functional details of these
ICs are given in the latter part of the chapter under the heading of Application-Relevant Information.
More than one such IC can always be connected in cascade to perform arithmetic and logic operations
on larger bit numbers.

7.8 Multipliers

Multiplication of binary numbers is usually implemented in microprocessors and microcomputers by
using repeated addition and shift operations. Since the binary adders are designed to add only two
binary numbers at a time, instead of adding all the partial products at the end, they are added two
at a time and their sum is accumulated in a register called the accumulator register. Also, when the
multiplier bit is ‘0, that very partial product is ignored, as an all ‘0’ line does not affect the final result.
The basic hardware arrangement of such a binary multiplier would comprise shift registers for the
multiplicand and multiplier bits, an accumulator register for storing partial products, a binary parallel
adder and a clock pulse generator to time various operations.

4-Bit
Number

First [ 1A

1D Yob—2
Second[ 2A (7 E— o1

- B
4-Bit 2C 74284 2
Number 2D Yo ——2

GA Y3p—2

1C Y4 —2

Y5—2

74285
2B
2C Yo [——2

Y7—2

~ o o b

Figure 7.35 4 x 4 bit multiplier.
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Binary multipliers are also available in IC form. Some of the popular type numbers in the TTL
family include 74261 which is a 2 x 4 bit multiplier (a four-bit multiplicand designated as B,B;,B,,
B; and B,, and a two-bit multiplier designated as M,, M, and M,).

The MSBs B, and M, are used to represent signs. 74284 and 74285 are 4 x 4 bit multipliers. They
can be used together to perform high-speed multiplication of two four-bit numbers. Figure 7.35 shows
the arrangement. The result of multiplication is often required to be stored in a register. The size of
this register (accumulator) depends upon the number of bits in the result, which at the most can be
equal to the sum of the number of bits in the multiplier and multiplicand. Some multiplier ICs have
an in-built register.

Many microprocessors do not have in their ALU the hardware that can perform multiplication
or other complex arithmetic operations such as division, determining the square root, trigonometric
functions, etc. These operations in these microprocessors are executed through software. For
example, a multiplication operation may be accomplished by using a software program that does
multiplication through repeated execution of addition and shift instructions. Other complex operations
mentioned above can also be executed with similar programs. Although the use of software reduces
the hardware needed in the microprocessor, the computation time in general is higher in the
case of software-executed operations when compared with the use of hardware to perform those
operations.

7.9 Magnitude Comparator

A magnitude comparator is a combinational circuit that compares two given numbers and determines
whether one is equal to, less than or greater than the other. The output is in the form of three binary
variables representing the conditions A =B, A > B and A < B, if A and B are the two numbers being
compared. Depending upon the relative magnitude of the two numbers, the relevant output changes
state. If the two numbers, let us say, are four-bit binary numbers and are designated as (A; A, A, A)
and (B; B, B, B,), the two numbers will be equal if all pairs of significant digits are equal, that is,
A;=B;, A, =B,, A, = B, and A; = B,,. In order to determine whether A is greater than or less than
B, we inspect the relative magnitude of pairs of significant digits, starting from the most significant
position. The comparison is done by successively comparing the next adjacent lower pair of digits if
the digits of the pair under examination are equal. The comparison continues until a pair of unequal
digits is reached. In the pair of unequal digits, if A; =1 and B; =0, then A > B, and if A; =0,
B;=1then A<B. If X, Y and Z are three variables respectively representing the A=B, A > B
and A < B conditions, then the Boolean expression representing these conditions are given by the
equations

X = x3.%,.x,.X, where x; = A,.B;+A,.B; (7.25)
Y = Ay.By+x3.4,.B, + X3.%,.A, . B, + X3.%,.%,.49.By (7.26)
Z =A;.By+x3.A5.By + x3.%,. A, B, + x3.%,.%,.Aq. By (7.27)

Let us examine equation (7.25). x; will be ‘1’ only when both A; and B; are equal. Similarly, conditions
for x,, x; and x, to be ‘1’ respectively are equal A, and B,, equal A, and B, and equal A, and B,.
ANDing of x3, x,, x; and x, ensures that X will be ‘1’ when x3, x,, x; and x, are in the logic ‘1’
state. Thus, X = 1 means that A = B. On similar lines, it can be visualized that equations (7.26) and
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Figure 7.36 Four-bit magnitude comparator.

(7.27) respectively represent A > B and A < B conditions. Figure 7.36 shows the logic diagram of a
four-bit magnitude comparator.

Magnitude comparators are available in IC form. For example, 7485 is a four-bit magnitude
comparator of the TTL logic family. IC 4585 is a similar device in the CMOS family. 7485 and 4585
have the same pin connection diagram and functional table. The logic circuit inside these devices
determines whether one four-bit number, binary or BCD, is less than, equal to or greater than a
second four-bit number. It can perform comparison of straight binary and straight BCD (8-4-2-1)
codes. These devices can be cascaded together to perform operations on larger bit numbers without the
help of any external gates. This is facilitated by three additional inputs called cascading or expansion
inputs available on the IC. These cascading inputs are also designated as A=B, A> B and A <B
inputs. Cascading of individual magnitude comparators of the type 7485 or 4585 is discussed in the
following paragraphs. IC 74AS885 is another common magnitude comparator. The device is an eight-
bit magnitude comparator belonging to the advanced Schottky TTL family. It can perform high-speed
arithmetic or logic comparisons on two eight-bit binary or 2’s complement numbers and produces two
fully decoded decisions at the output about one number being either greater than or less than the other.
More than one of these devices can also be connected in a cascade arrangement to perform comparison
of numbers of longer lengths.
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7.9.1 Cascading Magnitude Comparators

As outlined earlier, magnitude comparators available in IC form are designed in such a way that
they can be connected in a cascade arrangement to perform comparison operations on numbers of
longer lengths. In cascade arrangement, the A =B, A > B and A < B outputs of a stage handling
less significant bits are connected to corresponding inputs of the next adjacent stage handling more
significant bits. Also, the stage handling least significant bits must have a HIGH level at the A = B
input. The other two cascading inputs (A > B and A < B) may be connected to a LOW level. We
will illustrate the concept by showing the arrangement of an eight-bit magnitude comparator using two
four-bit magnitude comparators of the type 7485 or 4585. Figure 7.37 shows the cascaded arrangement
of the two comparators. We can see the three comparison outputs of the comparator handling less
significant four bits of the two numbers being connected to the corresponding cascading inputs of the
comparator handling more significant four bits of the two numbers. Also, cascading inputs of the less
significant comparator have been connected to a HIGH or LOW level as per the guidelines mentioned
in the previous paragraph.

Operation of this circuit can be explained by considering the functional table of IC 7485 or IC 4585
as shown in Table 7.2. The two numbers being compared here are (A, ... Ag) and (B, ... B,). The
less significant comparator handles (A5, A,, A,, A,) and (B, B,, B, B,), and the more significant
comparator handles (A,, A, As, A,) and (B;, By, Bs, B,). Let us take the example of the two numbers
being such that A; > B,. From the first-row entry of the function table it is clear that, irrespective
of the status of other bits of the more significant comparator, and also regardless of the status of its
cascading inputs, the final output produces a HIGH at the A > B output and a LOW at the A < B and
A = B outputs. Since the status of cascading inputs of the more significant comparator depends upon
the status of comparison bits of the less significant comparator, the cascade arrangement produces the
correct output for A, > B, regardless of the status of all other comparison bits. On similar lines, the
circuit produces a valid output for any given status of comparison bits.

Example 7.8

Design a two-bit magnitude comparator. Also, write relevant Boolean expressions.

Ap—Ap Ag—Ag
Al ——A1 Ag——A1
Ap—A2 Ag—]A2
A3—A3 A7—]A3
Bo——Bo A<B B4——Bo A<B [— 8-Bit
21 S 21 A=B 55— 21 A=B |—— Comparison
2—|b2 6— B2 L Outputs

B3 B3 A>B B, B3 A>B utpu

IA<B IA<B

T'o—{1A=B IA=B

IA>B IA>B

= Less Significant More significant
comparator comparator
Figure 7.37 Cascading of individual magnitude comparators.
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Table 7.2 Functional table of IC 7485 or IC 4585.
Comparison inputs Cascading inputs Outputs

Aj,B; A,,B, A,B; Ay, By A>B A<B A=B A>B A<B A=B
A3 > By X X X X X X HIGH LOW LOW
A; < By X X X X X X LOW HIGH LOW
A3 =B, A, > B, X X X X X HIGH LOW LOW
A; =B, A, <B, X X X X X LOW HIGH LOW
Ay =B, A, =B, A, > B, X X X X HIGH LOW LOW
A; =B, A, =B, A, < B, X X X X LOW HIGH LOW
A3 =B, A, =B, A, =B, Ay > B, X X X HIGH LOW LOW
A; =B, A, =B, A, =B, Ay < B, X X X LOW HIGH LOW
Ay =B, A, =B, A, =B, Ay =B, HIGH LOW LOW HIGH LOW LOW
A; =B, A, =B, A, =B, Ay =B, LOW HIGH LOW LOW HIGH LOW
Ay =B, A, =B, A, =B, Ay =B, LOW LOW HIGH LOW LOW HIGH
Ay =B, A, =B, A, =B, Ay =B, X X HIGH LOW LOW HIGH
A3 =B, A, =B, A, =B, Ay =B, HIGH HIGH LOW LOW LOW LOW
Ay =B, A, =B, A, =B, Ay =B, LOW LOW LOW HIGH HIGH LOW
Solution

Let A(A,A,) and B (B,B,) be the two numbers. If X, Y and Z represent the conditions A= B, A > B
and A < B respectively (that is, X =1, Y=0and Z=0 for A=B; X=0, Y=1 and Z =0 for
A>B;and X=0,Y=0and Z=1 for A < B), then expressions for X, ¥ and Z can be written as

follows:

Figure 7.38 shows the logic diagram of the two-bit comparator.

X =x,.x, where x, = A;.B,+A,.B, and x,=A,.By+Ay.B,

Example 7.9

Y =A,.B,+x,.40.B,
Z=A,.B,+x,.Ay.B,

Hardware-implement a three-bit magnitude comparator having one output that goes HIGH when the

two three-bit numbers are equal. Use only NAND gates.

Solution

The equivalence condition of the two three-bit numbers is given by the equation X = x,.x,.x,, where

X, =A,.B,+A,.By, x, =A,.B, +A,.B, and x, = Ay.By+ A,.B,.

Figure 7.39 shows the logic diagram. x,, x, and x, are respectively given by EX-NOR operation of

(A,, B,), (A, B)) and (A, B,). These are then ANDed to get X.
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Figure 7.38 Solution to example 7.8.
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Figure 7.39 Solution to example 7.9.
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Table 7.3 Commonly used IC type numbers used for arithmetic operations.

IC type Function Logic
number family
7483 Four-bit full adder TTL
7485 Four-bit magnitude comparator TTL
74181 Four-Bit ALU and function generator TTL
74182 Look-ahead carry generator TTL
74183 Dual carry save full adder TTL
74283 Four-bit full binary adder TTL
74885 Eight-bit magnitude comparator TTL
4008 Four-bit binary full adder CMOS
4527 BCD rate multiplier CMOS
4585 Four-bit magnitude comparator CMOS
40181 Four-bit arithmetic logic unit CMOS
40182 Look-ahead carry generator CMOS
10179 Look-ahead carry block ECL
10180 Dual high-speed two-bit adder/subtractor ECL
10181 Four-bit arithmetic logic unit/function generator ECL
10182 Four-bit arithmetic logic unit/function generator ECL
10183 4 x 2 multiplier ECL

7.10 Application-Relevant Information

Table 7.3 lists commonly used IC type numbers used for arithmetic operations. Application-relevant
information such as pin connection diagrams, truth tables, etc., in respect of the more popular of these
type numbers is given on the companion website.

Review Questions

1.

How do you characterize or define a combinational circuit? How does it differ from a sequential
circuit? Give two examples each of combinational and sequential logic devices.

. Beginning with the statement of the problem, outline different steps involved in the design of a

suitable combinational logic circuit to implement the hardware required to solve the given problem.

. Write down Boolean expressions representing the SUM and CARRY outputs in terms of three input

binary variables to be added. Design a suitable combinational circuit to hardware-implement the
design using NAND gates only.

. Draw the truth table of a full subtractor circuit. Write a minterm Boolean expression for

DIFFERENCE and BORROW outputs in terms of minuend variable, subtrahend variable and
BORROW-IN. Minimize the expressions and implement them in hardware.

. Draw the logic diagram of a three-digit BCD adder and briefly describe its functional principle.
. Briefly describe the concept of look-ahead carry generation with respect to its use in adder circuits.

What is its significance while implementing hardware for addition of binary numbers of longer
lengths?

. With the help of a block schematic of the logic circuit, briefly describe how individual four-bit

magnitude comparators can be used in a cascade arrangement to perform magnitude comparison of
binary numbers of longer lengths.
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Problems

1. A, B, B,,, D and B, are respectively the minuend, the subtrahend, the BORROW-IN, the
DIFFERENCE output and the BORROW-OUT in the case of a full subtractor. Determine the bit
status of D and B, for the following values of A, B and B;;:

() A=0,B=1,B, =1
(b)A=1,B=1,B,=0
(c)A=1,B=1,B, =1
(d)A=0,B=0,B, =1

(a) D=0, B,,, =1; (b) D=0, B,,,=0; (c) D=1, B,,, =1; (d) D=1, B,,, = I

out

2. Determine the number of half and full adder circuit blocks required to construct a 64-bit binary
parallel adder. Also, determine the number and type of additional logic gates needed to transform
this 64-bit adder into a 64-bit adder—subtractor.

For a 64-bit adder: HA=1, FA=63
For a 64-bit adder—subtractor: HA= 1, FA=63, EX-OR gates =64

3. If the minuend, subtrahend and BORROWE-IN bits are respectively applied to the Augend, Addend
and the CARRY-IN inputs of a full adder, prove that the SUM output of the full adder will produce
the correct DIFFERENCE output.

4. Prove that the logic diagram of Fig. 7.40 performs the function of a half-subtractor provided that ¥
represents the DIFFERENCE output and X represents the BORROW output.

5. Determine the number of 7483s (four-bit binary adders) and 7486s (quad two-input EX-OR gates)
required to design a 16-bit adder—subtractor circuit.

Number of 7483 =4,; number of 7486 =4

: ) > [
>

Figure 7.40 Problem 4.

6. The objective is to design a BCD adder circuit using four-bit binary adders and additional
combinational logic. If the decimal numbers to be added can be anywhere in the range from 0 to
9999, determine the number of four-bit binary adder circuit blocks of type IC 7483 required to do
the job.

Number of four-bit adders =8
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Multiplexers and Demultiplexers

In the previous chapter, we described at length those combinational logic circuits that can be used
to perform arithmetic and related operations. This chapter takes a comprehensive look at yet another
class of building blocks used to design more complex combinational circuits, and covers building
blocks such as multiplexers and demultiplexers and other derived devices such as encoders and
decoders. Particular emphasis is given to the operational basics and use of these devices to design more
complex combinational circuits. Application-relevant information in terms of the list of commonly used
integrated circuits available in this category, along with their functional description is given towards
the end of the chapter. The text has been adequately illustrated with the help of a large number of
solved examples.

8.1 Multiplexer

A multiplexer or MUX, also called a data selector, is a combinational circuit with more than one
input line, one output line and more than one selection line. There are some multiplexer ICs that
provide complementary outputs. Also, multiplexers in IC form almost invariably have an ENABLE
or STROBE input, which needs to be active for the multiplexer to be able to perform its intended
function. A multiplexer selects binary information present on any one of the input lines, depending
upon the logic status of the selection inputs, and routes it to the output line. If there are n selection lines,
then the number of maximum possible input lines is 2" and the multiplexer is referred to as a 2"-to-1
multiplexer or 2" x 1 multiplexer. Figures 8.1(a) and (b) respectively show the circuit representation
and truth table of a basic 4-to-1 multiplexer.

To familiarize readers with the practical multiplexer devices available in IC form, Figs 8.2 and 8.3
respectively show the circuit representation and function table of 8-to-1 and 16-to-1 multiplexers. The
8-to-1 multiplexer of Fig. 8.2 is IC type number 74151 of the TTL family. It has an active LOW
ENABLE input and provides complementary outputs. Figure 8.3 refers to IC type number 74150 of
the TTL family. It is a 16-to-1 multiplexer with active LOW ENABLE input and active LOW output.

Digital Electronics: Principles, Devices and Applications ~Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5
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4-to-1
MUX O/P |——Y
X1 X
(a)
X Xo Y
0 0 lo
0 1 l4
1 0 Io
1 1 I3

(b)

Figure 8.1 (a) 4-to-1 multiplexer circuit representation and (b) 4-to-1 multiplexer truth table.

O W >0

D1
D2
D3
D4
D5
D6
D7

8-to-1
MUX

(@)

Inputs Output

Select Enable
c|B| A G \a
X | X| X H L H
L|{L|L L DO DO
L{L|H L D1 D1
L|H|L L D2 D2
L|{H|H L D3 D3
H|lL|L L D4 D4
H|L|H L D5 D5
H|IH|L L D6 D6
H|IH|H L b7 D7

G : ENABLE input

A, B, C: Select inputs
D0-D7 : Data inputs
Y,W : outputs

(b)

Figure 8.2 (a) 8-to-1 multiplexer circuit representation and (b) 8-to-1 multiplexer truth table.
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Inputs

G — Select Enable OWUt
A — D|C|B|A G

g ] X | X | X|X H H
D — | L|iL|L|L L [
D0 — LiL|L|H L D1
D] — L|L|H|L L D2
D2 — L|{L|H|H L D3
D3 — L{H|IL|L L D4
D4 — L|{H|L|H L D5
D5 — 1I?IIEJOX1 P— W | L|H|H|L L D6
D6 = LIH|H|H|] L D7
D7 ™ HiL|[L|[L] L D8
g HiL|L|H| L D9
D10 —— H|{L|H|L L D10
D11 —— H|{L|H|H L D11
D12 — H{H|L|L L D12
D13 — H{H|L|H L D13
D14 — H|H|H|L L D14
D15 — H|{H|H|H L D15

(@) (b)

Figure 8.3 (a) 16-to-1 multiplexer circuit representation and (b) 16-to-1 multiplexer truth table.

8.1.1 Inside the Multiplexer

We will briefly describe the type of combinational logic circuit found inside a multiplexer by
considering the 2-to-1 multiplexer in Fig. 8.4(a), the functional table of which is shown in Fig.
8.4(b). Figure 8.4(c) shows the possible logic diagram of this multiplexer. The circuit functions as
follows:

e For S =0, the Boolean expression for the output becomes Y = I,.
e For S =1, the Boolean expression for the output becomes Y = ;.

Thus, inputs I, and I, are respectively switched to the output for S =0 and § = 1. Extending the
concept further, Fig. 8.5 shows the logic diagram of a 4-to-1 multiplexer. The input combinations 00,
01, 10 and 11 on the select lines respectively switch [, I, I, and I; to the output.The operation of the
circuit is governed by the Boolean function (8.1). Similarly, an 8-to-1 multiplexer can be represented
by the Boolean function (8.2):

Y =1,5,.5S+1.5,.S+1,.5,.5+1.5,.5, (8.1)

Y=1,5,.8,8+1.5,.5,.8,+1,.5,.8,.8,+ I,.5,.8,.Sy + 1,.5,.S,.S,
+15.5,.8,.8y + 15.5,.8,.8, + 15.5,.5, .S, (8.2)
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(b)

(c)

Figure 8.4 (a)2-to-1 multiplexer circuit representation, (b) 2-to-1 multiplexer truth table and (c) 2-to-1 multiplexer
logic diagram.

As outlined earlier, multiplexers usually have an ENABLE input that can be used to control the
multiplexing function. When this input is enabled, that is, when it is in logic ‘1’ or logic ‘0’ state,
depending upon whether the ENABLE input is active HIGH or active LOW respectively, the output
is enabled. The multiplexer functions normally. When the ENABLE input is inactive, the output is
disabled and permanently goes to either logic ‘0’ or logic ‘1’ state, depending upon whether the output
is uncomplemented or complemented. Figure 8.6 shows how the 2-to-1 multiplexer of Fig. 8.4 can
be modified to include an ENABLE input. The functional table of this modified multiplexer is also
shown in Fig. 8.6. The ENABLE input here is active when HIGH. Some IC packages have more than
one multiplexer. In that case, the ENABLE input and selection inputs are common to all multiplexers
within the same IC package. Figure 8.7 shows a 4-to-1 multiplexer with an active LOW ENABLE
input.
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Figure 8.5 Logic diagram of a 4-to-1 multiplexer.
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- o X|W»m
- a0
S

S EN

Figure 8.6 2-to-1 multiplexer with an ENABLE input.

8.1.2 Implementing Boolean Functions with Multiplexers

One of the most common applications of a multiplexer is its use for implementation of combinational
logic Boolean functions. The simplest technique for doing so is to employ a 2"-to-1 MUX to implement
an n-variable Boolean function. The input lines corresponding to each of the minterms present in the
Boolean function are made equal to logic ‘1’ state. The remaining minterms that are absent in the
Boolean function are disabled by making their corresponding input lines equal to logic ‘0’. As an
example, Fig. 8.8(a) shows the use of an 8-to-1 MUX for implementing the Boolean function given
by the equation

f(A,B,C)=Y"2,4,7 (8.3)
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lo —J\
1
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Y
I2
X X 1 0
|3 0 0 0 IO
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c»é q Zﬁ 1 1 0 |3
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Figure 8.7 4-to-1 multiplexer with an ENABLE input.
In terms of variables A, B and C, equation (8.3) can be written as follows:
f(A,B,C)=A.B.C+AB.C+A.B.C (8.4)

As shown in Fig. 8.8, the input lines corresponding to the three minterms present in the given Boolean
function are tied to logic ‘1’. The remaining five possible minterms absent in the Boolean function are
tied to logic ‘0’.

However, there is a better technique available for doing the same. In this, a 2"-to-1 MUX can be
used to implement a Boolean function with n + 1 variables. The procedure is as follows. Out of n +
1 variables, n are connected to the n selection lines of the 2"-to-1 multiplexer. The left-over variable
is used with the input lines. Various input lines are tied to one of the following: ‘0’, ‘1°, the left-over
variable and the complement of the left-over variable. Which line is given what logic status can be
easily determined with the help of a simple procedure. The complete procedure is illustrated for the
Boolean function given by equation (8.3).

It is a three-variable Boolean function. Conventionally, we will need to use an 8-to-1 multiplexer
to implement this function. We will now see how this can be implemented with a 4-to-1 multiplexer.
The chosen multiplexer has two selection lines. The first step here is to determine the truth table of
the given Boolean function, which is shown in Table 8.1.

In the next step, two of the three variables are connected to the two selection lines, with the higher-
order variable connected to the higher-order selection line. For instance, in the present case, variables
B and C are the chosen variables for the selection lines and are respectively connected to selection
lines S, and S,. In the third step, a table of the type shown in Table 8.2 is constructed. Under the inputs
to the multiplexer, minterms are listed in two rows, as shown. The first row lists those terms where
remaining variable A is complemented, and second row lists those terms where A is uncomplemented.
This is easily done with the help of the truth table.

The required minterms are identified or marked in some manner in this table. In the given
table, these entries have been highlighted. Each column is inspected individually. If neither minterm
of a certain column is highlighted, a ‘0’ is written below that. If both are highlighted, a ‘1’ is
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I5 MUX
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Figure 8.8 Hardware implementation of the Boolean function given by equation (8.3).

Table 8.1 Truth table.

Minterm A B C flA,B,C)
0 0 0 0 0
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 0
6 1 1 0 0
7 1 1 1 1

written. If only one is highlighted, the corresponding variable (complemented or uncomplemented)
is written. The input lines are then given appropriate logic status. In the present case, I,, I,
I, and I; would be connected to A, 0, A and A respectively. Figure 8.8(b) shows the logic
implementation.
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Table 8.2 Implementation table for

multiplexers.
I 0 1 1 I 2 I 3
A 0 1 2 3
A 4 5 6 7
A 0 A A

Table 8.3 Implementation table for multiplexers.

IO 11 12 13
C 0 2 4 6
C 1 3 5 7
0 c C C

It is not necessary to choose only the leftmost variable in the sequence to be used as input to
the multiplexer. Any of the variables can be used provided the implementation table is constructed
accordingly. In the problem illustrated above, A was chosen as the variable for the input lines,
and accordingly the first row of the implementation table contained those entries where ‘A’ was
complemented and the second row contained those entries where A was uncomplemented. If we
consider C as the left-out variable, the implementation table will be as shown in Table 8.3.

Figure 8.9 shows the hardware implementation. For the case of B being the left-out variable, the
implementation table is shown in Table 8.4 and the hardware implementation is shown in Fig. 8.10.

Figure 8.9 Hardware implementation using a 4-to-1 multiplexer.

Table 8.4 Implementation table for multiplexers.

Iy 1 I I

o

N O

~

wl o &
2
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Figure 8.10 Hardware implementation using a 4-to-1 multiplexer.

Parallel s/ 14 8-to-1 |,y Serial
inputs s MUX output
e
- 7
2 %1 S
c } B A Clock
s FF2 14 s FF1 79 4 FFO 79 Input

Figure 8.11 Multiplexer for parallel-to-serial conversion.

8.1.3 Multiplexers for Parallel-to-Serial Data Conversion

Although data are processed in parallel in many digital systems to achieve faster processing speeds,
when it comes to transmitting these data relatively large distances, this is done serially. The parallel
arrangement in this case is highly undesirable as it would require a large number of transmission
lines. Multiplexers can possibly be used for parallel-to-serial conversion. Figure 8.11 shows one such
arrangement where an 8-to-1 multiplexer is used to convert eight-bit parallel binary data to serial
form. A three-bit counter controls the selection inputs. As the counter goes through 000 to 111, the
multiplexer output goes through /;, to I;. The conversion process takes a total of eight clock cycles. In
the figure shown, the three-bit counter has been constructed with the help of three toggle flip-flops.
A variety of counter circuits of various types and complexities are, however, available in IC form.
Flip-flops and counters are discussed in detail in Chapters 10 and 11 respectively.

Example 8.1

Implement the product-of-sums Boolean function expressed by 111,2,5 by a suitable multiplexer.
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Solution
e Let the Boolean function be f(A, B,C)=1]]1,2,5.
e The equivalent sum-of-products expression can be written as f(A, B, C) =).0,3,4,6,7.

The truth table for the given Boolean function is given in Table 8.5. The given function can be
implemented with a 4-to-1 multiplexer with two selection lines. Variables A and B are chosen for the
selection lines. The implementation table as drawn with the help of the truth table is given in Table 8.6.
Figure 8.12 shows the hardware implementation.

Table 8.5 Truth table.

C B A flA,B,C)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1
Table 8.6 Implementation table.
I() 11 12 13
Cc 0 1 2 3
C 4 5 6 7
1 0 C 1
o
lo
0 |1 4-to-1 Y F
C 2 mux
I3
S1_So
B |

Figure 8.12 Example 8.1.
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Figure 8.13 Example 8.2.

Example 8.2

Figure 8.13 shows the use of an 8-to-1 multiplexer to implement a certain four-variable Boolean
function. From the given logic circuit arrangement, derive the Boolean expression implemented by the
given circuit.

Solution

This problem can be solved by simply working backwards in the procedure outlined earlier for designing
the multiplexer-based logic circuit for a given Boolean function. Here, the hardware implementation
is known and the objective is to determine the corresponding Boolean expression.

From the given logic circuit, we can draw the implementation table as given in Table 8.7. The
entries in the first row (0, 1, 2, 3, 4, 5, 6, 7) and the second row (8, 9, 10, 11, 12, 13, 14, 15) are
so because the selection variable chosen for application to the inputs is the MSB variable D. Entries
in the first row include all those minterms that contain D, and entries in the second row include all
those minterms that contain D. After writing the entries in the first two rows, the entries in the third
row can be filled in by examining the logic status of different input lines in the given logic circuit
diagram. Having completed the third row, relevant entries in the first and second rows are highlighted.
The Boolean expression can now be written as follows:

Y=)2,4,9,10=D.C.B.A+D.C.B.A+D.C.B.A+D.C.BA
=C.BA.(D+D)+D.CB.A+D.CB.A
=C.BA+D.CBA+D.CB.A

L, I, L L, I, Iy I L




280 Digital Electronics

8.1.4 Cascading Multiplexer Circuits

There can possibly be a situation where the desired number of input channels is not available in IC
multiplexers. A multiple number of devices of a given size can be used to construct multiplexers that
can handle a larger number of input channels. For instance, 8-to-1 multiplexers can be used to construct
16-to-1 or 32-to-1 or even larger multiplexer circuits. The basic steps to be followed to carry out the
design are as follows:

1. If 2" is the number of input lines in the available multiplexer and 2V is the number of input lines in
the desired multiplexer, then the number of individual multiplexers required to construct the desired
multiplexer circuit would be 2V="

2. From the knowledge of the number of selection inputs of the available multiplexer and that of the
desired multiplexer, connect the less significant bits of the selection inputs of the desired multiplexer
to the selection inputs of the available multiplexer.

3. The left-over bits of the selection inputs of the desired multiplexer circuit are used to enable or
disable the individual multiplexers so that their outputs when ORed produce the final output. The
procedure is illustrated in solved example 8.3.

Example 8.3

Design a 16-to-1 multiplexer using two 8-to-1 multiplexers having an active LOW ENABLE input.

Solution

A 16-to-1 multiplexer can be constructed from two 8-to-1 multiplexers having an ENABLE
input. The ENABLE input is taken as the fourth selection variable occupying the MSB position.
Figure 8.14 shows the complete logic circuit diagram. IC 74151 can be used to implement an 8-to-1
multiplexer.

The circuit functions as follows. When S; is in logic ‘O’ state, the upper multiplexer is enabled and
the lower multiplexer is disabled. If we recall the truth table of a four-variable Boolean function, S,
would be ‘0’ for the first eight entries and ‘1’ for the remaining eight entries. Therefore, when S; =0
the final output will be any of the inputs from D, to D,, depending upon the logic status of S,, S| and
S,. Similarly, when S; = 1 the final output will be any of the inputs from Dy to D5, again depending
upon the logic status of S,, S; and S,. The circuit therefore implements the truth table of a 16-to-1
multiplexer.

8.2 Encoders

An encoder is a multiplexer without its single output line. It is a combinational logic function that has
2" (or fewer) input lines and n output lines, which correspond to n selection lines in a multiplexer.
The n output lines generate the binary code for the possible 2" input lines. Let us take the case of an
octal-to-binary encoder. Such an encoder would have eight input lines, each representing an octal digit,
and three output lines representing the three-bit binary equivalent. The truth table of such an encoder
is given in Table 8.8. In the truth table, D, to D, represent octal digits O to 7. A, B and C represent
the binary digits.
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Figure 8.14 Example 8.3.

The eight input lines would have 28 = 256 possible combinations. However, in the case of an
octal-to-binary encoder, only eight of these 256 combinations would have any meaning. The remaining
combinations of input variables are ‘don’t care’ input combinations. Also, only one of the input lines
at a time is in logic ‘1’ state. Figure 8.15 shows the hardware implementation of the octal-to-binary
encoder described by the truth table in Table 8.8. This circuit has the shortcoming that it produces an
all Os output sequence when all input lines are in logic ‘O’ state. This can be overcome by having an
additional line to indicate an all Os input sequence.

8.2.1 Priority Encoder

A priority encoder is a practical form of an encoder. The encoders available in IC form are all
priority encoders. In this type of encoder, a priority is assigned to each input so that, when more
than one input is simultaneously active, the input with the highest priority is encoded. We will
illustrate the concept of priority encoding with the help of an example. Let us assume that the octal-
to-binary encoder described in the previous paragraph has an input priority for higher-order digits.
Let us also assume that input lines D,, D, and D, are all simultaneously in logic ‘1’ state. In
that case, only D, will be encoded and the output will be 111. The truth table of such a priority
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Figure 8.15 Octal-to-binary encoder.

Table 8.8 Truth table of an encoder.

p, b D, D D, Ds D¢ D, A B C
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0o 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 10 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

encoder will then be modified to what is shown in Table 8.9. Looking at the last row of the
table, it implies that, if D; = 1, then, irrespective of the logic status of other inputs, the output is
111 as D, will only be encoded. As another example, Fig. 8.16 shows the logic symbol and truth
table of a 10-line decimal to four-line BCD encoder providing priority encoding for higher-order
digits, with digit 9 having the highest priority. In the functional table shown, the input line with
highest priority having a LOW on it is encoded irrespective of the logic status of the other input
lines.
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Table 8.9 Priority encoder.

p, D D, D, D, D D, D, A B C
1 0 0 0 0 0 0 0 0 0 o0
X 1 0 0 0 0 0 0 o o0 1
X X 1 0 0 0 0 0 0o 1 0
X X X 1 0 0 0 0 o 1 1
X X X X 1 0 0 0 10 o0
X X X X X 1 0 0 10 1
X X X X X X 1 0 1 10
X X X X X X X 1 I

00—

1——

2 1 10-Line p——n

33—

Decimal
4—9 toBcD [ B

S 91 Priority P—C

g_: Encoder |, D

8§—9

9Q——o

Inputs Outputs

0 1 2 3 4 5 6 7 8 9 D C B A
X X X X X X X X X 0 0 1 1 0
X X X X X X X X 0 1 0 1 1 1
X X X X X X X 0 1 1 1 0 0 0
X X X X X X 0 1 1 1 1 0 0 1
X X X X X 0 1 1 1 1 1 0 1 0
X X X X 0 1 1 1 1 1 1 0 1 1
X X X 0 1 1 1 1 1 1 1 1 0 0
X X 0 1 1 1 1 1 1 1 1 1 0 1
X 0 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 8.16 10-line decimal to four-line BCD priority encoder.

Some of the encoders available in IC form provide additional inputs and outputs to allow expansion.
IC 74148, which is an eight-line to three -line priority encoder, is an example. ENABLE-IN (EI) and
ENABLE-OUT (EO) terminals on this IC allow expansion. For instance, two 74148s can be cascaded
to build a 16-line to four-line priority encoder.



284 Digital Electronics

Example 8.4

We have an eight-line to three-line priority encoder circuit with Dy, D, D,, D3, D,, Ds, Dg and D as
the data input lines. the output bits are A (MSB), B and C (LSB). Higher-order data bits have been
assigned a higher priority, with D, having the highest priority. If the data inputs and outputs are active
when LOW, determine the logic status of output bits for the following logic status of data inputs:

(a) All inputs are in logic ‘0’ state.
(b) D, to D, are in logic ‘1’ state and Ds to D, are in logic ‘0’ state.
(c) D is in logic ‘O’ state. The logic status of the other inputs is not known.

Solution

(a) Since all inputs are in logic ‘0 state, it implies that all inputs are active. Since D; has the highest
priority and all inputs and outputs are active when LOW, the output bits are A =0, B=0 and
c=0.

(b) Inputs D5 to D, are the ones that are active. among these, D, has the highest priority. Therefore,
the output bits are A =0, B=0 and C =0.

(c) D, is active. Since D, has the highest priority, it will be encoded irrespective of the logic status
of other inputs. Therefore, the output bits are A =0, B=0 and C =0.

Example 8.5

Design a four-line to two-line priority encoder with active HIGH inputs and outputs, with priority
assigned to the higher-order data input line.

Solution
The truth table for such a priority encoder is given in Table 8.10, with Dy, D;, D, and D; as data
inputs and X and Y as outputs.

The Boolean expressions for the two output lines X and Yare given by the equations

X =D,.D;+D;=D,+D, (8.5)
Y =D,.D,.D;+D;=D,.D,+ D; (8.6)

Figure 8.17 shows the logic diagram that implements the Boolean functions given in equations (8.5)
and (8.6).

Table 8.10 Example 8.5.

D, D, D, D, X Y
1 0 0 0 0 0
X 1 0 0 0 1
X X 1 0 1 0
X X X 1 1 1
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Figure 8.17 Example 8.5.

8.3 Demultiplexers and Decoders

A demultiplexer is a combinational logic circuit with an input line, 2" output lines and »n select lines. It
routes the information present on the input line to any of the output lines. The output line that gets the
information present on the input line is decided by the bit status of the selection lines. A decoder is a
special case of a demultiplexer without the input line. Figure 8.18(a) shows the circuit representation
of a 1-to-4 demultiplexer. Figure 8.18(b) shows the truth table of the demultiplexer when the input
line is held HIGH.

A decoder, as mentioned earlier, is a combinational circuit that decodes the information on n input
lines to a maximum of 2" unique output lines. Figure 8.19 shows the circuit representation of 2-to-4,
3-to-8 and 4-to-16 line decoders. If there are some unused or ‘don’t care’ combinations in the n-bit
code, then there will be fewer than 2" output lines. As an illustration, if there are three input lines, it

Dof—>
I/P line 1-to-4 Dif——
~— | DEMUX Do|

Dgl__,

> —>
W —>

(@)

Select Oo/P
W1 Al B | Do|Df | D2 | D3
1 0 0 1 0 0 0
1 o 1 0| 1 0 0
1 1 0 0 0 1 0
1 1] 1 0| o0 0 1

(b)

Figure 8.18 1-to-4 demultiplexer.
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—A 0 A o— ——A oF—
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2 —— ! —C !

—B 3 C 7 D 15—

Figure 8.19 Circuit representation of 2-to-4, 3-to-8 and 4-to-16 line decoders.

can have a maximum of eight unique output lines. If, in the three-bit input code, the only used three-bit
combinations are 000, 001, 010, 100, 110 and 111 (011 and 101 being either unused or don’t care
combinations), then this decoder will have only six output lines. In general, if n and m are respectively
the numbers of input and output lines, then m < 2".

A decoder can generate a maximum of 2" possible minterms with an r-bit binary code. In order
to illustrate further the operation of a decoder, consider the logic circuit diagram in Fig. 8.20. This
logic circuit, as we will see, implements a 3-to-8 line decoder function. This decoder has three inputs
designated as A, B and C and eight outputs designated as D, D,, D,, D5, D,, D5, Dg and D;. From
the truth table given along with the logic diagram it is clear that, for any given input combination,
only one of the eight outputs is in logic ‘1’ state. Thus, each output produces a certain minterm that
corresponds to the binary number currently present at the input. In the present case, 