5. Differentials of First and Higher Orders

5.1 Increment of the argument and increment of a function.

If x and x_{1} are the values of the argument x and $y=f(x)$ and $y_{1}=f\left(x_{1}\right)$ are the corresponding values of the function $y=f(x)$, then

$$
\Delta x=x_{1}-x
$$

is called the increment of the argument x in the interval ($\mathrm{x}, \mathrm{x}_{1}$) and

$$
\begin{equation*}
\Delta y=y_{1}-y \quad \text { or } \quad \Delta y=f\left(x_{1}\right)-f(x)=f(x+\Delta x)-f(x) \tag{1}
\end{equation*}
$$

is called the increment of the function y in the same interval (x , x_{1}) (Fig, 1, where $\Delta x=M A$ and $\left.\Delta y=A N\right)$.

The ratio $\frac{\Delta y}{\Delta x}=\tan \alpha$ is the slope of the secant $M N$ of the graph of the function $y=f(x)$ and is called the mean rate of change of the function y over the interval $(x, x+\Delta x)$.

Example 1. Calculate for the function $y=x^{2}-5 x+6$ values Δx and Δy corresponding to a change in the argument: a) from $x=1$ to $x=1.1$, b) from $x=3$ to $x=2$.
Solution: We have
a) $\Delta x=1,1-1=0,1 ; \quad \Delta y$

Fig. 1

$$
\begin{aligned}
& =\left(1,1^{2}-5 \cdot 1,1+6\right)-\left(1^{2}-5 \cdot 1+6\right) \\
& =-0,29 ;
\end{aligned}
$$

b) $\Delta x=2-3=-1 ; \quad \Delta y=\left(2^{2}-5 \cdot 2+6\right)-\left(3^{2}-5 \cdot 3+6\right)=0$.

Example 2. Find for the hyperbola $\mathrm{y}=1 / \mathrm{x}$ the slope of the secant passing through the points $M(3,1 / 3)$ and N (10, 1/10).
Solution: Here,

$$
\Delta x=10-3=7, \Delta y=\frac{1}{10}-\frac{1}{3}=-\frac{7}{30}, \text { whence } k=\frac{\Delta y}{\Delta x}=-\frac{1}{30} .
$$

5.2 First-order differential

The differential (first-order) of a function is the principal part of its increment, which part is linear relative to the increment $\Delta x=d x$ of the independent variable x. The differential of a function is equal to the product of its derivative and the differential of the independent variable $d y=y^{\prime} d x$, whence $y^{\prime}=\frac{d y}{d x}$.

Fig. 19

If $M N$ is an arc of the graph of the function $y=f(x)$ (Fig. 19), $M T$ is the tangent at $M(x, y)$ and $P Q=\Delta x=d x$ then the increment in the ordinate of the tangent $A T=d y$ and the segment $A N=\Delta y$.

Example. Calculate the increment of the function $y=3(2-x)^{2}$ for $x_{1}=$ 3 and $x_{1}=3.001$

Solution: $\Delta y=3(2-3.001)^{2}-3(2-3)^{2}=0,006003$
Example. Calculate the increment of the function $y=\sqrt{x^{2}-x}$ for $x_{1}=2$ and $\Delta x=0.03$

Solution:

Example. Find the increment and the differential of the function $y=3 x^{2}-x$.

Solution:

$\Delta y=3(x+\Delta x)^{2}-(x+\Delta x)-3 x^{2}+x$ or $\Delta y=(6 x-1) \Delta x+3(\Delta x)^{2}$
$\Delta y=3(x+\Delta x)^{2}-(x+\Delta x)-3 x^{2}+x$ or $\Delta y=(6 x-1) \Delta x+3(\Delta x)^{2}$,
whence
$d y=(6 x-1) d x=(6 x-1) \Delta x$.
Example. Calculate Δy and $d y$ of the function $y=3 x^{2}-x$ for $x=1$ and $\Delta x=0,01$.
Solution: $\Delta y=(6 x-1) \Delta x+3(\Delta x)^{2}=5 \cdot 0.01+3(0.01)^{2}=0.0503$,

$$
d y=(6 x-1) \Delta x=5 \cdot 0,01=0,0500
$$

5.3. Applying differentials to approximate calculations

If the increment Δx of the argument x is small in absolute value, then the differential $d y$ and the increment ${ }^{2} y$ of the function $y=f(x)$ are approximately the same:

$$
\Delta y \approx d y \text {, i.e., } f(x+\Delta x)-f(x) \approx f^{\prime}(x) \Delta x \text {, whence } f(x+\Delta x) \approx f(x)+f^{\prime}(x) d x
$$

Example. By (approximately) how much does the side of a square change if its area increases from $9 \mathrm{~m}^{2}$ to 9.1 m^{2} ?

Solution: If x is the area of the square and y is its side, then $y=\sqrt{x}$. We know that $\mathrm{x}=9$ and $\Delta x=0,1$. The increment Δy of the side of the square may be calculated approximately as follows:

$$
\Delta y \approx d y=y^{\prime} \Delta x=\frac{1}{2 \sqrt{9}} \cdot 0,1=0,016 \mathrm{~m} .
$$

5.4 Principal properties of differentials:

$$
\begin{aligned}
& \checkmark d c=0, \text { where } c=\text { const } \\
& \checkmark d x=\Delta x \text {, where } \mathrm{x} \text { is an independent variable } \\
& \checkmark d(c u)=c d u . \\
& \checkmark d(u \pm v)=d u \pm d v \\
& \checkmark d(u v)=u d v+v d u \\
& \checkmark d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}} \\
& \checkmark d f(u)=f^{\prime}(u) d u .
\end{aligned}
$$

5.5 Higher order differentials

A second-order differential is the differential of a first-order differential:

$$
d^{2} y=d(d y)
$$

We define similarly the differentials of the third and higher orders. If $y=f(x)$ and x is the independent variable, then

$$
\begin{gathered}
d^{2} y=y^{\prime \prime}(d x)^{2} \\
d^{8} y=y^{\prime \prime \prime}(d x)^{3} \\
\cdot \\
d^{n} y=y^{(n)}(d x)^{n}
\end{gathered}
$$

However, if $y=f(u)$, where $u=u(x)$, then

$$
\begin{gathered}
d^{2} y=y^{\prime \prime}(d u)^{2}+y^{\prime} d^{2} u \\
d^{2} y=y^{\prime \prime \prime}(d u)^{2}+3 y^{\prime \prime} d u \cdot d^{2} u+y^{\prime} d^{3} u, \text { etc }
\end{gathered}
$$

(Here the primes denote derivatives with respect to u).
Exercises 712-715, 722-734, 747-755
712. Find the increment Δy and the differential $d y$ of the function $y=5 x+x^{2}$ for $x=2$ and $\Delta x=0.001$.
713. Without calculating the derivative, find $d\left(1-x^{2}\right)$ for $\mathrm{x}=1$ and $\Delta x=-\frac{1}{3}$.
714. The area of a square S with side x is given by $S=x^{2}$. Find the increment and the differential of this function and explain the geometric significance of the latter.
715. Give a geometric interpretation of the increment and differential of the functions: a) the area of a circle, $S=\pi x^{2}$, b) the volume of a cube, $V=x^{3}$.

In the following problems, find the differentials of the given functions for arbitrary values of the argument and its increment:
722. $y=\frac{1}{x^{m}}$.
725. $y=\operatorname{artan} \frac{x}{a}$.
728. $y=\ln \frac{1-x}{1+x}$.
723. $y=\frac{x}{1-x}$.
726. $y=e^{-x^{z}}$.
729. $r=\cot \varphi+\operatorname{cosec} \varphi$.
724. $y=\operatorname{arsin} \frac{x}{a} . \quad$ 727. $y=x \ln x-x . \quad$ 730. $s=\operatorname{artan} e^{t}$.

Answers:
722. $\frac{-m d x}{x^{m+1}}$. 723. $\frac{d x}{(1-x)^{2}}$. 724. $\frac{d x}{\sqrt{a^{2}-x^{2}}}$.
725. $\frac{a d x}{x^{2}+a^{2}}$. 726. $-2 x e^{-x^{2}} d x$. 727. $\ln x d x$. 728. $\frac{-2 d x}{1-x^{2}}$. 729. $-\frac{1+\cos \varphi}{\sin ^{2} \varphi} d \varphi$.
730. $-\frac{e^{t} d t}{1+e^{2} t} .732 .-\frac{10 x+8 y}{7 x+5 y} d x$. 733. $\frac{-y e^{-\frac{x}{y}} d x}{y^{2}-x e^{-\frac{x}{y}}}=\frac{y}{x-y} d x . \quad 734 \frac{x+y}{x-y} d x$.
731. Find $d y$ if $x^{2}+2 x y-y^{2}=a^{2}$.

Solution: Taking advantage of the invariance of the form of a differential, we obtain $2 x d x+2(y d x+x d y)=2 y d y$ = 0 , whence

$$
d y=-\frac{x+y}{x-y} d x
$$

In the following examples find the differentials of functions defined implicitly.
732. $(x+y)^{2} \cdot(2 x+y)^{3}=1$. 733. $y=e^{-\frac{x}{y}}$. 734. $\ln \sqrt{x^{2}+y^{2}}=\arctan \frac{y}{x}$.
747. Compute $d^{2} y$, if $y=\cos 5 x$.

Solution: $d^{2} y=y^{\prime \prime}\left(d x^{2}\right)=-25 \cos 5 x(d x)^{2}$.
748. $u=\sqrt{1-x^{2}}$, find $d^{2} u$.
749. $y=\operatorname{arcos} x$, find $d^{2} y$.
750. $y=\sin x \ln x$, find $d^{2} y$.
751. $z=\frac{\ln x}{x}$, find $d^{2} z$.
752. $z=x^{2} e^{-x}$, find $d^{3} z$.
753. $z=\frac{x^{4}}{2-x}$, find $d^{4} z$.
754. $u=3 \sin (2 x+5)$, find $d^{n} u$.
755. $y=e^{x \cos \alpha} \sin (x \sin \alpha)$, find $d^{n} y$.

Answers 712-715, 722-734, 747-755
712. $\Delta y=0.009001 ; d y=0.009$. 713. $d\left(1-x^{2}\right)=1$ when $x=1$ and $\Delta x=-\frac{1}{3}$.
714. $d S=2 x \Delta x, \Delta S=2 x \Delta x+(\Delta x)^{2}$.
722. $\frac{-m d x}{x^{m+1}} . \quad$ 723. $\frac{d x}{(1-x)^{2}} . \quad$ 724. $\frac{d x}{\sqrt{a^{2}-x^{2}}}$.
725. $\frac{a d x}{x^{2}+a^{2}}$. 726. $-2 x e^{-x^{2}} d x$. 727. $\ln x d x$. 728. $\frac{-2 d x}{1-x^{2}}$. 729. $-\frac{1+\cos \varphi}{\sin ^{2} \varphi} d \varphi$.
730. $-\frac{e^{t} d t}{1+e^{2 t}} . \quad$ 732. $-\frac{10 x+8 y}{7 x+5 y} d x$. 733. $\frac{-y e^{-\frac{x}{y}} d x}{y^{2}-x e^{-\frac{x}{y}}}=\frac{y}{x-y} d x$. $734 \frac{x+y}{x} \frac{y}{y} d x$.
748. $\frac{-(d x)^{2}}{\left(1-x^{2}\right)^{3 / 2}}$. 749. $\frac{-x(d x)^{2}}{\left(1-x^{2}\right)^{3 / 2}} . \quad$ 750. $\quad\left(-\sin x \ln x+\frac{2 \cos x}{x}-\frac{\sin x}{x^{2}}\right)(d x)^{2}$.

751

$$
\frac{2 \ln x-3}{x^{3}}(d x)^{2} .752 .-e^{-x} \times\left(x^{2}-6 x+6\right)(d x)^{2} . \quad \text { 753. } \quad \frac{384(d x)^{4}}{(2-x)^{5}} .
$$

754. $\quad 3 \cdot 2^{n} \sin \left(2 x+5+\frac{n \pi}{2}\right)(d x)^{n}$.
