5. Differentials of First and Higher Orders

5.1 Increment of the argument and increment of a function.

If x and x_1 are the values of the argument x and y = f(x) and $y_1=f(x_1)$ are the corresponding values of the function y = f(x), then

$$\Delta x = x_1 - x$$
is called the increment of the argument x in the interval (x, x₁) and

$$\Delta y = y_1 - y \quad or \quad \Delta y = f(x_1) - f(x) = f(x + \Delta x) - f(x) \quad (1)$$
is called the increment of the function y in the same interval (x,
x₁) (Fig, 1, where $\Delta x = MA$ and $\Delta y = AN$).

The ratio $\frac{\Delta y}{\Delta x} = \tan \alpha$ is the slope of the secant *MN* of the graph of the function y = f(x) and is called the mean rate of change of the function y over the interval $(x, x + \Delta x)$.

Example 1. Calculate for the function $y = x^2 - 5x + 6$ values Δx and Δy corresponding to a change in the argument: a) from x = 1 to x = 1.1, b) from x = 3 to x = 2. Solution: We have

a)
$$\Delta x = 1, 1 - 1 = 0, 1; \quad \Delta y$$

= $(1, 1^2 - 5 \cdot 1, 1 + 6) - (1^2 - 5 \cdot 1 + 6)$
= $-0, 29;$
b) $\Delta x = 2 - 3 = -1; \quad \Delta y = (2^2 - 5 \cdot 2 + 6) - (3^2 - 5 \cdot 3 + 6) = 0$

Fig. 1

Example 2. Find for the hyperbola y = 1/x the slope of the secant passing through the points M(3, 1/3) and N(10, 1/10).

Solution: Here,

$$\Delta x = 10 - 3 = 7, \Delta y = \frac{1}{10} - \frac{1}{3} = -\frac{7}{30}$$
, whence $k = \frac{\Delta y}{\Delta x} = -\frac{1}{30}$.

5.2 First-order differential

The differential (first-order) of a function is the principal part of its increment, which part is linear relative to the increment $\Delta x = dx$ of the independent variable x. The differential of a function is equal to the product of its derivative and the differential of the independent variable dy = y'dx, whence $y' = \frac{dy}{dx}$.

If MN is an arc of the graph of the function y = f(x) (Fig. 19), MT is the tangent at M(x, y) and $PQ = \Delta x = dx$ then the increment in the ordinate of the tangent AT = dy and the segment $AN = \Delta y$.

Example. Calculate the increment of the function $y = 3(2 - x)^2$ for $x_1 = 3$ and $x_1 = 3.001$

Solution:
$$\Delta y = 3(2 - 3.001)^2 - 3(2 - 3)^2 = 0,006003$$

Example. Calculate the increment of the function $y = \sqrt{x^2 - x}$ for $x_1 = 2$ and $\Delta x = 0.03$

Solution:

Example. Find the increment and the differential of the function $y = 3x^2 - x$.

Solution:

$$\Delta y = 3(x + \Delta x)^2 - (x + \Delta x) - 3x^2 + x$$
 or $\Delta y = (6x - 1)\Delta x + 3(\Delta x)^2$

 $\Delta y = 3 (x + \Delta x)^2 - (x + \Delta x) - 3x^2 + x$ or $\Delta y = (6x - 1) \Delta x + 3 (\Delta x)^2$,

whence

 $dy = (6x - 1)dx = (6x - 1)\Delta x$.

Example. Calculate Δy and dy of the function $y = 3x^2 - x$ for x = 1 and $\Delta x = 0,01$.

Solution:
$$\Delta y = (6x - 1)\Delta x + 3(\Delta x)^2 = 5 \cdot 0.01 + 3(0.01)^2 = 0.0503,$$

 $dy = (6x - 1)\Delta x = 5 \cdot 0.01 = 0.0500.$

5.3. Applying differentials to approximate calculations

If the increment Δx of the argument x is small in absolute value, then the differential dy and the increment $\mathbb{D}y$ of the function y = f(x) are approximately the same:

$$\Delta y \approx dy$$
, i.e., $f(x + \Delta x) - f(x) \approx f'(x) \Delta x$, whence $f(x + \Delta x) \approx f(x) + f'(x) dx$.

Example. By (approximately) how much does the side of a square change if its area increases from 9 m² to 9.1 m²?

Solution: If x is the area of the square and y is its side, then $y = \sqrt{x}$. We know that x = 9 and $\Delta x = 0,1$. The increment Δy of the side of the square may be calculated approximately as follows:

$$\Delta y \approx dy = y' \Delta x = \frac{1}{2\sqrt{9}} \cdot 0, 1 = 0,016 \, m.$$

5.4 Principal properties of differentials:

✓
$$dc = 0$$
, where *c*=const
✓ $dx = \Delta x$, where x is an independent variable
✓ $d(cu) = cdu$.
✓ $d(u \pm v) = du \pm dv$
✓ $d(uv) = udv + vdu$
✓ $d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$
✓ $df(u) = f'(u)du$.

5.5 Higher order differentials

A second-order differential is the differential of a first-order differential:

$$d^2y = d(dy).$$

We define similarly the differentials of the third and higher orders. If y = f(x) and x is the independent variable, then

$$d^{2}y = y'' (dx)^{2},$$

$$d^{3}y = y''' (dx)^{3},$$

$$d^{n}y = y^{(n)} (dx)^{n}.$$

However, if y = f(u), where u = u(x), then

$$d^{2}y = y'' (du)^{2} + y' d^{2}u,$$

$$d^{3}y = y''' (du)^{3} + 3y'' du \cdot d^{2}u + y' d^{3}u, \text{ etc.}$$

(Here the primes denote derivatives with respect to *u*).

Exercises 712-715, 722-734, 747-755

712. Find the increment Δy and the differential dy of the function $y = 5x + x^2$ for x = 2 and $\Delta x = 0.001$.

713. Without calculating the derivative, find $d(1 - x^2)$ for x=1 and $\Delta x = -\frac{1}{3}$.

714. The area of a square S with side x is given by $S = x^2$. Find the increment and the differential of this function and explain the geometric significance of the latter.

715. Give a geometric interpretation of the increment and differential of the functions: a) the area of a circle, $S = \pi x^2$, b) the volume of a cube, $V = x^3$.

In the following problems, find the differentials of the given functions for arbitrary values of the argument and its increment:

722.
$$y = \frac{1}{x^m}$$
.725. $y = \arctan \frac{x}{a}$.728. $y = \ln \frac{1-x}{1+x}$.723. $y = \frac{x}{1-x}$.726. $y = e^{-x^2}$.729. $r = \cot \varphi + \csc \varphi$.724. $y = \arcsin \frac{x}{a}$.727. $y = x \ln x - x$.730. $s = \arctan e^t$.

Answers:

$$722. \quad \frac{-mdx}{x^{m+1}} . \qquad 723. \quad \frac{dx}{(1-x)^2} . \qquad 724. \quad \frac{dx}{\sqrt{a^2 - x^2}} . \\725. \quad \frac{a \, dx}{x^2 + a^2} . \qquad 726. \quad -2xe^{-x^2} \, dx. \qquad 727. \quad \ln x \, dx. \qquad 728. \quad \frac{-2dx}{1-x^2} . \qquad 729. \quad -\frac{1+\cos \varphi}{\sin^2 \varphi} \, d\varphi. \\730. \quad -\frac{e^t dt}{1+e^{2t}} . \qquad 732. \quad -\frac{10x+8y}{7x+5y} \, dx. \qquad 733. \quad \frac{-ye^{-\frac{x}{y}} \, dx}{y^2 - xe^{-\frac{x}{y}}} = \frac{y}{x-y} \, dx. \qquad 734 \quad \frac{x+y}{x-y} \, dx.$$

731. Find dy if $x^2 + 2xy - y^2 = a^2$.

Solution: Taking advantage of the invariance of the form of a differential, we obtain 2xdx + 2(ydx + xdy) = 2ydy = 0, whence

$$dy = -\frac{x+y}{x-y}\,dx.$$

In the following examples find the differentials of functions defined implicitly.

732. $(x+y)^2 \cdot (2x+y)^3 = 1$. **733.** $y = e^{-\frac{x}{y}}$. **734.** $\ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x}$.

747. Compute d^2y , if $y = \cos 5x$.

Solution: $d^2y = y''(dx^2) = -25\cos 5x(dx)^2$.

748. $u = \sqrt{1 - x^2}$, find $d^2 u$.752. $z = x^2 e^{-x}$, find $d^2 z$.749. $y = \arccos x$, find $d^2 y$.752. $z = x^2 e^{-x}$, find $d^2 z$.750. $y = \sin x \ln x$, find $d^2 y$.753. $z = \frac{x^4}{2 - x}$, find $d^4 z$.751. $z = \frac{\ln x}{x}$, find $d^2 z$.754. $u = 3 \sin (2x + 5)$, find $d^n u$.755. $y = e^{x \cos a} \sin (x \sin a)$, find $d^n y$.

Answers 712-715, 722-734, 747-755

712. $\Delta y = 0.009001$; dy = 0.009. 713. $d(1-x^3) = 1$ when x = 1 and $\Delta x = -\frac{1}{3}$. 714. $dS = 2x \Delta x$, $\Delta S = 2x \Delta x + (\Delta x)^2$.

722. $\frac{-mdx}{x^{m+1}}$. 723. $\frac{dx}{(1-x)^2}$. 724. $\frac{dx}{\sqrt{a^2-x^2}}$. 725. $\frac{a\,dx}{x^2+a^2}$. 726. $-2xe^{-x^2}\,dx$. 727. $\ln x\,dx$. 728. $\frac{-2dx}{1-x^2}$. 729. $-\frac{1+\cos\varphi}{\sin^2\varphi}\,d\varphi$. 730. $-\frac{e^tdt}{1+e^{2t}}$. 732. $-\frac{10x+8y}{7x+5y}\,dx$. 733. $\frac{-ye^{-\frac{x}{y}}}{x-\frac{y}{y}}dx}{x-\frac{x}{y}} = \frac{y}{x-y}\,dx$. 734 $\frac{x+y}{x-y}\,dx$.

748.
$$\frac{-(dx)^2}{(1-x^2)^{3/2}}$$
. 749.
$$\frac{-x(dx)^2}{(1-x^2)^{3/2}}$$
. 750.
$$\left(-\sin x \ln x + \frac{2\cos x}{x} - \frac{\sin x}{x^2}\right)(dx)^2$$
.
751.
$$\frac{2\ln x - 3}{x^3}(dx)^2$$
. 752.
$$-e^{-x} \times (x^2 - 6x + 6)(dx)^3$$
. 753.
$$\frac{384(dx)^4}{(2-x)^5}$$
.
754.
$$3 \cdot 2^n \sin\left(2x + 5 + \frac{n\pi}{2}\right)(dx)^n$$
.