6.1 Equations of the tangent and the normal

It follows from the geometric significance of the derivative that the equation of the tangent to a curve $y=f(x)$ or $F(x, y)=0$ at a point $M\left(x_{0}, y_{0}\right)$ will be

$$
y-y_{0}=y_{0}^{\prime}\left(x-x_{0}\right)
$$

where $y_{0}{ }^{\prime}$ is the value of the derivative y^{\prime} at the point $M\left(x_{0}, y_{0}\right)$. The straight line passing through the point where the tangent touches the curve, perpendicularly to the tangent, is called the normal to the curve. The normal has the equation

$$
y-y_{0}+y_{0}^{\prime}\left(x-x_{0}\right)=0
$$

Example 1. Write the equation of the tangent and the normal to the parabola $y=\sqrt{x}$ at the point with abscissa $x=$ 4.

Solution: We have $y^{\prime}=\frac{1}{2 \sqrt{x}}$, whence the slope of the tangent is $k=\left|y^{\prime}\right|_{x=4}=1 / 4$. Since the point of the tangent has the co-ordinates $x=4, y=2$, the equation of the tangent is $y-2=1 / 4(x-4)$ or

$$
x-4 y+4=0
$$

Since the slope of the normal must be perpendicular, $k_{1}=-4$, whence the equation of the normal is

$$
y-2=-4(x-4) \quad \text { or } 4 x+y-18=0
$$

Exercises

1. Write the equations of the tangent and the normal to the curve $y=x^{3}+2 x^{2}-4 x-3$ at the point $(-2,5)$. 2. Find the equations of the tangent and the normal to the curve $y=\sqrt[3]{x-1}$ at the point $(1,0)$. 3. Form the equations of the tangent and the normal to the curves at the given points: a) $y=\tan 2 x$ at the origin; b) $y=\operatorname{arsin}[(x-1) / 2]$ at the intersection with the x-axis; c) $y=\operatorname{arcos} 3 x$ at the intersection with the y-axis; d) $y=\ln x$ at the intersection with the x-axis; e) $y=e^{1-x^{2}}$ at the intersection with the straight line $y=1$. 4. Write down the equations of the tangent and the normal to the curve $x=\frac{1+t}{t^{3}}, y=\frac{3}{2 t^{2}}+\frac{1}{2 t}$ at the point $(2,2)$. 5. Find the equations of the tangent to the curve $x=t \operatorname{cost}, y=t \sin t$ at the origin and the point $t=\pi / 4$. 6. Find the equations of the tangent and the normal to the curve $x^{3}+y^{2}+2 x-6=0$ at the point with ordinate $y=3$. 7. Find the equation of the tangent to the curve $x^{5}+y^{5}-2 x y=0$ at the point $(1,1)$. 8. Find the equations of the tangents and normals to the curve $y=(x-1)(x-2)(x-$ 3) at its intersection with the x-axis. 9. Find the equations of the tangent and the normal to the curve $y^{4}=4 x^{4}+6 x y$ at the point (1,2). 10. Find the points at which the tangents to the curve $y=3 x^{4}+4 x^{3}-12 x^{2}+20$ are parallel to the x-axis. 626. At what point are the tangent to the parabola $y=x^{2}-7 x=3$ and the straight line $5 x+y-3=0$ parallel? 627. Find the equation of the parabola $y=x^{2}+b x+c$ which is tangent to the straight line $x=y$ at the point $(1,1) .628$. Determine the slope of the tangent to the curve $x^{3}+y^{3}-x y-7=0$ at the point $(1,2)$. 629. At what point of the curve $y^{2}=2 x^{3}$ is the tangent perpendicular to the straight line $4 x-3 y+2=0$?

Answers

1. $y-5=0 ; x+2=0 . \quad$ 2. $x-1=0 ; \quad y=0 . \quad$ 3. а) $y=2 x ; y=-0.5 x ;$ b) $x-2 y-1=0 ; \quad 2 x+y-2=0$; c) $6 x+2 y-\pi ; 2 x-6 y+3 \pi=0$; d) $y=x-1 ; y=1-x$; e) $2 x+y-3=0 ; x-2 y+1=0$ for the point $(1,1) ; 2 x-y+3=0 ; \quad x+2 y-1=0$ for the point $(-1,1) . \quad$ 4. $7 x-10 y+6=0 ; \quad 10 x+7 y-34=0$. 5. $y=0$; $(\pi+4) x+(\pi-4) y-\frac{\pi^{2} \sqrt{2}}{4}=0$. 6. $5 x+6 y-13=0,6 x-5 y+21=0 . \quad$ 7. $x+y-2=0$. 8. At the point (1,0): $y=2 x-2 ; \quad y=\frac{1-x}{2}$; at the point $(2,0): y=-x+2 ; y=x-2 ;$ at the point $(3,0): y=$ $2 x-6 ; y=\frac{3-x}{2}$
2. $14 x-13 y+12=0 ; \quad 13 x+14 y-41=0$.
3. $(0,20)$; $(1,15)$; $(-2,-12)$.
4. $(1,-3)$
5. $y=x^{2}-x+1$.
6. $k=-\frac{1}{11}$.
7. $\left(\frac{1}{8},-\frac{1}{16}\right)$.
