
4 Geometry and Mechanics Applications of the Derivative 
4.1 Equations of the tangent and the normal: It follows from the geometric significance of the 
derivative that the equation of the tangent to a curve 𝑦 =  𝑓(𝑥) or 𝐹(𝑥, 𝑦)  =  0 at a point 
𝑀(𝑥0 , 𝑦0) will be 

 
where y0' is the value of the derivative y' at the point M(x0, y0). The straight line passing through the 
point where the tangent touches the curve, perpendicularly to the tangent, is called the normal to 
the curve. The normal has the equation 

 

4.2 Angle between curvesThe angle between the curves 

 

at their common point M0(x0, y0) (Fig. 12) is the angle 
𝜔 between the tangents M0A and M0B to these curves at 
the point M0. 

Using a familiar formula of analytic geometry, we find 

 

4.3 Segments associated with the tangent and the 
normal in an orthogonal co-ordinate system: The 
tangent and the normal determine the four 
segments: 

 

Since KM = |y0| and tan𝛼 =y0', It follows that 

𝑡 = 𝑇𝑀 =  
𝑦0

𝑦0
′
 1 +  𝑦0

′ 2 ;    𝑛 = 𝑁𝑀 =  𝑦0 1 +  𝑦0
′ 2 ;     𝑆𝑡 = 𝑇𝐾 =  

𝑦0

𝑦0
′  ;    𝑆𝑛 =  𝑦0𝑦0

′   

4.4 Segments associated with the tangent and the normal in a polar co-ordinate system: If a curve 
is given in polar co-ordinates by the equation r=f(𝜑), then 
the angle𝜇 formed by the tangent MT and the radius vector 
r = OM (Fig.14) is defined by 

tan 𝜇 = 𝑟
𝑑𝜑

𝑑𝑟
=

𝑟

𝑟′
. 



The tangent MT and the normal MN at the point M together with the radius s vector of the point of 
tangency and with the perpendicular to the radius vector drawn through the pole O determine the 
following four segments (Fig. 14): 

 

These segments are given by the formulae: 

 

Exercises 621 - 666 

621: What angles are formed with the x-axis by the tangents to the curve y = x -x² at the points with 
the abscise: a) x=0, b) x=1/2, c) x=1? 

Solution. We have y' = l - 2x, whence  

 

622: At what angles do the curves y= sin x and y = sin 2x intersect the 
abscissae at the origin? 

623: At what angle does y = tan x intersect the abscissa at the origin? 

624: At what angle does the curve y=e0.5x intersect the straight line x=2? 

625. Find the points at which the tangents to the curve𝑦 = 3𝑥4 + 4𝑥3 − 12𝑥2 + 20 are parallel to 
the x-axis. 

626. At what point are the tangent to the parabola y = x² - 7x = 3 and the straight line 5x + y - 3 = 0 
parallel? 

627. Find the equation of the parabola y = x² + bx + c which is tangent to the straight line x = y at the 
point (1,1). 

628. Determine the slope of the tangent to the curve x³ + y³ - xy - 7 = 0 at the point (1, 2). 

629. At what point of the curve y² = 2x³ is the tangent perpendicular to the straight line 4x - 3y + 2 = 
0? 



630. Write the equation of the tangent and the normal to the parabola𝑦 =  𝑥at the point with 
abscissa x = 4. 

Solution: We have𝑦′ =
1

2 𝑥
, whence the slope of the tangent is k = |y'|x=4 = 1/4. Since the point of the 

tangent has the co-ordinates x = 4, y = 2, the equation of the tangent is y - 2 = l/4(x - 4) or  

𝑥 −  4𝑦 +  4 =  0 

Since the slope of the normal must be perpendicular,𝑘1 = −4, whence the equation of the normal is 

𝑦 − 2 = −4 𝑥 − 4      𝑜𝑟   4𝑥 + 𝑦 − 18 = 0. 

631. Write the equations of the tangent and the normal to the curve y = x³ + 2x² - 4x - 3 at the point (-
2,5). 

632. Find the equations of the tangent and the normal to the curve𝑦 =  𝑥 − 1
3

at the point (1,0). 

633. Form the equations of the tangent and the normal to the curves at the given points: 

a) y = tan 2x at the origin; 
b) y = arsin[(x - 1)/2] at the intersection with the x-axis; 
c) y = arcos 3x at the intersection with the y-axis; 
d) y = ln x at the intersection with the .x-axis; 
e) y = e1-x² at the intersection with the straight line y = 1 

634. Write down the equations of the tangent and the normal to the curve𝑥 =
1+𝑡

𝑡3 , 𝑦 =
3

2𝑡2 +
1

2𝑡
at 

the point (2,2) . 

635. Find the equations of the tangent to the curve𝑥 = 𝑡 𝑐𝑜𝑠𝑡, 𝑦 = 𝑡 𝑠𝑖𝑛𝑡 at the origin and the point 
t = 𝜋/4. 

636. Find the equations of the tangent and the normal to the curve𝑥3 + 𝑦2 + 2𝑥 − 6 = 0 at the 
point with ordinate y = 3. 

637. Find the equation of the tangent to the curve x5 + y5 - 2xy = 0 at the point (1,1). 

638. Find the equations of. the tangents and normals to the curve y = (x - 1)(x - 2) (x - 3) at its 
intersection with the x-axis. 

639. Find the equations of the tangent and the normal to the curve y4 = 4x4 + 6xy at the point (1,2). 

640*. Show that the segment of the tangent to the hyperbola xy = a² (the segment lies between the 
co-ordinate axes) is divided in two at the point of tangency. 

641. Show that in the case of the astroid x2/3 + y2/3 = a2/3 the segment of the tangent between the co-
ordinate axes has the .constant value a. 

642. Show that the normals to the involute of the circle  𝑥 = 𝑎(cos 𝑡 + 𝑡𝑠𝑖𝑛 𝑡),   𝑦 = 𝑎(sin  𝑡 −
𝑡𝑐𝑜𝑠 𝑡)are tangents to the circle𝑥2 + 𝑦2 = 𝑎2. 



643. Find the angle at which the parabolas y= (x - 2)² and y = -4 + 6x -x² intersect. 

644. At what angle do the parabolas y=x² and y = x³ intersect? 

645. Show that the curves y = 4x² +2x -8 and y = x³ - x + 10 are tangent to each other at the point (3, 
34). Will we have the same thing at (-2, 4)? 

646. Show that the hyperbolas xy = a²,x² - y = b² intersect at a right angle. 

647. Given a parabola y² = 4x, evaluate at the point (1,2) the lengths of the segments of the sub-
tangent, sub-normal, tangent and normal. 

648. Find the length of the segment of the sub-tangent of the curve y = 2x at any of its points. 

649. Show that in the equi-lateral hyperbola x² - y² = a² the length of the normal at any point is equal 
to the radius vector of that point. 

650. Show that the length of the segment of the subnormal in the hyperbola x² - y² = a² at any point 
is equal to the abscissa of this point. 

651. Show that the segments of the sub-tangents of the ellipse x²/a² - y²/b² = 1 and the circle x² + y² = 
a² at points with the same abscissas are equal. What procedure of construction of the tangent to the 
ellipse follows from this? 

652. Find the length of the segment of the tangent, the normal, the sub-tangent and the sub-normal 
of the cycloid 

 
𝑥 = 𝑎(𝑡 − sin 𝑡)
𝑦 = 𝑎(1 − cos 𝑡)

  

at an arbitrary point t = t0. 

653. Find the angle between the tangent and the radius vector of the point of tangency in the case of 

the logarithmic spiral𝑟 = 𝑎𝑒𝑘𝜑 . 

654. Find the angle between the tangent and the radius vector of the point of tangency for the 
lemniscate𝑟2 = 𝑎2𝑐𝑜𝑠2𝜑. 

655. Find the lengths of the segments of the polar sub-tangent, sub-normal, tangent and normal as 
well as the angle between the tangent and the radius vector of the point of tangency in the case of 
the spiral of Archimedes𝑟 = 𝑎𝜑at the point with the polar angle 𝜑 = 2𝜋. 

656. Find the lengths of the segments of the polar sub-tangent, sub-normal, tangent and normal as 
well as the angle between the tangent and the radius vector of the hyperbolic spiral 𝑟 =  𝑎/𝜑 at an 
arbitrary point 𝜑 = 𝜑0 , 𝑟 = 𝑟0 +. 

657. The law of motion of a point on the x-axis is𝑥 = 3𝑡 − 𝑡3 . Find the velocity of the point at t0= 0, 
t1= 1, t2 =2 (x is in centimetres and t in seconds). 

658. Two points move along the x-axis with the laws of motion𝑥 = 100 + 5𝑡, 𝑥 =
1

2𝑡2, where t ≥ 0. 

At what speed are these points receding from each other at the time of encounter (x is in 
centimetres, t is in seconds)? 



 

659. The end-points of a segment AB = 5 m are sliding along t:he co-ordinate axes OX and OY (Fig. 
16), A is moving at 2 m/sec. What is the velocity of B when A is at a distance OA = 3 m from the 
origin? 

660*. The law of motion of a material point thrown up at an angle 𝛼 to the horizontal with initial 
velocity v0 (in the vertical plane OXY in Fig. 17 is given by the formulae (air resistance being 

neglected):𝑥 = 𝑣0𝑡𝑐𝑜𝑠 𝛼, 𝑦 = 𝑣0𝑡𝑠𝑖𝑛𝛼 −
𝑔𝑡2

2
, where t is the time and g is the acceleration of gravity. 

Find the trajectory of motion and the distance covered. Moreover, determine its velocity and its 
direction of motion. 

661. A point is in motion along the hyperbola y = 10/x so that its abscissa x increases uniformly at a 
rate of 1 unit per second. What is the rate of change of its ordinate when the point passes through 
(5,2)? 

662. At what point of the parabola y² = 18x does the ordinate increase at twice the rate of the 
abscissa? 

663. One side of a rectangle, a = 10 cm, is of constant length, while the other side b increases at a 
constant rate of 4 cm/sec. At what rate are the diagonal of the rectangle and its area increasing when 
b = 30 cm? 

664. The radius of a sphere is increasing at a uniform rate of 5 cm/sec. At what rate increase the. 
area of the surface and the volume of the sphere when the radius becomes 50 cm? 

665. A point is in motion along the spiral of Archimedes𝑟 = 𝑎𝜑 (a = 10 cm) so that the angular 
velocity of rotation of its radius vector is constant and equals 6° per second. Determine the rate of 
elongation of the radius vector r when r = 25 cm. 

666. A non-homogeneous bar ABis 12 cm long. The mass of a part of it, AM, increases with the 
square of the distance of the moving point M from the end A and is 10 gm when AM =2 cm. Find the 
mass of the entire .bar AB and the linear density at any point M. What is the linear density of the bar 
at A and B? 

Answers 621 – 666 



 

 



 

4.5 L'Hospital - Bernoulli Rule for Evaluating Indeterminate Expressions 

4.5.1 Evaluation of the indeterminate forms 0/0 and∞/∞: Let the single-valued functions f(x) and 
𝜑(x) be differentiable for 0 < |x - a|< h and the derivative of one of them not vanish. 

If both f(x) and 𝜑(x) are infinitesimal or infinite as 𝑥 →  𝑎, i.e., if the quotient f(x)/ 𝜑(x) at 𝑥 = 𝑎 has 
one of the indeterminate forms 0/0 or ∞/∞, then 

 

provided that the limit of the ratio of the derivatives exists. 

This rule is also applicable when 𝑎 =  ∞. 

If the quotient f '(x)/ 𝜑 '(x) yields again at the point x =a an indeterminate form of one of the two 
above-mentioned types and f '(x) and 𝜑 '(x) satisfy all the requirements stated above for f(x) and 
𝜑(x), we can pass to the ratio of second derivatives, etc. 

However, note that the limit of the ratio f(x)/ 𝜑(x) may exist, whereas the ratios of the derivatives do 
not tend to any limit (Example 809). 

4.5.2 Other Indeterminate forms:In order to evaluate an indeterminate form like 0 · ∞, transform 
the appropriate product f1(x)f2(x), where 

 

into the quotient 

 

In the case of the indeterminate form ∞ − ∞, one should transform the appropriate difference f1(x) - 
f2(x) into the product 

 

and first evaluate the indeterminate form 



 

if its limit as → is 1, we reduce the expression to 

 

  

The indeterminate forms 

 

are evaluated by first taking logarithms and then finding the limit of the logarithm of the power 

 

(which requires evaluating a form like 0·∞.) 

In certain cases, it is useful to combine L'Hospital's rule with finding limits by elementary techniques. 

Example 1 . Compute 

 

Solution: Applying L'Hospital's rule, we have 

 

We have the indeterminate form 0/0. However, we do not need to use L'Hospital's rule, since we 
know that 

 

Thus, finally, we find 



 

Example2. Compute 

 

Reducing this to a common denominator, we get 

 

Before applying L'Hospital's rule, we replace the denominator of the last fraction by an equivalent 
infinitesimal (1.4)x2sin2x~x4. Thus, we obtain 

 

L'Hospital's rule yields now 

 

We find now by elementary means 

 

Example 3: Compute 

 

Taking logarithms and applying L'Hospital's rule, we get 

 

whence 



 

Exercises 776 – 808 .Find the liimits 

𝟕𝟕𝟔.   lim
𝑥→1

𝑥3 − 2𝑥2 − 𝑥 + 2

𝑥2 − 7𝑥 + 6
.                                                                                                                                    

Solution: 

  

𝟕𝟕𝟕. lim
𝑥→0

𝑥𝑐𝑜𝑠𝑥 − sin 𝑥

𝑥3
.     𝟕𝟕𝟖. lim

𝑥→1

1 − 𝑥

1 − sin
𝜋𝑥

2

 𝟕𝟖𝟎. lim
𝑥→0

tan 𝑥 − sin 𝑥

𝑥 − sin 𝑥
 𝟕𝟖𝟐. lim

𝑥→
𝜋

2

tan 𝑥

tan 5𝑥
 

𝟕𝟖𝟑. lim
𝑥→∞

𝑒𝑥

𝑥5
.  𝟕𝟖𝟒. lim

𝑥→∞

ln 𝑥

 𝑥
3 . 𝟕𝟖𝟓. lim

𝑥→0

𝜋

𝑥

cot
𝜋𝑥

2

. 𝟕𝟖𝟔. lim
𝑥→0

ln(sin 𝑚𝑥)

ln sin 𝑥
. 𝟕𝟖𝟕. lim

𝑥→0
(1 − cos 𝑥) cot 𝑥. 

Solution: 

 

𝟕𝟖𝟖. lim
𝑥→1

 1 − 𝑥 tan
𝜋𝑥

2
. 𝟕𝟖𝟗. lim

𝑥→0
arcsin𝑥𝑐𝑜𝑡 𝑥. 𝟕𝟗𝟎. lim

𝑥→0
 𝑥𝑛𝑒−𝑥 , 𝑛 > 0.  𝟕𝟗𝟏. lim

𝑥→∞
𝑥𝑠𝑖𝑛 

𝑎

𝑥
. 

𝟕𝟗𝟐. lim
𝑥→∞

𝑥𝑛𝑠𝑖𝑛 
𝑎

𝑥
, 𝑛 > 0. 𝟕𝟗𝟑. lim

𝑥→1
ln 𝑥𝑙𝑛  𝑥 − 1 .  

 

𝟕𝟗𝟓. lim
𝑥→3

 
1

𝑥 − 3
−

5

𝑥2 − 𝑥 − 6
 . 𝟕𝟗𝟔. lim

𝑥→1
 

1

2(1 −  𝑥)
−

1

3(1 −  𝑥
3

)
 . 𝟕𝟗𝟕. lim

𝑥→
𝜋

2

 
𝑥

cot 𝑥
−

𝜋

2 cos 𝑥
 .  

 



 

𝟕𝟗𝟗. lim
𝑥→+∞

𝑥
1

𝑥 𝟖𝟎𝟎. lim
𝑥→0

𝑥
3

4+ln 𝑥 .  𝟖𝟎𝟏. lim
𝑥→0

𝑥sin 𝑥 . 𝟖𝟎𝟐. lim
𝑥→1

(1 − 𝑥)cos
𝜋𝑥

2 .  𝟖𝟎𝟑. lim
𝑥→

(1 + 𝑥2)
1

𝑥 . 

𝟖𝟎𝟒. lim
𝑥→1

𝑥
1

1−𝑥 .  𝟖𝟎𝟓. lim
𝑥→1

(tan
𝜋𝑥

4
)tan

𝜋𝑥

4  .  𝟖𝟎𝟔. lim
𝑥→0

cot 𝑥
1

ln 𝑥 𝟖𝟎𝟕.  lim
𝑥→0

 
1

𝑥
 

tan 𝑥

. 𝟖𝟎𝟖. lim
𝑥→0

cot 𝑥sin 𝑥 .  

Answers 777 - 808 

 

4.6. Extreme values of a Function of One Argument 
4.6.1 Increase and decrease of functions: The function f = f(x)) is said to be increasing (decreasing) in 
some interval if, for any points x1 and x2 which belong to this interval, the inequality x1< x2 yields the 
inequality f(x1) < f(x2) (Fig. 2l a) . [f(x1) > f(x2) )Fig. 21b)] If f(x) is continuous in the interval [a, b] and  
f '(x) > 0 [f '(x) < 0] for a < x < b, then f(x) increases (decreases) in the interval [a, b]. 

In the simplest cases, the domain of definitiom of f(x) may be 
subdivided into a finite number of intervals of increase and 
decrease of the function (intervals of monotone behaviour). 
These intervals are bounded by critical points x [where f'(x)=0 
or f'(x) does not exist].  

Example 1. Test for increase and decrease: the function: 

 

Solution: We find the derivative𝑦′ = 2𝑥 − 2 = 2 𝑥 − 1 , 
whence y' = 0 for x = 1. On a number scale, we get the 
intervals of monotone behavior: (1) (-∞, 1), (2) (1, +∞). From 
(1), we have: 

a) if -∞< x <l, then y ' > 0, whence the function f(x) decreases In the 
interval (-∞, 1); 

b) if 1 < x < +∞, then y ' > 0, whence the function f(x) increases in the 
interval (1, +∞)  (Fig, 22). 

 



Example2. Determine the intervals of increase and decrease of the function𝑦 =
1

𝑥+2
. 

Solution: Here, x = -2 is a discontinuity of the function and y'=-1/(x+2)²<2 for x¹-2, whence the 
function y decreases in the intervals ¥ < x < -2 and -2 < x < +∞. 

Example3. Test for increase or decrease the function 𝑦 =
1

5
𝑥5 −

1

3
𝑥3 . 

Solution: Here,𝑦′ = 𝑥4 − 𝑥2 .                                  (2) 

Solving the equation x4 - x2 = 0, we find the points x1=-1, x2=0, x3=l, at which the 
derivative y' vanishes. Since y' can change sign only when passing through points 
at which it vanishes or becomes discontinuous (in the given case, y' has no 
discontinuities!), the derivative in each of the intervals (-∞, -1), (-1, 0), (0,1) and 
(1, +∞) retains its sign, whence the function is monotonic in each of these 
intervals. In order to determine in which of these intervals the function increases 
and decreases, one has to determine the sign of the derivative in each interval. In 
order to determine what the sign of y' is in the interval (-∞,-1), it is sufficient to 
determine the sign of y' at some point of the interval, for example, we find from 
(2), for x = -2, y'=12 > 0, whence y' >0 in the interval (-∞, -1) and the function 
increases in this interval. Similarly, we find that y' <0 in the interval (-1,0) (as a 

check, we can take x = -1/2), y' < 0 in the interval (0,1) (here we can use x = 1/2) and y' > 0 in the 
interval (1, +∞).  

Thus, the function being tested increases in the interval (-∞, -1), decreases in the interval (-1, 1) and 
again increases in the interval (1, +∞). 

4.6.2 Extreme values of a function:  If there exists a two-sided neighbourhood of a point x0 such that 
for every point x ¹ x0 of this neighborhood we have the inequality f(x) > f(x0), then the point x is called 
a minimum point of the function y = f(x), while the number f(x0) is called the minimum of the 
function y = f(x). Similarly, if for any point x ¹ x1 of some neighborhood of the point x1 the inequality 
f(x) < f(x1) is fulfilled, then x1 is called the maximum point of the function f(x) and f(x1) is the 
maximumof the function (Fig. 23).  

 

 

 

 

 

 

The minimum point or maximum point of a function is its extreme point and the minimum or 
maximum of a function is called the extremum value of the function. If x0 is an extreme point of the 
function f(x), then f '(x0)=0 or f '(x0) does not exist (a necessary condition for the existence of an 
extreme value). The converse is not true: Points at which f'(x) = 0 or f'(x)does not exist (critical points) 
are not necessarily extreme points of the function f(x). The sufficient conditions for the existence and 
absence of an extreme value of a continuous function f(x) are given by the rules: 

 



1. If there exists a neighborhood (x0 - d, x0 + d) of a critical point x0such that f'(x) > 0 for x0-d<x<x0 and 
f'(x)<0 for x0<x<x0+d, then x0 is the maximum point of the function f(x), and if f'(x)<0 for x0-d<x<x0and 
f '(x)>0 for x0<x<x0+d, then x0is a minimum point of the function f(x).  

Finally, if there is some positive number d such that f'(x) retains its sign unchanged for 0<|x-x0|<d€ž 
then x0 is not an extreme point of the function f(x).  

2. If f '(x) = 0 and f "(x0)<0, then x0 is a maximum point; if f '(x0)=0 and f "(x0) >0, then x0is a minimum 
point; however, if f'(x0) = 0,f "(x0) = 0and f ''' (x0) ¹ 0, then the point x0 is not an extreme point. 

More generally, let the first of the non-zero derivatives (not equal to zero at the point x0) of the 
function f(x) be of the order k. Then, if k is even, the point x0 is an extreme point, namely, a maximum 
point, if f (k)(x0) <0, and a minimum point, if f (k)(x0) >0. However, if k is odd, then x0 is not an extreme 
point. 

Example 4. Find the extreme values of the function𝑦 = 2𝑥 + 3 𝑥2 .
3

 
Solution: The first derivative is 

 

Setting the derivative y' equal to zero, we get: 𝑥
3

+ 1 = 0, whence we find the critical point x1 = -1. 
By (3), we have: If x = -1 - h, where h is a sufficiently small positive number, then y' >0;on the other 
hand, if x = -1 + h, then y' <0*, whence, x1 = -1 is maximum point of the function y and ymax = l. 

* If it is difficult to determine the sign of the derivative y', one can calculate 
arithmetically by taking for h a sufficiently small positive number. 

Equating the denominator of the expression for y' in (3) to zero, we get 

 𝑥3 = 0, whence we find the second critical point of the function x2 = 0, 
where there is no derivative. For x = -h, we have obviously y' <0, for x=h, 
we have y ' > 0. Consequently, x = 0 is the minimum point of the function y 
and ymin = 0 (Fig. 24). It is also possible to test the behaviour of the function 

at the point x = -1 by means of the second derivative𝑦′′ = −
2

3𝑥  𝑥
3 . 

 

Here, y " <0 for x = -1, whence x = -1 is the maximum point of the 
function. 

4.6.3 Largest and smallest values: The smallest (largest) value of a 
continuous function f(x) in a given interval [a, b] is attained either at the 
critical points of the function or at the end points of the interval [a, b]. 

Example 5. Find the largest and smallest values of the function𝑦 = 𝑥3 −
3𝑥 + 3 on the interval −1½ ≤  𝑥 ≤  2½. 

Solution: Since𝑦′ = 3𝑥2 − 3, it follows that the critical points of the 
function y are x1= -1 and x2 = 1. Comparing the values of .the function at 



these points and the values of the function at the end-points of the given intervall 

𝑦 −1 = 5;    𝑦 1 = 1;    𝑦 −1,5 = 4
1

8
; 

we conclude (Fig. 25) that the function attains its smallest value, m = l, at the point x = 1 (the 
minimum point) and its largest value M= 11 1/8 at the point x = 2 1/8, (at the right hand end point of 
the interval). 

Exercises 811 - 854 Determine the intervals of decrease and increase of the functions: 

. 

 

826. Test the functions for extreme values:  

Solution: We find the derivative y' = 2x + 4. Setting y' = 0, we obtain the critical value x = -2. 

Since y' < 0 when x < -2, it follows x = -2 is the minimum and ymin = 2. We get the same 

result by using the sign of the second derivative at the critical point y" => 0. 

 

Solution: We find the derivative  

Equating the derivative y' to zero, we find the critical points x1 = -2 and x2 = l. In order to 

determine the nature of the extreme value, we calculate the second derivative y"=6(2x + l). 

Since y" (-2) < 0, it follows that x1 = -2 is the maximum point of the function y and ymax = 25. 

Similarly, we have y"(1) > 0, whence x2 = l is the minimum point of the function y and ymin = 

-2. 



 

Determine the smallest and largest values of the functions in the indicated intervals (if the 

interval is not given, determine the smallest and largest values of the function throughout the 

domain of definition. 

 

Answers 811 – 854 

 

 



 

 

4.7. The Direction of Concavity. Points of Inflection 
4.7.1 The concavity of the graph of a function:We say that the graph of a differentiable function y = 
f(x) is concave downwards in the interval (a,b) (concave upwards in the interval (a1, b1), it for a < x < b 
the arc of the curve is below (or for a1<x<b1 above) the tangent drawn at any point of the interval 
(a,b) or of the interval (a1, b1)] (Fig. 29). A sufficient condition for downwards (upwards) concave 
behaviour of a graph y = f(x) is that there is fulfilled 
in the appropriate interval the inequality: 

 

4.7.2PointsofInflection:A point [x0, f(x0)] at which 
the direction of concavity of the graph of some 



function changes is called a point of inflection (Fig. 29). 

For the abscissa of the point of inflection x0 of the graph of a function y = f(x), there is no second 
derivative f"(x0) = 0 or f"(x0). Points at which f"(x)=0 or f"(x) does not exist are called critical points of 
the second kind. The critical point of the second kind x0 is the abscissa of the point of inflection if 
f"(x) retains constant signs in the intervals x0-𝛿<x<x0 and x0<x<x0+𝛿, where 𝛿is some positive number; 
provided these signs are opposite. And it is not a point of inflection, if the signs of f "(x) are the same 
in the intervals indicated above.  

Example1. Determine the intervals of concavity and convexity and also the points of inflection of the 

Gaussian curve𝑦 = 𝑒−𝑥2
. 

Solution: We have𝑦′ = −2𝑥𝑒−𝑥2
,   𝑦′′ =  4𝑥2 − 2 𝑒−𝑥2

. Setting the second derivative equal to zero, 
we find the critical points of the second kind 

 

These points subdivide the number scale −∞ < 𝜉 < ∞ into the three intervals: 

 

The signs of y" are +, - , + respectively (this is obvious, if, for example, we take one point in each 
interval and substitute the corresponding values of x into y). Hence, 

(1) the curve is concave upwards when -∞< x < -1/2 and 1/2 < x < +∞ 
(2) the curve is concave downwards when -1/2 < x <+1/2. 

The points (±1/2, 1/-1/e) are points of inflection. (Fig. 30). 

Note that due to the symmetry about the y-axis of the Gaussian curve curve, it would have been 
sufficient to investigate the sign of the concave behaviour of this curve on the semi-axis 0 < x < +∞ . 

 

Example 2. Find the points of inflection of the graph of the function𝑦 =  𝑥 + 2.
3

 

Solution: We have:𝑦′′ =
−2

9  (𝑥+2)53 .      (1) 

Obviously, y" does not vanish anywhere. Equating to zero the denominator of the fraction on the 
right hand side of (1), we find that y" does not exist for x < -2. Since y" > 0 for x < -2 and y" < 0 for x >-



2, it follows that (-2,0) is the point of inflection (Fig. 31). The tangent at this point is parallel to the 
ordinate axis, since the first derivative y' is infinite at x = -2. 

Exercises 891 - 900 
Find the intervals of concavity and the points of inflection of the graphs of the functions: 

 

Answers 891 – 900 

 
4.8. Asymptotes 
4.8.1. Definition: If a point (x,y) is in continuous motion along a curve y = f(x) in such a way that at 
least one of its co-ordinates approaches infinity (and at the same time. the distance of the point from 
some straight line tends to zero), then this straight line is called an asymptote of the curve. 

4.8.2 Vertical asymptotes: If there is a number a such that a such that 

lim
𝑥→𝑎

𝑓 𝑥 = ±∞, 

then the straight line x = a is avertical asymptote. 



4.8.3 Inclined asymptotes: If there are liimits 

lim
𝑥→∞

𝑓(𝑥)

𝑥
= 𝑘1 ,   lim

𝑥→∞
 𝑓(𝑥) − 𝑘1𝑥 = 𝑏1 . 

then the straight line y = k1x + b1 will be an asymptote (a right inclined asymptote or, when k1 =0, a 
right horizontal asymptote). 

If there are liimits 

lim
𝑥→−∞

𝑓(𝑥)

𝑥
= 𝑘2 ,   lim

𝑥→−∞
 𝑓(𝑥) − 𝑘2𝑥 = 𝑏2 . 

then the straight line y = k2x +b2 is an asymptote (a left inclined asymptote or, when k2 = 0, a left 
horizontal asymptote). The graph of the function y = f(x) (we assume the function is single-valued) 
cannot have more than one right (inclined or horizontal) and more than one left (inclined or 
horizontal) asymptote. 

Example 1. Find the asymptotes of the curve𝑦 =
𝑥2

 𝑥2−1
 

Solution: Equating the denominator to zero, we get two vertical asymptotes:𝑥 = −1, 𝑥 = 1. 

We seek the inclined asymptotes. For 𝑥 → ∞, we obtain 

 

whence, the straight line y = x is the right asymptote. Similarly, when 𝑥 → −∞, we have 

 

Thus, the left asymptote is y =-x (Fig. 32). Testing a curve for asymptotes is simplified if we take into 
consideration a curve's symmetry. 

Example 2: Find the asymptotes of the curve𝑦 = 𝑥 + ln 𝑥. 
Solution: Since 

lim
𝑥→0+,

𝑦 = −∞, 

the straight line x = 0 is a vertical asymptote (lower). Let us now test the curve only for the inclined 
right asymptote (since x>0). 



We have 

𝑘 = lim
𝑥→∞ ,

𝑦

𝑥
= 1,    𝑏 = lim

𝑥→∞ ,
(𝑦 − 𝑥) = lim

𝑥→∞ ,
ln 𝑥 = ∞. 

Hence, there is no inclined asymptote. 

If a curve is represented by the parametric equations x = 𝜑(t), y = ψ(t), we first test to find out 
whether there are any values of the parameter t for which one of the functions 𝜑(t) or (t) becomes 
infinite, while the other remains finite. When 𝜑(t0)= ∞ and ψ(t0) = c, the curve has a horizontal 
asymptote y = c. When ψ(t0) = ∞ and 𝜑(t0) = c, the curve has a vertical asymptote x = c. 

If 

 

the curve has an inclined asymptote y = kx+ b. 

If a curve is represented by a polar equation r = f(𝜑), we can find its asymptotes by the preceding rule 
after transforming the equation of the curve to the parametric form by the formulae 

x=rcos𝜑=f(𝜑)𝑐𝑜𝑠𝜑, y=rsin𝜑=f(𝜑)sin𝜑. 
Exercises 901 - 915 
Find the asymptotes of the curves: 

 

Answers 905– 914 

 



4.9. Graphing Functions by Characteristic Points 
When constructing the graph of a function, first find its domain of definition and then determine the 
behavior of the function on the boundary of this domain. It is also useful to note any peculiarities of 
the function (if there are any) such as symmetry, periodicity, constancy of sign, monotonic behavior, 
etc. Then, find any points of discontinuity, bending points, points of inflection, asymptotes, etc. 
These elements help to determine the general nature of the graph of the function and to obtain a 
mathematically correct outline of it. 

Example 1. Construct the graph of the function𝑦 =
𝑥

 𝑥2−1
3  

Solution: a) The function exists everywhere except at the points x = ±l. It is odd, whence the graph is 
symmetric about the point O(0, 0). This simplifies the construction of the graph. 

b) Its discontinuities are x = -1 and x = 1, and 

 

whence the straight lines x= ±l are vertical asymptotes. 

c) We seek inclined asymptotes and find 

 

whence there is no right asymptote. It follows from the symmetry of the curve that there is also no 
left-hand asymptote. 

d) We find critical points of the first and second kinds, i.e., points at which the first or the second 
derivative, respectively, vanishes or does not exist. 
We have 

𝑦′ =
𝑥2 − 3

3  𝑥2 − 1 43
, 𝑦′′ =

2𝑥(9 − 𝑥2)

9  𝑥2 − 1 7
 

The derivatives y and y" only do not exist at x = ±1, i.e., only at points where the function y itself does 
not exist, whence the critical points are only those at which y' and y" vanish. 

It follows from he derivatives y and y"that 

𝑦′ = 0, 𝑤𝑒𝑛  𝑥 = ± 3,     𝑦′′ = 0, 𝑤𝑒𝑛 𝑥 = 0 𝑎𝑛𝑑 𝑥 = ±3. 
Thus, y' retains a constant sign in each of the intervals 

 −∞; . − 3 ,       − 3; −1 ,       −1; 1 ,        1;  3 , (− 3; ∞) 

and y" in each of the intervals 

 −∞; −3 ,      −3; −1 ,       −1; 0 ,       0; 1 ,        1; 3 ,  3; ∞ . 

In order to determine the signs of y' (or y", respectively) in each of these intervals, it is sufficient te 
determine the sign of y' (or y") at any point of each of these intervals. 



It is convenient to make a table of the results of such an investigation (Table I), calculating also the 
ordinates of the characteristic points of the graph of the function. It will be noted that due to the odd 
character of the function y, it is enough to calculate only for x  0; the left half of the graph is 
constructed by the principle of odd symmetry. 

Table I 

 

Using the results ot the investigation, we construct the graph of the function (Fig. 33). 

 

Example2. Graph the function𝑦 =
ln 𝑥

𝑥
. 

Solution: 
a)  The domain of definition of the function is 0 < x <∞. 
b) There are no discontinuities in the domain of definition, but as we approach its boundary point 
(x=0) we have 

lim
𝑥→0

𝑦 = lim
𝑥→0

ln 𝑥

𝑥
= −∞, 

whence, the straight line x = 0 (the ordinate axis) is a vertical asymptote. 

c)We seek the right asymptote (there is none on the left hand side, since x cannot tend to −∞) 

𝑘 = lim
𝑥→∞

𝑦

𝑥
= 0,   𝑏 = lim

𝑥→∞
𝑦 = 0. 

The right asymptote is the abscissa y = 0. 



d) We find the critical points and have𝑦′ =
1−ln 𝑥

𝑥2 ,   𝑦′′ =
2 ln 𝑥−3

𝑥3 ;y' and y" exist at all points of the 

domain of definition of the function and 

𝑦′ = 0, 𝑤𝑒𝑛 ln 𝑥 = 1, 𝑖. 𝑒. 𝑤𝑒𝑛𝑥 = 𝑒; 𝑦′′ = 0, 𝑤𝑒𝑛 ln 𝑥 =
3

2
, 𝑖. 𝑒. 𝑥 = 𝑒

3

2 . 

We make a table, including the characteristic points (Table II).  

Table 2 

 

In addition to the characteristic points, it is useful to find the points of intersection of the curve with 
the co-ordinate axes. Setting y=0, we find x=1 (the poini of intersection of the curve with the 
abscissa); the curve does not intersect the ordinate. 

e) Using these results, we construct the graph of the function (Fig. 34). 

 

 

Exercises 916 - 963 

Graph the following functions and determine for each function its domain of definition, 

discontinuities, extreme points, intervals of increase and decrease, points of inflection of its 

graph, the direction of concavity, and also the asymptotes. 



 

Answers 916-963 



 



P
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