4 Geometry and Mechanics Applications of the Derivative

4.1 Equations of the tangent and the normal: It follows from the geometric significance of the
derivative that the equation of the tangenttoacurvey = f(x) or F(x,y) = 0 ata point

M (xq, o) will be

’
Y—Y= yo (x—xl))v
where y,'is the value of the derivative y' at the point M(x,, Vo). The straight line passing through the

point where the tangent touches the curve, perpendicularly to the tangent, is called the normal to
the curve. The normal has the equation

x—Xo+ gy (4§ —15) =0.

4.2 Angle between curvesThe angle between the curves

y=F,(x),y=Fs (%)

at their common point My(xq, Yo) (Fig. 12) is the angle
w between the tangents MyA and M,B to these curves at
the point M,,.

Using a familiar formula of analytic geometry, we find
’ !
fz (xO)— fl (xo)

tan o= - : . 7T X
1+ £, (%), (x9)  ° o

)

4.3 Segments associated with the tangent and the
normal in an orthogonal co-ordinate system: The
tangent and the normal determine the four
segments:

t=TM is the segment of the tangeni,
8;=TK is the sublangent,

n=NM is Lhe segment of lhe normal, o' T A K S, N ~
S,=KN is the subnormal.

Fig. 13
Since KM = |yq| and tana =y,', It follows that

Yo 7 7 Yo '
t=TM=‘E\/1+(YO)2|; n=NM=|y0\/1+(y0)2|; St:TK:|E|; Sn = 1Yoy |

4.4 Segments associated with the tangent and the normal in a polar co-ordinate system: If a curve
is given in polar co-ordinates by the equation r=f(¢), then
the angleu formed by the tangent MT and the radius vector
r = OM (Fig.14) is defined by

. _ dgo_r
an/,z—rdr—r,.

x|




The tangent MT and the normal MN at the point M together with the radius s vector of the point of
tangency and with the perpendicular to the radius vector drawn through the pole O determine the
following four segments (Fig. 14):

t =MT is the segment of the polar tangent,
n=MN is the segment of the polar normal,
S;=0T is the polar subtangent,
S,=0N is the polar subnormal.

These segments are given by the formulae:

r rt
t=MT = —~ V 4 (r')?; $;=0T =+
7] Vi) t 7]

n=MN=Vr’+'(r’)2; Sn--_-ON:-_fr'l‘

Exercises 621 - 666

621: What angles are formed with the x-axis by the tangents to the curve y = x -x* at the points with
the abscise: a) x=0, b) x=1/2, c) x=1?

Solution. We have y' = | - 2x, whence

a) tangp=1,9=45%b)tanp =0, ¢ =0°;
c) tan o=—1, p=135° (Fig. 15).

622: At what angles do the curves y=sin x and y = sin 2x intersect the
abscissae at the origin?

623: At what angle does y = tan x intersect the abscissa at the origin?
624: At what angle does the curve y=e®* intersect the straight line x=2?

625. Find the points at which the tangents to the curvey = 3x* + 4x3 — 12x? + 20 are parallel to
the x-axis.

626. At what point are the tangent to the parabolay = x? - 7x = 3 and the straight line 5x +y-3=0
parallel?

627. Find the equation of the parabola y = x? + bx + ¢ which is tangent to the straight line x = y at the
point (1,1).

628. Determine the slope of the tangent to the curve x3 + y® - xy - 7 = 0 at the point (1, 2).

629. At what point of the curve y? = 2x3 is the tangent perpendicular to the straight line 4x -3y +2 =
0?



630. Write the equation of the tangent and the normal to the parabolay = +/xat the point with
abscissa x = 4.

Solution: We havey' = %, whence the slope of the tangent is k = |y'| 4= 1/4. Since the point of the

tangent has the co-ordinates x = 4, y = 2, the equation of the tangentis y - 2 = I/4(x - 4) or
x—4y+4=0
Since the slope of the normal must be perpendicular,k; = —4, whence the equation of the normal is
y—2=—-4(x—-4) or 4x+y—-18=0.

631. Write the equations of the tangent and the normal to the curve y = x* + 2x? - 4x - 3 at the point (-
2,5).

632. Find the equations of the tangent and the normal to the curvey = Vx — lat the point (1,0).
633. Form the equations of the tangent and the normal to the curves at the given points:

a) y = tan 2x at the origin;

b) y = arsin[(x - 1)/2] at the intersection with the x-axis;
c) y = arcos 3x at the intersection with the y-axis;

d) y = In x at the intersection with the .x-axis;

e)y= e*™ at the intersection with the straight liney =1

634. Write down the equations of the tangent and the normal to the curvex = 1%, y =-—+—at
the point (2,2) .

635. Find the equations of the tangent to the curvex = t cost,y = t sint at the origin and the point
t=m/4.

636. Find the equations of the tangent and the normal to the curvex? + y? + 2x — 6 = 0 at the
point with ordinate y = 3.

637. Find the equation of the tangent to the curve X +y° - 2xy = 0 at the point (1,1).

638. Find the equations of. the tangents and normals to the curve y = (x - 1)(x - 2) (x - 3) at its
intersection with the x-axis.

639. Find the equations of the tangent and the normal to the curve y* = 4x* + 6xy at the point (1,2).

640*. Show that the segment of the tangent to the hyperbola xy = a2 (the segment lies between the
co-ordinate axes) is divided in two at the point of tangency.

2/3

641. Show that in the case of the astroid x”° + yz/3 =a** the segment of the tangent between the co-

ordinate axes has the .constant value a.

642. Show that the normals to the involute of the circle x = a(cost + tsint), y = a(sin t —

tcos t)are tangents to the circlex? + y? = a?.



643. Find the angle at which the parabolas y= (x - 2)?2 and y = -4 + 6x -x? intersect.
644. At what angle do the parabolas y=x> and y = x® intersect?

645. Show that the curves y = 4x% +2x -8 and y = x3 - x + 10 are tangent to each other at the point (3,
34). Will we have the same thing at (-2, 4)?

646. Show that the hyperbolas xy = a%x? - y = b? intersect at a right angle.

647. Given a parabola y? = 4x, evaluate at the point (1,2) the lengths of the segments of the sub-
tangent, sub-normal, tangent and normal.

648. Find the length of the segment of the sub-tangent of the curve y = 2" at any of its points.

649. Show that in the equi-lateral hyperbola x? - y? = a2 the length of the normal at any point is equal
to the radius vector of that point.

650. Show that the length of the segment of the subnormal in the hyperbola x? - y? = ¢? at any point
is equal to the abscissa of this point.

651. Show that the segments of the sub-tangents of the ellipse x*/a% - y*/b? = 1 and the circle x*> + y? =
a? at points with the same abscissas are equal. What procedure of construction of the tangent to the
ellipse follows from this?

652. Find the length of the segment of the tangent, the normal, the sub-tangent and the sub-normal
of the cycloid
x = a(t —sint)
{y = a(1l — cost)
at an arbitrary point t = t,.

653. Find the angle between the tangent and the radius vector of the point of tangency in the case of
the logarithmic spiralr = aek®.

654. Find the angle between the tangent and the radius vector of the point of tangency for the
lemniscater? = a?cos2¢.

655. Find the lengths of the segments of the polar sub-tangent, sub-normal, tangent and normal as
well as the angle between the tangent and the radius vector of the point of tangency in the case of
the spiral of Archimedesr = agat the point with the polar angle ¢ = 2m.

656. Find the lengths of the segments of the polar sub-tangent, sub-normal, tangent and normal as
well as the angle between the tangent and the radius vector of the hyperbolic spiral r = a/¢@ at an
arbitrary point ¢ = @g, 7 =19 +.

657. The law of motion of a point on the x-axis isx = 3t — t3. Find the velocity of the point at to= 0,
t;=1, t, =2 (x is in centimetres and t in seconds).

658. Two points move along the x-axis with the laws of motionx = 100 + 5¢, x = #, where t > 0.

At what speed are these points receding from each other at the time of encounter (x is in
centimetres, t is in seconds)?
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659. The end-points of a segment AB =5 m are sliding along t:he co-ordinate axes OX and OY (Fig.
16), A is moving at 2 m/sec. What is the velocity of B when A is at a distance OA = 3 m from the
origin?

660*. The law of motion of a material point thrown up at an angle a to the horizontal with initial
velocity vq (in the vertical plane OXY in Fig. 17 is given by the formulae (air resistance being

2
neglected):x = vytcos a, y = vytsina — %, where t is the time and g is the acceleration of gravity.

Find the trajectory of motion and the distance covered. Moreover, determine its velocity and its
direction of motion.

661. A point is in motion along the hyperbola y = 10/x so that its abscissa x increases uniformly at a
rate of 1 unit per second. What is the rate of change of its ordinate when the point passes through
(5,2)?

662. At what point of the parabola y? = 18x does the ordinate increase at twice the rate of the
abscissa?

663. One side of a rectangle, a = 10 cm, is of constant length, while the other side b increases at a
constant rate of 4 cm/sec. At what rate are the diagonal of the rectangle and its area increasing when
b=30cm?

664. The radius of a sphere is increasing at a uniform rate of 5 cm/sec. At what rate increase the.
area of the surface and the volume of the sphere when the radius becomes 50 cm?

665. A point is in motion along the spiral of Archimedesr = a¢ (a = 10 cm) so that the angular
velocity of rotation of its radius vector is constant and equals 6° per second. Determine the rate of
elongation of the radius vector r when r = 25 cm.

666. A non-homogeneous bar ABis 12 cm long. The mass of a part of it, AM, increases with the
square of the distance of the moving point M from the end A and is 10 gm when AM =2 cm. Find the
mass of the entire .bar AB and the linear density at any point M. What is the linear density of the bar
at Aand B?

Answers 621 — 666




622. 45°; arc tan 2 =~ 63° 26’. 623. 45°. 624. arc tan % =~ 36° 21’, 625. (0, 20); (1,15);

e 1 1
(—2, —12). 626. (1, —3). 627. y=x'—x+l.628.k=—l—l! . 629. (g. —ﬁ) ;

1
631. y—5=0; x+4+2=0. 632. x—1=0; y=0. 633. a) y=2x; y=——2— X,

b) x—2y—1=0; 2x+4+y—2=0;: ¢) 6x4+2y—n=0; 2x—6y+371=0;
d) y=x—1; y=1—x; e) 2x+y—3=0; x—2y+1=0 for the point (1, 1);
2x—y+3=0; x+2y—1=0 for the point (—1, 1). 634. 7x—10y+6=0,

Y2
10x+47y—34=0. 635. y=0; (n+4)x+(n—4)y— 2 =0. 636. 5x 46y —

—13=0, 6x—5y+21=0. 637. x+4+y—2=0. 638. At the point (1, 0):

;—x; at the point (2, 0): y= —x+42; y=x—2; at the point

y=2x—2; y=1

(3, 0): y=2x—6; y=3;x. 639. 14x—13y+412=0; 13x+4 14y—41=0.
640. Hint. The equation of the tangent is §i—+§y-=l. Hence, the tangent

crosses the x-axis at the point A (2x,, 0) and ({he y-gxis at B (0, 2y,). Finding
the midpoint of AB, we get the point (x,, y,). 643. 40° 36’. 644. The para-

bolas "are tangent at the point (0,0) and intersect at an angle
arctan-,-lz-%8°8’ at the point (1,1). 647. $;=8,=2;, t=n=2V 2.

1 . t t - o B o _ qcqrih t
648. TR 652. T =2asin 5 tani : N=28 sin - ; S¢=2a sin 7tan 5
S, =asint. 653. arctan —;— 654. % +2¢. 655. S;=dn%; S,=gq;
t=2ma V1 +4n%;, n=a Vi +4n* tanpu=2n. 656. S,=gq; S, = iz .

e —— 2
t=Va’+Q:; nr—-gol/a‘-}-qz; tanp=—q, 6567. 3 cm/sec; 0; —9 cm/sec.

658. 15 cm/sec. 659. -—% m/sec. 660. The equation of the trajectory isy=x tan a—
g . v ?sin 2a
—_—— 2 The range is _— The velocity,
20l cos*a g

' Uy Sin @ — gt
Vv:—Qvogt sin o+ g** the slope of the velocity vector is ov cosag
0

Hint. To determine the trajectory, eliminate the parameter ¢ from the given
system. The range is the abscissa of the point A (Fig. 17). The projections

of velocity on the axes are g—: and g-'t-/ The magnitude of the velocity is

dx\?2 dy\? : o e

T + 4 ) the velocity vector is directed along the tangent to the
9 9
)
663. The diagonal increases at a rate of ~ 3.8 cm/sec, the area, at a rate
of 40 cm?/sec. 664. The surface area increases at a rate of 0 9n m*[sec,

trajectory. 661. Diminishes with the velocity 0.4. +62.

the volume, at arate of 0.05 7 m?/sec. 665. % cm/sec. 666. The mass of the rod

is 360 g, the densily at M is 5x gjcm, the density at A is 0, the density
at B is 60 g/cm.



4.5 L'Hospital - Bernoulli Rule for Evaluating Indeterminate Expressions

4.5.1 Evaluation of the indeterminate forms 0/0 andoo/oo: Let the single-valued functions f(x) and
@(x) be differentiable for 0 < |x - a/< h and the derivative of one of them not vanish.

If both f(x) and ¢@(x) are infinitesimal or infinite as x — a, i.e., if the quotient f(x)/ ¢(x) at x = a has
one of the indeterminate forms 0/0 or oo /oo, then

lim £(*) _ Yim [ (%)
ra@lx) *a@’(x)

provided that the limit of the ratio of the derivatives exists.

This rule is also applicable when a = oo.

If the quotient f'(x)/ ¢ '(x) yields again at the point x =a an indeterminate form of one of the two
above-mentioned types and f '(x) and ¢ '(x) satisfy all the requirements stated above for f{x) and
@(x), we can pass to the ratio of second derivatives, etc.

However, note that the limit of the ratio f(x)/ ¢(x) may exist, whereas the ratios of the derivatives do
not tend to any limit (Example 809).

4.5.2 Other Indeterminate forms:In order to evaluate an indeterminate form like 0 - oo, transform
the appropriate product f;(x)f,(x), where

lim f, (x)=0 and limf, (x) = ¢o,
X -a X->Q

into the quotient

f: (x)

f1 (%) (x) (the form — 0 (orf 5
1

fz (x)

In the case of the indeterminate form co — oo, one should transform the appropriate difference f;(x) -
f2(x) into the product

o0
(the form ;).

_fx(®)
fx (x) 1 )

and first evaluate the indeterminate form



[,
fi(x)’

if its limit as — is 1, we reduce the expression to
1 __ft (x)
fr (%) _Q_
— (the form ).
[y (%)

The indeterminate forms
[+ o] 0 ]
I™, 0% o6

are evaluated by first taking logarithms and then finding the limit of the logarithm of the power

[/ ()] ha (2

(which requires evaluating a form like 0-0.)
In certain cases, it is useful to combine L'Hospital's rule with finding limits by elementary techniques.

Example 1. Compute

Inx 00

(form =)

Iim
x-0 cot x

Solution: Applying L'Hospital's rule, we have

im 0% i (nx) . sin®y
x>0 cot x X—=>0 (c ot X)' Xx—=>0 X

We have the indeterminate form 0/0. However, we do not need to use L'Hospital's rule, since we
know that

2
lim sin X —Hm g%isinx= 1.0=0,

k=0 X X~>0

Thus, finally, we find



ikt Inx —o.

x»0 Cot x

Example2. Compute

x»0 \ Sin% x x2

]im( l —-1-) (form oo — ).

Reducing this to a common denominator, we get
. 1 1 . x2—sin?
Iim e i lim * _Sin ] (form _0.).
x—0 \ SIN® x x? X0 x2sin% x 0

Before applying L'Hospital's rule, we replace the denominator of the last fraction by an equivalent
infinitesimal (1.4)x’sin’x~x". Thus, we obtain

: 1 1 _x®—sin®x 0
Ii s et "
x-f; (sin’ x x’) E:; x* Lo 0 )

L'Hospital's rule yields now

lim ( 1 - l) — lim 2x— 8in 2x= lim 2—2¢os 2x
o \Sin?x X/ x5 4x° S 3o 1952

We find now by elementary means

: 1 1 . l—cos 2x . 2sin?2x ]
lim i Lema MY o o e N e s
X—>0 (Sil’l8 X x’) X—0 6x’ X0 6x2 3 b

Example 3: Compute
2.
lim (cos 2x) ** (form 1%®).
X—={

Taking logarithms and applying L'Hospital's rule, we get

.
lim In (cos 2x) ¥ — lim M: __6liman 2x= —6,

X0 X0 X2 x>0 2X

whence



3
lim (cos 2x)* =e~¢,

X0
Exercises 776 — 808 .Find the liimits
776. i x3—2x2—x+2
) xl—r}} x2—7x+6
Solution:
x+1 XB—=Tx4+6 x5y 3IP—T7 T 2 °
. xcosx —sinx 1—x tanx — sinx tan x
777.lim —————.  778.lim —— 780.lim ——— 782.1lim
x-0 X x-11 — SIHT x->0 X —SInx x—>—tan 5x
T
e* = Iniisin mx)
783. lim —. 784. llm .785. llm .786.lim —————.787. 11m(1 — cosx) cotx.
x>0 X x—00 \/_ x—0 cot— 50 Insinx
Solution:
llm (l—cos x) cot x= lim { —CO.S x) cos x= lim (———l =1 X)-l= lim S—m x=()
x50 sin x x>0 sin x x>0 COS x

X a
788. hm(l —X) tan7 789. hm arcsinxcot x.790. hm(x e ™*),n>0. 791. lim xsin 7

X —00

X —00

a
792. lim x"sin L n > 0.793. llm Inxin (x — 1).

L5
794. hm( )
e \¥—1 " Inx
Solution. lim ( % _l_ =lim % In x—x+]=
w31 o (x—1)Inx
l 1
2l Pl G o X=+1 — x=+1_"
lnx+x(x 1) Inx x+l et

X I
795. i ( - ) 796.lim - .
3\x—3 xZ—x-6 ] [2(1 \/_) 3(1 — 3{/_)] X cotx 2 cos x)



798. lim- .

x=0
Solution. We  have xF=y; Iny=xInx: liminy=Ilimxlnx=
r—sn xX—0
o i
Inx X
=lim—-l—=llm i =0, whence limy=1, that is, limx*=1,
X0 ___ x-vo__’ X0 X0
X x

1 3 i X 1
799. lim xx800.lim x4+inx, 801. lim x<" *. 802. lim (1 — x)°°2. 803.lim(1 + x?)x.
X— X— X— X—

xX—+o0

1 X tan x

X 1 .
804. lim x1=. 805. lim(tan—)™" % . 806.lim cot xinx 807. lim (—) .808. lim cotx*™ *,
x-1 x-1 4 x-0 x-0 \x x-0

Answers 777 - 808

l
7. —2 778..779. 1.780. 3.781. % 782. 5. 783, .  784. 0. 785, -’2‘_'

2
788, 1. TBS, 'E. T8O, 1. T90. O, 791, a. 792, o for n—= 1; a for n=I|:

0forn<l. 793, 0. 705. % 796, llﬂ 797. —1. 799, 1. 800. ¢*. 801. 1,
802. 1. 803. 1. 804, % 805. '1: 806. El 807. 1. 808, 1.

4.6. Extreme values of a Function of One Argument
4.6.1 Increase and decrease of functions: The function f = f(x)) is said to be increasing (decreasing) in
some interval if, for any points x; and x, which belong to this interval, the inequality x;< x, yields the
inequality f(x,) < f(x,) (Fig. 21 a) . [f(x4) > f(x,) )Fig. 21b)] If f(x) is continuous in the interval [a, b] and
f'(x) >0 [f'(x) <0] for a < x < b, then f(x) increases (decreases) in the interval [a, b].

Y ‘ In the simplest cases, the domain of definitiom of f(x) may be

subdivided into a finite number of intervals of increase and
decrease of the function (intervals of monotone behaviour).
y-fh-) These intervals are bounded by critical points x [where f'(x)=0
or f'(x) does not exist].

Example 1. Test for increase and decrease: the function:

1, y=2x—2=2(x—1).

Solution: We find the derivativey' =2x—2=2(x—1),
Fig.21 (a) whence y'=0 for x = 1. On a number scale, we get the
intervals of monotone behavior: (1) (-0, 1), (2) (1, +o0). From
(1), we have:

Yy
a) if-co<x<l, theny'>0, whence the function f(x) decreases In the
interval (-o0, 1); y=1(z)
b) if1<x<+0c0,theny'>0, whence the function f(x) increases in the ;)
interval (1, +o0) (Fig, 22). #(z.)
2
gl = @ X

Fig21 (b)



. . . : 1
Example2. Determine the intervals of increase and decrease of the functiony = 7

Solution: Here, x = -2 is a discontinuity of the function and y'=-1/(x+2)?<2 for x'-2, whence the
function y decreases in the intervals ¥ < x < -2 and -2 < x < +0o0.

. . 1 1
Example3. Test for increase or decrease the function y = gxs - §x3.

Y‘ Solution: Here,y = x* — x2. (2)

Solving the equation x” - x* =0, we find the points x;=-1, x,=0, x3=I, at which the
5 derivative y' vanishes. Since y' can change sign only when passing through points
4 at which it vanishes or becomes discontinuous (in the given case, y' has no

discontinuities!), the derivative in each of the intervals (-, -1), (-1, 0), (0,1) and

(1, +oo) retains its sign, whence the function is monotonic in each of these

intervals. In order to determine in which of these intervals the function increases

and decreases, one has to determine the sign of the derivative in each interval. In

—}—"7 order to determine what the sign of y'is in the interval (-o0,-1), it is sufficient to

determine the sign of y' at some point of the interval, for example, we find from

Fig. 22 (2), for x = -2, y'=12 > 0, whence y' >0 in the interval (-o0, -1) and the function

increases in this interval. Similarly, we find that y' <0 in the interval (-1,0) (as a

check, we can take x = -1/2), y' < 0 in the interval (0,1) (here we can use x = 1/2) and y' > 0 in the
interval (1, +c0).

|

Thus, the function being tested increases in the interval (-, -1), decreases in the interval (-1, 1) and
again increases in the interval (1, +0).

4.6.2 Extreme values of a function: If there exists a two-sided neighbourhood of a point x; such that
for every point x ' x, of this neighborhood we have the inequality f(x) > f(xo), then the point x is called
a minimum point of the function y = f(x), while the number f(x,) is called the minimum of the
function y = f(x). Similarly, if for any point x ' x, of some neighborhood of the point x; the inequality
f(x) < fix1) is fulfilled, then x, is called the maximum point of the function f(x) and f(x,) is the
maximumof the function (Fig. 23).

ri X
y=f(z) |
f(z,)
f(z,
50 WS
0 Ty I, X
Fig. 23

The minimum point or maximum point of a function is its extreme point and the minimum or
maximum of a function is called the extremum value of the function. If x, is an extreme point of the
function f(x), then f '(xo)=0 or f '(x;) does not exist (a necessary condition for the existence of an
extreme value). The converse is not true: Points at which f'(x) = 0 or f'(x)does not exist (critical points)
are not necessarily extreme points of the function f(x). The sufficient conditions for the existence and
absence of an extreme value of a continuous function f(x) are given by the rules:



1. If there exists a neighborhood (xo - d, X + d) of a critical point xssuch that f'(x) > 0 for xo-d<x<x, and
f'(x)<0 for xo<x<xg+d, then xg is the maximum point of the function f(x), and if f(x)<0 for x,-d<x<x,and
f '(x)>0 for xg<x<xp+d, then xqis a minimum point of the function f(x).

Finally, if there is some positive number d such that f'(x) retains its sign unchanged for 0<[x-x,[<d€Z
then xq is not an extreme point of the function f(x).

2. If f'(x) = 0 and f "(xo)<0, then xq is a maximum point; if f ((xo)=0 and f "(xg) >0, then xqis @ minimum
point; however, if f(xg) = 0,f "(xo) =0and f """ (xo) ' 0, then the point x is not an extreme point.

More generally, let the first of the non-zero derivatives (not equal to zero at the point x,) of the
function f(x) be of the order k. Then, if k is even, the point x, is an extreme point, namely, a maximum
point, if f *(x,) <0, and a minimum point, if f ¥(x,) >0. However, if k is odd, then x is not an extreme
point.

Example 4. Find the extreme values of the functiony = 2x + 3V
Solution: The first derivative is

y'=2+72—“=T2—— / x+1). )]
§ X X

Setting the derivative y' equal to zero, we get:i/} + 1 = 0, whence we find the critical point x; = -1.
By (3), we have: If x = -1 - h, where h is a sufficiently small positive number, then y' >0;0n the other
hand, if x =-1 + h, then y' <0*, whence, x; = -1 is maximum point of the function y and y,.x = |.

* If it is difficult to determine the sign of the derivative y', one can calculate
arithmetically by taking for h a sufficiently small positive number.

Y
Equating the denominator of the expression for y'in (3) to zero, we get
i/} = 0, whence we find the second critical point of the function x, =0,
where there is no derivative. For x = -h, we have obviously y' <0, for x=h,
we have y ' > 0. Consequently, x = 0 is the minimum point of the function y
, and Ymin = 0 (Fig. 24). It is also possible to test the behaviour of the function
N at the point x = -1 by means of the second derivativey" = — 23 .
A 3xVx
4 -1 0 X
Fig. 24
v A
Here, y " <0 for x = -1, whence x = -1 is the maximum point of the T —, —
function. ”g .

4.6.3 Largest and smallest values: The smallest (largest) value of a
continuous function f(x) in a given interval [a, b] is attained either at the
critical points of the function or at the end points of the interval [a, b].

Example 5. Find the largest and smallest values of the functiony = x3 —

3x + 3ontheinterval —1% < x < 2%.

Solution: Sincey' = 3x2% — 3, it follows that the critical points of the
function y are x,= -1 and x, = 1. Comparing the values of .the function at




these points and the values of the function at the end-points of the given intervall

1
yED =5 y@) =1 y(=15) =4g;

we conclude (Fig. 25) that the function attains its smallest value, m =1, at the point x = 1 (the
minimum point) and its largest value M= 11 1/8 at the point x = 2 1/8, (at the right hand end point of
the interval).

Exercises 811 - 854 Determine the intervals of decrease and increase of the functions:

811. y=l—4x-—x’. 816. y= 1 2
812, y=(x—2)’. ¥=&=n
813. y=(x+4)" _ X
814. y=x'(x—23). 817. y=G—%—15
x —
e} s =1 818, y=(x—3)Vx.
819, y——-—g—é—{’/}. | 823, y=12¢*"-4*,
i 1
820. y=x+ sinx. 824. y— 275,
821, y=xInx. &
822. y=arsin (1 + x). 825. y=—

SN
826. Test the functions for extreme values: y =X + 4x '+' 6-

Solution: We find the derivative y' = 2x + 4. Setting y' = 0, we obtain the critical value x = -2.
Since y' <0 when x < -2, it follows x = -2 is the minimum and ymi, = 2. We get the same
result by using the sign of the second derivative at the critical point y" => 0.

827. y=2+4x—x*.
828. y=x"—3x'+3x+2.
829. y=2x"+43x*— 12x-}5.

Solution: We find the derivative” = 6x* 4 6x—12=26 (x* + x—2).

Equating the derivative y' to zero, we find the critical points x; = -2 and X, = |. In order to
determine the nature of the extreme value, we calculate the second derivative y"=6(2x + I).
Since y" (-2) <0, it follows that x; = -2 is the maximum point of the function y and ymax = 25.
Similarly, we have y"(1) > 0, whence x; = | is the minimum point of the function y and ymi, =
-2.



830. y=x*(x—12)*.

840. y=2cos 24 3coss
831. y=x(x—1)*(x—2)". 2 3

832. y=x,:_3. 841, y=x—In(l +x).
833. y=f—'—';—_2_x—l_'-'-g. 842. y=xInx.

834. y =(x—2)x(.8—x)- 843. y=xIn'x.

835. y= ;'(41_37:)' 844. y=cosh x.

0. y=VT:—T.—'é° 845. y=xe*.

837. y=37xf__2’ 846. y=x'e”",

838. y= 3 (F—1). 847. y==.

839. y=2 sin 2x - sin 4x. 848. y=x—artan x.

Determine the smallest and largest values of the functions in the indicated intervals (if the

interval is not given, determine the smallest and largest values of the function throughout the
domain of definition.

849, y=l-£;;. 853. y=x" on the interval [—1,3].
850. y=Vx(10—x). 854, y=2x"+3x"—12x+1
851. y=sin*x +cos*x. a) on the interval |—1,6];

b) on the interval [—10,12].
852. y=arccos x.

Answers 811 — 854

811. (—oo, —2), increases; (—2, o), decreases. 812. (—e, 2), decreases;
(2, ®), increases. 813. (— oo, o), increases. 814. (—oo, 0) and (2, «),
increases; (0, 2), decreases. 815. {— o0, 2) and (2, o), decreases. 816. (— oo, 1),
increases; (1, o), decreases, 817. (—», —2), (—2, 8) and (8, =), decreases:

818. (0, 1), decreases; (1, o), increases. 818. (—o, —I1) and (1, o), in
creases; (—1, 1), decreases. 820. (—o, ™), increases. 821. {0, —el- . de-

creases; (%, oo). increases, 822. (—2, 0), increases, 823. (— ,2), decreases;

(2, o0), increases. 824. (— oo, a) and (a, o), decreases. 825, (— oo, 0) and

(0, 1), decreases; (1, o), increases. 827, Ymax =" when x=-12-.. 828. No




extremum. 830. yp,;i; =0when »=0; yin=0when x=12; y.x = 1296 when x =6,

831, Ymin=—0.76 when x==0.23; yp,x=0 when x=1; ypi; = —0.056 when
x==1.43. No extremum when x=2. 832, No extremum. 833. yp,,=—2

when x=0; ymi,=2 when x=2. 834. y_ . = when x=23.2. 835. yo.=

]
16

= 2 = -
=—3V3 when x=——; ypin=3V3 when x=%. 836. Ymax=V 2

V3

when x=0. 837. ymaxz—l/-f%_ when x=—2V3; Ymin= V'3 when x=2V}3.
838. Ymin=0 when x=+1; ymax=1 when x=0, 839. ymi“.—_-——g-]/'fi_ when

1 3 /5
x:(k—%—)n; ymax=7]/-3 when xz(k —}-% n) (=0, £1, £2, ..).
840. ym.x=5 when x=12 km; g,rm,(:5cos%:rl when x=12(ki%) T Ymin==
=—5cos § when x=12 (kj:-é-)n; Ymin=1 When x=6(2k+1)n (k=0,

+1, £2, ..). 841, yqni,=0 when x=0. 842. yminm-——;— when x=-:—

4 1 '
843. Ymax = 7 when ?‘=??b’min=0 when x=1. 844. yn,=1 when

1
x=0. 845. Ymin="7 when x=—1. 846. yp;n=0 when x=0; b'max:";'l'z

when x=2. 847. yni,—e when x=1. 848. No extremum. 849. Smallest

, 1
value is m=— 3 for x=—1; greatest value, Mz-é- when x=1, 850, m=0
when x=0 and x=10; M=5 for x=>5. 851. m=—%— when x=(2k41) %;

kn .,
M=1 for x=§— (k=0, +1, 42, ...). 852. m=0 when x=1: M=mn when

x=—1. 853. m=—1 when x=—1; M=27 when x=23. 854. a) m=—6
when x=1; M =266 when x=5; b) m=—1579 when x=—10; M =23745 when

x=12.

4.7. The Direction of Concavity. Points of Inflection

4.7.1 The concavity of the graph of a function:We say that the graph of a differentiable function y =
f(x) is concave downwards in the interval (a,b) (concave upwards in the interval (a;, b,), itfora<x<b
the arc of the curve is below (or for a;<x<b; above) the tangent drawn at any point of the interval
(a,b) or of the interval (a,, b,)] (Fig. 29). A sufficient condition for downwards (upwards) concave
behaviour of a graph y = f(x) is that there is fulfilled Y ‘

in the appropriate interval the inequality:

" (x) <0 [f” (x) > 0].

4.7.2PointsofInflection:A point [x,, f(Xo)] at which
the direction of concavity of the graph of some




function changes is called a point of inflection (Fig. 29).

For the abscissa of the point of inflection x, of the graph of a function y = f(x), there is no second
derivative f"(x,) = 0 or f"(xo). Points at which f"(x)=0 or f"(x) does not exist are called critical points of
the second kind. The critical point of the second kind x, is the abscissa of the point of inflection if
f"(x) retains constant signs in the intervals x,-d<x<xy and x,<x<xo+8, where §is some positive number;
provided these signs are opposite. And it is not a point of inflection, if the signs of f "(x) are the same
in the intervals indicated above.

Examplel. Determine the intervals of concavity and convexity and also the points of inflection of the

. 2
Gaussian curvey = e ¥ .

Solution: We havey' = —2xe‘x2, y” = (4x?% — Z)e_xz. Setting the second derivative equal to zero,
we find the critical points of the second kind

1 1
_V-Q_’ x,=ﬁ.

These points subdivide the number scale —co < & < oo into the three intervals:

1 (—, %), I (x, x), I (x,, + o).

x1=—

The signs of y" are +, -, + respectively (this is obvious, if, for example, we take one point in each
interval and substitute the corresponding values of x into y). Hence,

(1) the curve is concave upwards when -co< x <-1/2 and 1/2 < x < +o0
(2) the curve is concave downwards when -1/2 < x <+1/2.

The points (x1/2, 1/-1/e) are points of inflection. (Fig. 30).

Note that due to the symmetry about the y-axis of the Gaussian curve curve, it would have been
sufficient to investigate the sign of the concave behaviour of this curve on the semi-axis 0 < x < +0 .

-— ﬂ YUI

Y

f==

L ond

X

P\

0

ﬁlxtrg
Sl

Fig. 30 Fig. 31

Example 2. Find the points of inflection of the graph of the functiony = Vx + 2.
-2
€Y)

Solution: We have:y = i

Obviously, y" does not vanish anywhere. Equating to zero the denominator of the fraction on the
right hand side of (1), we find that y" does not exist for x < -2. Since y" >0 for x <-2 and y" < 0 for x >-



2, it follows that (-2,0) is the point of inflection (Fig. 31). The tangent at this point is parallel to the
ordinate axis, since the first derivative y'is infinite at x =-2.

Exercises 891 - 900
Find the intervals of concavity and the points of inflection of the graphs of the functions:

891. y=x"—6x"+12x+4.  896. y=cosx.
892. y=(x-+1)~ 897. y=x—sinx.

893. y=x_:_3 i 898. y=x"Inx.
894. y=;—f-{_’—l—2. 899. y=arctanx—x.
895. y =i/ 4x* —12x. 900. y=(1+x*)e".

Answers 891 — 900
891. (—o, 2), concave down; (2, «),

concave up; M (2, 12), point of inflection. 892. (—o, ), concave up.
893. (— o, —3), concave down, (—3, ), concave up; no points of inflection.
894. (— o, —6) and (0, 6), concave up; (—6, 0) and (6, ), concave down;

points of inflection M, (—6, —%) + 00, O, M, (6, 5 895. (— oo,
—V'3) and (0, V'3), concave up; (—¥3, 0) and (ﬁ, ), concave down:
points of inflection M, . (£ V3, 0) and O(0, 0). 896. ((4k+l)—§,

(4k+3)§). concave up; ((4k +3) ;. (4k+5)—g) , concave down (k=0,

+1, 2, ...); points of inflection, ((2k+1)§, 0). 897. (2km, (2k+ 1)m),
concave up; ((2k—1)n, 2km), concave down (8=0, +1, +2, ...); the abscis-

sas of the points of inflection are equal to x=*kn. 898. (0, -—l-_;). concave
e

/1 " 1 2y : ; :
down,(——-g_‘, oo), concave up; M ()/E-" _%J is a point of inflection.

899. (7—oo, 0), concave up; (0, o), concave down; O (0, 0) is a point of
inflection. 900. (— o, —3) and (—1, «), concave up; (—3, —1), concave
down; points of inflection are M,<—3, elTO) and M, (—l, E)

e

4.8. Asymptotes

4.8.1. Definition: If a point (x,y) is in continuous motion along a curve y = f(x) in such a way that at
least one of its co-ordinates approaches infinity (and at the same time. the distance of the point from
some straight line tends to zero), then this straight line is called an asymptote of the curve.

4.8.2 Vertical asymptotes: If there is a number a such that a such that

li_r)nf(x) = too,

then the straight line x = a is avertical asymptote



4.8.3 Inclined asymptotes: If there are liimits

lim L& ki, Im[f(x) = kix] = by,

x—>0o X

then the straight line y = kyx + b, will be an asymptote (a right inclined asymptote or, when k; =0, a
right horizontal asymptote).

If there are liimits

lim f% = kz, xl_l)r_noo[f(X) - kzX] = bz.

X ——00

then the straight line y = kox +b, is an asymptote (a left inclined asymptote or, when k, = 0, a left
horizontal asymptote). The graph of the function y = f(x) (we assume the function is single-valued)
cannot have more than one right (inclined or horizontal) and more than one left (inclined or
horizontal) asymptote.

2

Example 1. Find the asymptotes of the curvey =

x2-1
Solution: Equating the denominator to zero, we get two vertical asymptotes:x = —1, x = 1.
We seek the inclined asymptotes. For x — oo, we obtain PR | y
2 N £
i 2 X AN F N
k= lim L= tlim =1, Wy y -
x>+ X xa+mx ¥V a2—| g /ér
A AR P
2 2 E R
: . X*—x Vﬂx il
by= lim (y—x)=1im . =}, - W !
X4+ o Y=p+ a0 V x2—1| Fig. 32

whence, the straight line y = x is the right asymptote. Similarly, when x — —oo, we have

by= lim L=—1,
X>=>

b= lim (y+4x)=0.

X—>—-

Thus, the left asymptote is y =-x (Fig. 32). Testing a curve for asymptotes is simplified if we take into
consideration a curve's symmetry.

Example 2: Find the asymptotes of the curvey = x + Inx.
Solution: Since

lim y = —o
x—>0+,y ’

the straight line x = 0 is a vertical asymptote (lower). Let us now test the curve only for the inclined
right asymptote (since x>0).



We have

k = llmj—/—l b= hm(y—x)— llmlnx—oo

x—00, X

Hence, there is no inclined asymptote.

If a curve is represented by the parametric equations x = @(t), y = Y (t), we first test to find out
whether there are any values of the parameter t for which one of the functions ¢(t) or BI(t) becomes
infinite, while the other remains finite. When ¢(t;)= o0 and Yi(t,) = ¢, the curve has a horizontal
asymptote y = ¢. When (to) = o0 and ¢(ty) = ¢, the curve has a vertical asymptote x = c.

If

B P (f) -
P (L) =" (fo) =0, hm w—(t)“k }iglgﬂb(t)-—-kw(t)]

the curve has an inclined asymptote y = kx+ b.

If a curve is represented by a polar equation r = f(¢), we can find its asymptotes by the preceding rule

after transforming the equation of the curve to the parametric form by the formulae
x=rcos@=f(p)cos, y=rsinp=f(¢)sing.

Exercises 901 - 915

Find the asymptotes of the curves:

1 !

901. y=(x-——__‘§)7. 908. y= x—2+V.xz+9
902. y= F—:x—ﬂ 909. y=e-*+2.
# 1
903, y= . 910. y=1—7
x? 1
N4 y=57g- 911, y=e-*,
905. y=Vx—1. 912. y=§¥.
906. y=7:7—-ﬁ. 913. y=In(l 4-x).
907 y—szl 914. x=1{; y=1t4+2artant
’ T « X=l; y= !

915. Find the asymptote of the hyperbolic spiral r=—:;;-.

Answers 905—914

905. y = — x,left, y = x, right. 908, y = —1, left, y=1,right, 807. x= 41, y=— x, left,
y__x right. 908. y=—2, left, y= 2x -2, right. 909. y=2. 910. x——O
=1, left, y=0, right. 911. =0, y=1. 912. y=0. 913. x=—1.

914 y=x—mn, left; y=x+4m, right.



4.9. Graphing Functions by Characteristic Points

When constructing the graph of a function, first find its domain of definition and then determine the
behavior of the function on the boundary of this domain. It is also useful to note any peculiarities of
the function (if there are any) such as symmetry, periodicity, constancy of sign, monotonic behavior,
etc. Then, find any points of discontinuity, bending points, points of inflection, asymptotes, etc.
These elements help to determine the general nature of the graph of the function and to obtain a
mathematically correct outline of it.

X

xZ-1

Example 1. Construct the graph of the functiony =

Solution: a) The function exists everywhere except at the points x = #1. It is odd, whence the graph is
symmetric about the point O(0, 0). This simplifies the construction of the graph.

b) Its discontinuities are x =-1 and x = 1, and

lim y=+ 0, lim y= 1t oo,

X140 X>=110
whence the straight lines x= £l are vertical asymptotes.

c) We seek inclined asymptotes and find

Il

k,= lim %:o, b= lim y= oo,

X—>+ ® X—++m

whence there is no right asymptote. It follows from the symmetry of the curve that there is also no
left-hand asymptote.

d) We find critical points of the first and second kinds, i.e., points at which the first or the second
derivative, respectively, vanishes or does not exist.

We have

, x% -3 . 2x(9 —x?)

T3 eeont ) ofaro1y

The derivatives y and y" only do not exist at x = #1, i.e., only at points where the function y itself does
not exist, whence the critical points are only those at which y'and y" vanish.

It follows from he derivatives y and y"that
y’ = 0,when x = i\/§, y” =0,whenx =0and x = +3.
Thus, y'retains a constant sign in each of the intervals

(—o;.—V3), (=V3;-1), (-1;1), (1;V3), (—V3;)
and y" in each of the intervals

(=o0;-3), (=3;-1), (=1,0), (0;1), (1;3), (3;00).

In order to determine the signs of y' (or y", respectively) in each of these intervals, it is sufficient te
determine the sign of y' (or y") at any point of each of these intervals.



It is convenient to make a table of the results of such an investigation (Table 1), calculating also the
ordinates of the characteristic points of the graph of the function. It will be noted that due to the odd
character of the function y, it is enough to calculate only for x@ 0; the left half of tk graph is

constructed by the principle of odd symmetry.

Table |
x 0 | (01 L, VIV 3=L73[(V3.3) 3 |@3. +w)
y 0 + o 4 --E"l 37 + 1.5 .
R non-
y - B exist - o ¥ + +
. non-
% v - exist + + g 0
l‘ Point | Function Function Function | point Funclion.
Con: | of decregs?s; Discon- decregs?s; Min. 1“”3‘;)5‘]05: of l“g‘;iapsﬁs'
clu- | _ | graph Is | graph is int 8r inflec- |, ¥
sions mtrllsf, Eoncave tnulty) Boncave bl is concave | tjon |is concave
down up up down

Using the results ot the investigation, we construct the graph of the function (Fig. 33).

Example2. Graph the functiony = me
Solution:
a) The domain of definition of the function is 0 < x <o,
b) There are no discontinuities in the domain of definition, but as we approach its boundary point
(x=0) we have
Inx

limy = lim— = —oo,
x—0 x-0 X

whence, the straight line x = 0 (the ordinate axis) is a vertical asymptote.

c)We seek the right asymptote (there is none on the left hand side, since x cannot tend to —)
k=1lm2=0, b=limy=0.

x—00 X xX—00

The right asymptote is the abscissa y = 0.



. . . ;14 v 2Inx-3 . .
d) We find the critical points and havey = x;”c, y" = n;; ;' and y" exist at all points of the

domain of definition of the function and

I " 3 i
y =0,whenlnx =1,i.e.whenx =e;y = 0,whenlnx = E,i.e.x = ez,

We make a table, including the characteristic points (Table II).

Table 2
P e S st
( 4 Ll ( 2
x 0 ©, 1 1 e .| ex2.72 e, e’ e2:4.49 |\e?*, +
0 : L o 3 ~0.33 D
—w = - — ==\ ——=xU, ‘-
¥ ' e ¥ 2y e
Y nonexist. + + + 0 — - -
Y nonexist. — — — — — 0 +
Boundar .
point o Funct, Funcl. Funct. Funct. Funciion
Conelu: doniain of increases; incr.; iner.; Max. decr.; Polnt ol decreases;
sions dei. of fun- graph is _ graph graph .pomt. graph inflection __graph
ctlon, colncave is concave is concave af funct. is conuave i8 concave
Vertical down down down down up
asymptote

In addition to the characteristic points, it is useful to find the points of intersection of the curve with
the co-ordinate axes. Setting y=0, we find x=1 (the poini of intersection of the curve with the
abscissa); the curve does not intersect the ordinate.

e) Using these results, we construct the graph of the function (Fig. 34).

Y lnx
==

0 1 e ez X
Fig. 34

Exercises 916 - 963

Graph the following functions and determine for each function its domain of definition,
discontinuities, extreme points, intervals of increase and decrease, points of inflection of its

graph, the direction of concavity, and also the asymptotes.



916.
917.
918.
919. y =
920. y=
921,
922,
923. y
924.
925.
926.
927.

928. y
929.
930.

931. y
932.
933.
934.

935.

936.
937.
938.

y=x"—3x°.
6x% — x*

Y= )

y=x—1)" (x+2).

(x—2(x+4
4 . .

(= 5)*

L E— X -+

Y¥="—7%_3 ™=

_x‘—3

y—-. x

x*1- 3

X
y=x’—|—%.
1
y=x’-|—3'
8 e
y=yw_3-
L A%
y_4+x2'
i
o (x—=22
x
y=x’,—4'
16
Y= wa—9"
_3x4+1

p
y=V x+Vi—=x.
y=V8+x—V8—x.
y=xV x+ 3.

y=V 7%

y=y/ 1—x

y=y 1—+"

y=2x+2—-3y (x+1).

939.
940.
941.

942.
943.
944.

945.
946.

947.

948.
949.

950.
951. y

952.

953.

954.
955.

956.
957.

958.
959.
960.

961.
962.

963.

Answers 916-963

y=Vx+1—y x—1.

y=y x4 —y (x=1)".
y=v (§—2)’+f/(x—4)’ :

Yy = sin x - cos x.

y=sinx +Si“22x ;
Yy == c0S x—co0s® x.
y = sin® x 4 cos’ x.
. 1
Y=Sinxfcosx




916. ymax=0 when x=0;

Ymin——4 when x=2; point of inflection, M, (1, —2), M. daam—1 \ghen
'_9' A
918, Ymax =4 When x=—1; ymi;=0 when x=1; point of inflection, M, (0, 2).
919. Ymax =38 when x=—2; ynia=0 when x=2; point of inflection, M (0, 4).

920. Ymin=—1 when x=0; points of inflection M, ,(% V5, 0) and
7 A
M,',,\;i;l, —--1924—5) . 921, Ymax=—2when x=0; ymiz==2 when x=2; asymp-

totes, x=1, y=x—1. 922. Points of inflection M, ,(+1, F2); asymptote
x=0. 923. Ymax=—4% When x=—1; ymin=4 when x=1; asymptote, x=0.

924. ymin=23 when x=1; point of inflection, M(—'?/?, 0); asymptote,

x=4+V3 Ymn=0 when x=0; points of inflection M, ,| £I,

x=0. 925. ymax=%-

asymptote, y=0. 926. yy,x=—2 when x=0; asymptotes, x=+£2 and y=0.
927. Ymin=—1 when x=—1; ymax=1 when x=1; points of inflection, O (0, 0)

and M,',(;h2]/-3—, i—‘%—); asymptote, y=0. 928. ymaxy=1 when x=4;

when x=0; points of inflection, M, ,| 1, T;

point of inflection, M (5, —g—- ; asymptotes, x=2 and y=0. 929. Point
27
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of inflection, O(0, 0); asymptotes, x=+2 and y=0. 930. yn.x=
when x=_g_; asymptotes, x=0, x=4 and y=0. 93l. ypmx=—4 when

x=—1; Ymin=4 when x=1; asymptotes, x=0 and y=3x. 932. A(0, 2)

and B (4, 2) are end-points; ymax=2V 2 when x=2. 933, A(—8, —4) and
B (8, 4) are end-points. Point of inflection, O0(0, 0). 934. End-point,

A (=3, 0); Ymin=—2 when x=—2. 935. End-points, A(—V3 0), 0(0, 0)
and B(V'3, 0); ymax=V 2 when x=—1; point of inflection, M(V3+2|/'§'

2
61/1_*__‘/__5). 936. ym.x=1 when x=0; points of inflection,

M, o(+1, 0). 937. Points of inflection, M, (0, 1) and M, (1, 0); asymptote,
y=—x. 938. ymax=0 when x=—1; ymin=—1 (when x=0). 939. yp =2

when x=0; points of inflection, M,y,(;};l. ::/5), asymptote, y=0.
940. ymin=—4% when x=—4; qu,‘=4-when x=4; point of inflection, O (0, 0);

g 3 p
asymptote, y=0. 941. ymm=i’/4 when x=2, ym1n=/4 when x=4;
Ymax=2 Wwhen x=3. 942. ymin=2 when x=0; asymptote, x= 2.

943. Asymptotes, x= t2 and y=0. 944. ymm=i/—:i when x= VE,

V2



when x=—3; points of inflection, M, (—3. —%) 00, 0

7 —_—_ﬁ.
max 3/2—

and M,(S, —3—). asymptotes, x=41. 945, yyjn=35—>= when x=6; point

/_

of inflection, M ) asymptote,x=2.946.ymax=ei when x=1; point

(* 7w
of inflection, M(2 &) asymptote, y=0. 947. Points of inflection,

0
M, (—Sa’ l?’g) i M’ (_a' 28_a>' asymptote, y=0. 948, yp,x=e* when

3
x=4; points of inflection, M, , M, e |; asymptote, y=0.

: . . 3
949. ynax=2 when x=0; points of inflection, M, , (il ?>. 950. Ymax=1

when x=41; Upin=0 when x=0. 951, Ymax=0,74 when x=e*==7.39;
point of inflection, M (e'/s =~14.39, 0.70); asymptotes, x=0 and y=0.
2

. a 3a?
952. ymi“:_z—e when x=Le_; point of inflection, M (ﬁ , —:l_e") X
2

953. Ymin=¢e when x=e; point of inflection, M (e’. %) ; asymptote, x=1;

1
y—+0 when x-0. 954 yma,‘=eizk0.54 when x=—;—l&—0.86;

1
Ymin=0 when x=0; point of inflection, M (l?—l ~—0.63; —‘VO 37)

y >0 as x =—140 (limiting end-point). 955. Yy =1 when x=+ V2 points

of inflection, M, ,(£1.89, 1.33); asymptotes, x=+£1. 956. Asymptote,
y=0. 957. Asymptotes, y=0 (when x>+ o) and y=—x (as x - — ).

958. Asymptotes, x=—? , x=0, y=1; the function is not defined on the
interval —%, 0]. 959. Periodic function with period 2%, ypn=—V 2
when x = 71+ 267 Ymax= V 2 when x=;+2kn (k=0, +1, £2, ...);
points of inflection, M, (%:n:+kn. 0). - 960. Periodic function with
period 2. ymm=—%l/§ when x=%n+2kn; Vsiag =%V3_ when
x=§n+ 2kn (k=0, +1, £2, ...); points of inflection, M, (kn, 0) and

N, (arc cos ( —_ i—) + 2km, V15) . Periodic function with period 2m.

% when x = + ?n; Ymin=—2 when

X=+m, Ymin=0 when x=0; points of inflection, M, ,(+£0.57, 0.13) and
My (£2.20, —0.95). 962. Odd periodic function with' period 2%, On inter-

On the interval [—mx, o], Ymax=

val [0, 2n], Ymax=1 when x=0; ym,=0.71, when x=zn; Ymax=1 when
P



x :% ; Ymin=—1 when Xx=1 ymux=—0.71 when x:%n; Ymin=—1 when
X :-—%—J‘E; Ymax=1 when x=2m; points of inflection, M, (0.36, 0.86);

M, (1.2, 0.86); M,(2.36, 0); M, (3.5, —0.86); M,(4.35, —0.86);

Mg (5.50, 0). 963. Periodic function with period 2m, yminz--—zg when

x:i}-}_%n; ymax:—]—g& when x=—%ﬂ+2kn (=0, 1, £2, ...)»

3
asymptoies, X =7 -+ k.
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