Introduction

Prerequisites: You will need to know about trigonometry, differentiation, integration, complex numbers in order to make the most of this teach-yourself resource.

We are looking at equations involving a function $\mathrm{y}(\mathrm{x})$ and its first derivative:

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) \tag{1}
\end{equation*}
$$

We want to find $\mathrm{y}(\mathrm{x})$, either explicitly if possible, or otherwise implicitly.

Direct Integration

This method is used to solve ODEs in the form:

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{f}(\mathrm{x})
$$

These ODEs can be solved as follows:

$$
\begin{aligned}
\mathrm{dy} & =\mathrm{f}(\mathrm{x}) \mathrm{dx} \\
\text { so: } \mathrm{y} & =\int \mathrm{f}(\mathrm{x}) \mathrm{dx}
\end{aligned}
$$

Example:

$$
\begin{aligned}
\frac{\mathrm{dy}}{\mathrm{dx}} & =3 \mathrm{x}^{2}-6 \mathrm{x}+5 \\
\mathrm{y} & =\mathrm{x}^{3}-3 \mathrm{x}^{2}+5 \mathrm{x}+\mathrm{C} \text { with } \mathrm{C} \text { constant of integration }
\end{aligned}
$$

The constant of integration can be anything, unless you have boundary conditions. In the previous example, if you have $y(0)=0$ then:

$$
y(0)=C=0
$$

Separation of Variables

This method is used to solve ODEs in the form:
These ODEs can be solved as follows: $\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{y})$
encouraging academics to share maths support resources

$$
\begin{aligned}
\frac{d y}{g(y)} & =f(x) d x \\
\int \frac{d y}{g(y)} & =\int f(x) d x
\end{aligned}
$$

Example:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2 x}{y+1} \\
(y+1) d y & =2 x d x \\
\int(y+1) d y & =\int 2 x d x \\
\frac{1}{2} y^{2}+y & =x^{2}+C \text { with } C \text { constant of integration }
\end{aligned}
$$

Homogeneous Equations

A first order homogeneous differential equation is a differential equation in the form:

$$
\frac{d y}{d x}=f\left(\frac{y}{x}\right)
$$

These ODEs can be solved by making the substitution $y(x)=v(x) \cdot x$ where v is a function of x. Then we have:

$$
\begin{aligned}
\text { Using the product rule: } \quad \frac{d y}{d x} & =\frac{d v}{d x} \cdot x+v \\
\text { Inserting in the ODE: } \quad \frac{d v}{d x} \cdot x+v & =f(v) \\
\text { Re-arranging: } \quad \frac{d v}{f(v)-v} & =\frac{d x}{x} \\
\int \frac{d v}{f(v)-v} & =\int \frac{d x}{x}
\end{aligned}
$$

Example

$$
\begin{aligned}
\frac{\mathrm{dy}}{\mathrm{dx}} & =\frac{\mathrm{x}+3 \mathrm{y}}{2 \mathrm{x}} \\
\text { Rearranging, we get: } \frac{\mathrm{dy}}{\mathrm{dx}} & =\frac{1}{2}+\frac{3}{2} \frac{\mathrm{y}}{\mathrm{x}}
\end{aligned}
$$

Taking the \log on both sides: $\quad v=e^{C} x^{1 / 2}-1$

$$
\text { with } \mathrm{y}=\mathrm{v} \cdot \mathrm{x}, \quad \mathrm{y}=\mathrm{kx}^{3 / 2}-\mathrm{x}, \text { with } \mathrm{k}=\mathrm{e}^{\mathrm{C}}
$$

Integrating Factor

This method is used to solve ODEs in the form:

$$
\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{P}(\mathrm{x}) \mathrm{y}=\mathrm{Q}(\mathrm{x})
$$

These ODEs can be solved as follows: multiply both sides of the equation by the integrating factor: $\mathrm{e}^{\int \mathrm{P}(\mathrm{x}) \mathrm{dx}}$. Then:

$$
e^{\int P(x) d x} \frac{d y}{d x}+P(x) e^{\int P(x) d x} y=Q(x) e^{\int P(x) d x}
$$

Now we see that, using the product rule and the chain rule:

$$
e^{\int P(x) d x} \frac{d y}{d x}+P(x) e^{\int P(x) d x} y=\frac{d}{d x}\left(e^{\int P(x) d x} y\right)
$$

Therefore:

$$
\begin{aligned}
\frac{d}{d x}\left(e^{\int P(x) d x} y\right) & =Q(x) e^{\int P(x) d x} \\
y & =e^{-\int P(x) d x} \int Q(x) e^{\int P(x) d x} d x
\end{aligned}
$$

Example

$$
\frac{d y}{d x}-y=x \text { with } P(x)=-1 \text { and } Q(x)=x
$$

The integrating factor is $\mathrm{e}^{\int-\mathrm{dx}}=\mathrm{e}^{-\mathrm{x}}$ and:

$$
\begin{aligned}
\mathrm{e}^{-\mathrm{x}} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{e}^{-\mathrm{x}} \mathrm{y} & =\mathrm{xe} \mathrm{e}^{-\mathrm{x}} \\
\frac{d}{d x}\left(\mathrm{ye}^{-x}\right) & =x \mathrm{e}^{-\mathrm{x}}
\end{aligned}
$$

Using integration by part: $\quad \mathrm{ye}^{-\mathrm{x}}=-\mathrm{e}^{-\mathrm{x}}(1+\mathrm{x})+\mathrm{C}$ with C constant of integration

$$
\mathrm{y}=-(1+\mathrm{x})+\mathrm{Ce}^{\mathrm{x}}
$$

Bernouilli Equations

Bernouilli equations are of the form:

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

These equations are solved with the following method:

- Multiply both sides of the equation by y^{-n}, the equation becomes:

$$
y^{-n} \frac{d y}{d x}+P(x) y^{1-n}=Q(x)
$$

- Make the change of variable $\mathrm{v}=\mathrm{y}^{1-\mathrm{n}}$, then:

$$
\begin{aligned}
\frac{d v}{d x} & =(1-n) y^{-n} \frac{d y}{d x} \\
\text { so } \quad \frac{1}{1-n} \frac{d v}{d x}+P(x) v & =Q(x)
\end{aligned}
$$

The latest form of the equation can be solved for v using the method of the integrating factor. Finally, y can be found from the relationship $y=v^{n-1}$.

Example:

$$
\begin{aligned}
\frac{d y}{d x}+\frac{1}{x} y & =x y^{2} \\
y^{-2} \frac{d y}{d x}+\frac{1}{x} y^{-1} & =x \\
v=y^{-1} & , \quad \frac{d v}{d x}=-\frac{1}{y^{2}} \frac{d y}{d x} \\
\frac{d v}{d x}-\frac{v}{x} & =-x
\end{aligned}
$$

$$
\text { The integrating factor is IF }=e^{\int-\frac{1}{x} d x}=e^{-\ln x}=\frac{1}{\mathrm{x}}
$$

$$
\begin{aligned}
\frac{1}{\mathrm{x}} \frac{\mathrm{dv}}{\mathrm{dx}}-\frac{1}{\mathrm{x}^{2}} \mathrm{v} & =-1 \\
\frac{1}{\mathrm{x}} \mathrm{v} & =\int-\mathrm{dx} \\
\mathrm{v} & =-\mathrm{x}^{2}+\mathrm{Cx} \\
\mathrm{y} & =\frac{1}{-x^{2}+C x}
\end{aligned}
$$

Exercises

(a) $x \frac{d y}{d x}=5 x^{3}+4$
(d) $x \frac{d y}{d x}-y=x^{3}+3 x^{2}-2 x$
$(b) x(y-3) \frac{d y}{d x}=4 y$
$(c)(2 y-x) \frac{d y}{d x}=2 x+y$ with $y(2)=3$
(e) $\left(1+x^{2}\right) \frac{d y}{d x}+3 x y=5 x$ with $y(1)=2$
(f) $2 \frac{d y}{d x}+y=y^{3}(x-1)$

Answers

(a) $y=\frac{5}{3} x^{3}+4 \ln x+C$
(d) $y=\frac{1}{2} x^{3}+3 x^{2}-2 x \ln x+C x$
(b) $y-3 \ln y=4 \ln x+C$
(e) $y=\frac{5}{3}+\frac{\sqrt{8}}{3}\left(1+x^{2}\right)^{-3 / 2}$
(c) $\left(\frac{y}{x}\right)^{2}-\frac{y}{x}-1+x^{-2}=0$
(f) $y=\left(x+C e^{-x}\right)^{-1 / 2}$

