

Pathcentre community First Order Ordinary Differential Equation

mccp-richard-1

Introduction

Prerequisites: You will need to know about trigonometry, differentiation, integration, complex numbers in order to make the most of this teach-yourself resource.

We are looking at equations involving a function $\boldsymbol{y}(\boldsymbol{x})$ and its first derivative:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x) \tag{1}$$

We want to find $\mathrm{y}(\mathrm{x}),$ either explicitly if possible, or otherwise implicitly.

Direct Integration

This method is used to solve ODEs in the form:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$

These ODEs can be solved as follows:

$$dy = f(x)dx$$

so: y = $\int f(x)dx$

Example:

$$\frac{dy}{dx} = 3x^2 - 6x + 5$$

y = x³ - 3x² + 5x + C with C constant of integration

The constant of integration can be anything, unless you have boundary conditions. In the previous example, if you have y(0)=0 then:

$$\mathbf{y}(0) = \mathbf{C} = \mathbf{0}$$

www.mathcentre.ac.uk

Separation of Variables

This method is used to solve ODEs in the form:

$$\frac{dy}{dx} = f(x)g(y)$$
These ODEs can be solved as follows:
encouraging academics to share maths support resources
All mccp resources are dyeased under a Creative Commons licence

$$\frac{dy}{dx} = f(x)dx$$

$$\int \frac{dy}{g(y)} = \int f(x)dx$$

Example:

$$\begin{aligned} \frac{dy}{dx} &= \frac{2x}{y+1}\\ (y+1)dy &= 2xdx\\ \int (y+1)dy &= \int 2xdx\\ \frac{1}{2}y^2 + y &= x^2 + C \text{ with } C \text{ constant of integration} \end{aligned}$$

Homogeneous Equations

A first order homogeneous differential equation is a differential equation in the form:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(\frac{y}{x})$$

These ODEs can be solved by making the substitution $y(x)=v(x)\cdot x$ where v is a function of x. Then we have:

Using the product rule:
$$\frac{dy}{dx} = \frac{dv}{dx} \cdot x + v$$

Inserting in the ODE:
$$\frac{dv}{dx} \cdot x + v = f(v)$$

Re-arranging:
$$\frac{dv}{f(v) - v} = \frac{dx}{x}$$
$$\int \frac{dv}{f(v) - v} = \int \frac{dx}{x}$$

www.mathcentre.ac.uk

Example

$$\frac{dy}{dx} = \frac{x+3y}{2x}$$
Rearranging, we get: $\frac{dy}{dx} = \frac{1}{2} + \frac{3}{2}\frac{y}{x}$
mathematical equations of the second states of

Integrating Factor

This method is used to solve ODEs in the form:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$$

These ODEs can be solved as follows: multiply both sides of the equation by the integrating factor: $e^{\int P(x)dx}$. Then:

$$e^{\int P(x)dx}\frac{dy}{dx} + P(x)e^{\int P(x)dx}y = Q(x)e^{\int P(x)dx}$$

Now we see that, using the product rule and the chain rule:

$$e^{\int P(x)dx}\frac{dy}{dx} + P(x)e^{\int P(x)dx}y = \frac{d}{dx}\left(e^{\int P(x)dx}y\right)$$

Therefore:

$$\frac{d}{dx} \left(e^{\int P(x)dx} y \right) = Q(x)e^{\int P(x)dx}$$
$$y = e^{-\int P(x)dx} \int Q(x)e^{\int P(x)dx}dx$$

Example

$$\frac{dy}{dx} - y = x$$
 with $P(x) = -1$ and $Q(x) = x$

The integrating factor is $e^{\int -dx} = e^{-x}$ and:

$$e^{-x}\frac{dy}{dx} - e^{-x}y = xe^{-x}$$
$$\frac{d}{dx}(ye^{-x}) = xe^{-x}$$

Using integration by part: $ye^{-x} = -e^{-x}(1+x) + C$ with C constant of integration

ye =
$$-e^{-x}(1+x) + C$$
 with C
y = $-(1+x) + Ce^{x}$

www.mathcentre.ac.uk

©Morgiane Richard University of Aberdeen Shazia Ahmed University of Glasgow

Bernouilli Equations

Bernouilli equations are of the form:

encouraging academics to share maths support resources

 \bullet Multiply both sides of the equation by $y^{\pm n}$, the equation becomes:

$$y^{-n}\frac{dy}{dx} + P(x)y^{1-n} = Q(x)$$

 $\bullet\,$ Make the change of variable $v=y^{1-n},$ then:

$$\label{eq:so} \begin{split} \frac{dv}{dx} &= (1-n)y^{-n}\frac{dy}{dx}\\ \text{so} \quad \frac{1}{1-n}\frac{dv}{dx} + P(x)v = Q(x) \end{split}$$

The latest form of the equation can be solved for v using the method of the integrating factor. Finally, y can be found from the relationship $y=v^{n-1}.$

Example:

$$\frac{dy}{dx} + \frac{1}{x}y = xy^{2}$$

$$y^{-2}\frac{dy}{dx} + \frac{1}{x}y^{-1} = x$$

$$v = y^{-1} , \qquad \frac{dv}{dx} = -\frac{1}{y^{2}}\frac{dy}{dx}$$

$$\frac{dv}{dx} - \frac{v}{x} = -x$$
The integrating factor is IF = $e^{\int -\frac{1}{x}dx} = e^{-\ln x} = \frac{1}{x}$

$$\frac{1}{x}\frac{dv}{dx} - \frac{1}{x^{2}}v = -1$$

$$\frac{1}{x}v = \int -dx$$

$$v = -x^{2} + Cx$$

$$y = \frac{1}{-x^{2} + Cx}$$

www.mathcentre.ac.uk

©Morgiane Richard University of Aberdeen

Exercises

(a)
$$x\frac{dy}{dx} = 5x^3 + 4$$

(b) $x(y-3)\frac{dy}{dx} = 4y$
(c) $(2y-x)\frac{dy}{dx} = 2x + y$ with $y(2) = 3$
(d) $x\frac{dy}{dx} - y = x^3 + 3x^2 - 2x$
(e) $(1+x^2)\frac{dy}{dx} + 3xy = 5x$ with $y(1) = 2$
(f) $2\frac{dy}{dx} + y = y^3(x-1)$

Answers

(a)
$$y = \frac{5}{3}x^3 + 4\ln x + C$$
 (d) $y = \frac{1}{2}x^3 + 3x^2 - 2x\ln x + Cx$
(b) $y - 3\ln y = 4\ln x + C$ (e) $y = \frac{5}{3} + \frac{\sqrt{8}}{3}(1 + x^2)^{-3/2}$
(c) $(\frac{y}{x})^2 - \frac{y}{x} - 1 + x^{-2} = 0$ (f) $y = (x + Ce^{-x})^{-1/2}$

www.mathcentre.ac.uk

©Morgiane Richard University of Aberdeen