Partial Derivatives

1 Functions of two or more variables

In many situations a quantity (variable) of interest depends on two or
more other quantities (variables), e.g.

Figure 1: b is the base length of the triangle, h is the height of the triangle, H is the height of
the cylinder.

bh

The area of the triangle and the base of the cylinder: A = %

The volume of the cylinder: V = AH = %bhH

The arithmetic average x of n real numbers xq, ..., x,
1
xzﬁ(aﬁ1+x2+---+xn)

We say
A is a function of the two variables b and h.
V' is a function of the three variables b, h and H.

x is a function of the n variables x4, ..., x,.
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The expression z = f(x,y) means that z is a function of x and y;

w:f(x,y,z);u:f(xl,mg,...,xn).

YA

Figure 2: A function f assigns a unique number z = f(z,y), or w =
f(z,y, 2) to a point in (x, y)-plane or (z,y, z)-space.

The independent variables of a function may be restricted to lie in
some set D which we call the domain of f, and denote D(f). The
natural domain consists of all points for which a function defined
by a formula gives a real number.

Definition. A function f of two variables, x and vy, is a rule that
assigns a unique real number f(z,y) to each point (x,y) in some set
D in the xzy-plane.

A function f of n variables, x1, ..., x,, is a rule that assigns a unique
real number f(z1,...,x,) to each point (x1,...,2,) in some set D in
the n-dimensional x;...x,-space, denoted R".

Definition. The graph of a function z = f(x,y) in xyz-space is a
set of points P = (x,y, f(z,y)) where (x,y) belong to D(f).

In general such a graph is a surface in 3-space.



Examples. Find the natural domain of f, identify the graph of f as
a surface in 3-space and sketch it.

L. f(z,y) =0;
2. f(z,y) =1;
3. flz,y) = x;

4. f(x,y) = ax + by + ¢;

5. f(x,y) = 2* + v

6. f(z,y) = V1—a?—y>

7. f(z,y) = \/1+a:2+y2;

8. f(z,y) = /a2 +y?—1;

9. f(xay):_\/xz_'_yQ;



2 Level curves

AZ sl
Z2=K
|
| | y
| | 4
if‘ﬂﬁmn-.—cd . _,_A\\;
"'nvm~'-‘"‘"-“\n<h'~m_ A f.»"
Level curve flx, v) =k
x  of height &

If z= f(x,y) is cut by z = k, then at all points on the intersection we

have f(z,y) = k.

This defines a curve in the xy-plane which is the projection of the in-
tersection onto the xy-plane, and is called the level curve of height
k or the level curve with constant k.

A set of level curves for z = f(x,y) is called a contour plot or
contour map of f.



Examples.

L. f(z,y) =ax + by +¢;
2. flz,y) = 2% +y*

3. flw,y) = V1 — 22 — %
4 f(x,y) = /1 + 22+ 92
5. flz,y) = /22 +y? — L
6. f(z,y) = =22 + %

Figure 3: ' The hyperbolic paraboloid and its contour map.



There is no “direct” way to graph a function of three variables. The
graph would be a curved 3-dimensional space ( a 3-dim manifold if it
is smooth), in 4-space. But f(x,y, z) = k defines a surface in 3-space
which we call the level surface with constant k.

Examples.

1. flz,y,2) = 2>+ 9%+ 2%

2. f(ZL’,y,Z) :ZQ_xQ_yQ;

v -

Figure 4: Level surfaces of f(x,y,2) = 22 — 2% — 3



3 Limits and Continuity
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For z = f(x,y) there are infinitely many curves along which one can
approach (a, b).

This leads to the notion of the limit of f(x,y) along a curve C.

If all these limits coincide then f(x,y) has a limit at (a,b), and the
limit is equal to f(a,b) then f is continuous at (a, b).
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4 Partial Derivatives

Recall that for a function f(x) of a single variable the derivative of f

neee fla+h) — f(a)
+h)—Jla
/ — 1 a
1) ho0 h
is the instantaneous rate of change of f at a, and is equal to the slope

of the tangent line to the graph of f(x) at (a, f(a)).

y

&
@

X

/

a

Figure 5: Eiquation of the tangent line: y = f(a) + f/'(a)(x — a).

Consider f(z,y). If we fix y = b where b is a number from the domain
of f then f(z,b) is a function of a single variable  and we can calculate
its derivative at some x = a. This derivative is called the partial
derivative of f(x,y) with respect to x at (a,b) and is denoted by

fi(a,b) or by 3féc;, b)

Of(a,b d hob) — b
e I e
If f(z,y) =2 then %:1, and if f(x,y) =y then %:0



Geometrically, given the surface z = f(x,y), we consider its intersec-
tion with the plane y = b which is a curve. This curve is the graph of
the function f(x,b), and therefore the partial derivative f,(a,b) is the
slope of the tangent line to the curve at (a, b, f(a,b))

10 -1.0

Equation of the tangent line: x =¢,y = b, z = f(a,b)+ f.(a,b)(t —a)

We call f,(a,b) the slope of the surface in the z-direction at
(a,b)



Similarly, if we fix £ = a where a is a number from the domain of f
then f(a,y) is a function of a single variable y and we can calculate
its derivative at some y = b. This derivative is called the partial
derivative of f(x,y) with respect to y at (a, b) and is denoted by

0 b

fy(a,b) or by fg;’ )
Of(a,b d . b+ h) — b
fyla,b) = f((;; >=d—y[f(a,y)] yb:%il})f(a +i>z f(a,b)
If f(x,y)=x then g—;;(), and if f(z,y) =y then g—zl

The intersection of the surface z = f(x,y) with the plane z = a is
a curve which is the graph of the function f(a,y), and therefore the
partial derivative f,(a,b) is the slope of the tangent line to the curve

at (a,b, f(a,b))

~1.0
Equation of the tangent line: © = a,y =t, 2 = f(a,b)+ f,(a,b)(t —a)

1.0

We call f,(a,b) the slope of the surface in the y-direction at
(a,b)
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fe(z,y) = lim . fy(z,y) = lim

If we allow (a,b) to vary, the partial derivatives become functions of
two variables:

a—x, b=y and fi(a,b) = folz,y), fyla,b) = fylz,y)

flx+h,y)— flz,y)

flx,y+h)— flz,y)
h

h—0 h h—0

Partial derivative notation: if z = f(x,y) then

_Of _ 0z _ 4 _Of_0r 5
fx—ax—ax—ﬁxf—axza fy—ay—ay—ayf—ayz
Example.

o) =1 /222 — 3xy? + 3cos(2x + 3y) — 3y + 18
< = €T = 11
Y 5

Find f$(aj7y)> fy(xvy)a f(?), _2)7 fw(gv _2)7 fy(37 _2)

Forw = f(x,y, z) there are three partial derivatives f,(x, y, ), f,(x,y, 2),
fo(z,y, 2)

Example.

flz,y,2) = /22 +y — o+ 2cos(3x — 2y)
Find

folz,y, 2), fylz,y,2), f(2,y,2),
£(2,3,—1), f(2,3,=1), f,(2,3,—1), f.(2,3,-1)
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In general, for w = f(x1,x9,...,x,) there are n partial derivatives:

ow — Ow Ow
85131 ’ 85132 N ’ aSIZn
Example.
r= \/x%+x§+---+x%
Find
or or or or or >0 i<n
0y ’ 0xo ’ 8339 ’ 0x; ’ 0%y 7 - T
Second-order derivatives: f.., fuy, fye fuy
fIZL‘
/!
Jo = Jay
/!
N
fy = Jpa
N\
foy
Notation
f_82f_6 of f_82f_8 of
o2 ox\ox) ' Y Oyor Oy \Ox

CPf 0 (0f L 0f 0 (of
Jur = dxdy  Ox (0y) - w= Oy*> Oy <3y>

Jzy and f,, are called the mixed second-order partial
derivatives. f, and f, can be called first-order partial derivative.
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Example.
z =2 Tsing — 3" T cosy
Find
0z 0z 0% 0z 0%z 0z
ox’ 0Oy’ 0x2  0xdy Oy?:  Oydx’
Oz m T Oz m m 0z mw Pz mow

Equality of mixed partial derivatives

Theorem. Let f be a function of two variables. If f,, and f,, are
continuous on some open disc, then f,, = f,, on that disc.

Higher-order derivatives

Third-order, fourth-order, and higher-order derivatives are obtained by
successive differentiation.

P T S
o3 Ox \ox2) T T oy20x Oy \ Oydx

£ Ot f 0 o3 f
W 02000y 0z \ 0x0ydx

For higher-order derivatives the equality of mixed partial derivatives
also holds if the derivatives are continuous.

In what follows we always assume that the order of partial derivatives
is irrelevant for functions of any number of independent variables.
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5 Differentiability, differentials and local linearity

For f(x,y), the symbol Af, called the increment of f, denotes the
change

Af = fla+ Az,b+ Ay) — f(a,b)
For small Ax, Ay
Af ~ fila,b)Az + f,(a.b)Ay

Definition. A function f(z,y) is said to be differentiable at (a, b)
provided f;(a,b) and f,(a,b) both exist and

Af - fx(av b)AZC o fy(av b)Ay

lim =0

(Az,Ay)—(0,0) \/(Ax)Q n <A?J>2

For f(z,y, 2)
Af = fla+ Az, b+ Ay, c+ Az) — f(a, b, c)
For small Az, Ay, Az
Af = fila,b,c)Ax + fy(a,b,c)Ay + f.(a,b,c)Az
and f(x,y, z) is differentiable at (a, b, ¢) if

Af — fula,b,c)Ax — f,(a,b,c)Ay — f.(a,b,c)Az _ g

lim

(Az,Ay,Az)—(0,0,0) V(AZ)?2 + (Ay)? + +(Az)?

Theorem. If a function is differentiable at a point, then it is contin-
uous at that point.

Theorem. If all first-order derivatives of f exist and are continuous
at a point, then f is differentiable at a point.
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Differentials

If z = f(x,y) is differentiable at (a, b) we let
dz = fu(a,b)dx + f,(a,b)dy

denote a new function with dependent variable dz and independent
variables dx, dy. It is called the total differential of =z (or f) at
(a,b). It is a linear function of dz and dy.

Note that Az ~ dz if Az = dx and Ay = dy

If we allow (a,b) to vary, the differential becomes a function of four
variables, dx, dy, z, y:

a—=x, b=y = dz= f(x,y)dr+ f,(x,y)dy

Definition. If f(z,y) is differentiable at (a,b) then
L(z,y) = f(a,b) + fola,0)(x = a) + fy(a,b)(y = b)

is called the local linear approximation of f at (a,b).
[ts graph is the tangent plane to the surface z = f(x, y) at (a, b, f(a, b))

Example. f(z,y) = v/x>+ 3> Compute f(3.04,3.98), and esti-
mate the error if a calculator gives f(3.04,3.98) ~ 5.00819

If w= f(x,y, 2), the total differential of w (or f) at (a, b, ¢) is
dw = fy(a,b,c)dx + f,(a,b,c)dy+ f.(a,b,c)dz
orifa—x,b—y, c—=z
dw = fy(z,y,2)dx + f,(v,y, 2)dy + f.(z,y,2)dz

The local linear approximation of f at (a, b, ¢) is

L(:E, Y, Z) - f(av b7 C)+fx(a7 bv C) (:U—a)+fy(a, bv C) (y_b)+fz(a7 b? C) (Z_C)
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6 The Chain Rule

Recall p p d
o ay _ ay ar
because d p
Y T
Ay ~ —A Axr ~ —A
da; T, T~ 7 t

Let z = f(x,y) and x = z(t), y = y(t). Then z = f(x(t),y(t)) is a
function of the single variable ¢.

0z 0
Az (%UAx + 9y

Z dx dy
—A Ax ~ —At, Ay~ —=At
Yo STy Y50

and therefore
dz Oz dr 0z dy

dt  Ox dt+8ya

Example. z = \/4 — 22— y% = 1+cost, y =sint
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Similarly, if w = f(x,y,2) and x = z(t), y = y(t), z = 2(t). Then
w = f(x(t),y(t), z(t)) is a function of the single variable ¢, and

dw_@wda:jL(?wderaw%
dt  Ox dt Oy dt Oz dt

In general, if w = f(x1,x9,...,x,) and x1 = x1(t), T2 = x2(%), ... |
T, = x,(t), then

dw Ow dri Ow dzs ow dx, "L Ow dx;
_ . L 5
dt  Oxy dt  Oxy dt Ox, dt — Ox; dt

Implicit differentiation

Let z = f(x,y) and y = y(z). Then

dz_afdx+8fdy_8f+(9fdy
de  Ovdr Oydr Ox Oydx

Suppose y(z) is such that f(z,y(z)) = const. Then, & = 0 and

? dx
of ofdy dy — fo .
8:E+8yd:v_0jdx_ Iy it fy 70

($2 + y2)2 _ 2@2(372 . y2>

Find dy/dzx.
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The chain rule for partial derivatives

1. Let y = f(x) and x = x(u, v)
Then y = f(x(u,v)) is a function of u and v, and

jym Az~ P A+ 9% Ay
€T

Ay ~ ou Ov

Thus,
dy dy v dy dy Oz

ou dr ou’ ov  dx Ov

2. Let z = f(z,y) and x = z(u,v), y = y(u, v)
Then x = f(z(u,v),y(u,v) is a function of u and v, and

0z 0z ox ox oy oy
— N — ~ —A A
Az aan:Jr 8yAy , Axr = auAqu 5 Av, Ay= 51 U+—— 50 v
Thus,
dz 0z Oz 02 oy Jz 0z 0:1: 0z Oy

ou Oz ém Oy Ou’ v Or Ov &y ov

3. Let w = f(x,y,2) and z = z(u,v), y = y(u,v), z = 2(u, v)
ow  Ow Ox 8w 8y ow 0z Jw  OJw 81; ow &y ow 0z
ou  Ox 8u oy au 0z Ou’ ov  Ox (% oy (% 0z Ov

4. Letw = f(x1, ..., xy) and 7 = 21 (U1, ooy U, oo, Ty = T (UL, vvy Upy)

Jw "\ Ow Ox;
Ou, — Ox; Ou,,

a=1,....,m
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Example. Find % and % where

x
z:cosi sin2y; r=3u—2v, y=u’—20°

Example. The wave equation: Consider a string of length L that is
stretched taut between x = 0 and x = L on an z-axis, and suppose
that the string is set into vibratory motion by “plucking” it at time
t = 0. The displacement of a point on the string depends both on x
and t: u(x,t). One-dimensional wave equation for small displacements

O*u  ,0%u

oz Comz

Show that

u(z,t) = f(x — ct) + g(x + ct)

is a solution to the equation. In fact it is the general solution.

19



7 Directional Derivatives and Gradients

Suppose we need to compute the rate

/e

of change of f(x,y) with respect to I

the distance from a point (a b) n o
v (X0, ¥o)

some direction. Let @ = w1t + us ] / /

be the unit vector that has its initial ' 0,_;3’/’3

g X

point at (a,b) and points in the

desired direction. It determines a line in the xy-plane:
r=a+su, y=b+su

where s is the arc length parameter that has its reference point at (a, b)
and has positive values in the direction of .

Definition. The directional derivative of f(x,y) in the direction
of @ at (a, b) is denoted by Dgzf(a,b) and is defined by

Dzf(a,b) :%[f(a—ksul, b+ suy)] T fz(a,b)ur + f,(a,b)uy

provided this derivative exists.

Analytically, l)ﬁf(a7 b) 1s the Slope inu (Illf\(\li()ll rate of

change of z with respect to s

instantaneous rate of change of
f(z,y) with respect to the distance A 7/ = = f(x, y)
in the direction of u £ Ll) —
at the point (a, b). // |

pap—

[ :

Geometrically, Dgzf(a,b) is o : T
the slope of the surface z = f(x,y) B
in the direction of 4 g (T\}TT.‘/‘ (x, )

02 0

at the point (a, b, f(a,b)).
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Y=

he slope of the surface varies
with the direction of u.

Generalisation to f(x,y, z) (and f(x1,...,x,)) is straightforward.

Definition. Let 4 = u; i + uzf+ U3 k be a unit vector.
The directional derivative of f(z,y, z) in the direction of « at
(a,b,c) is denoted by Dzf(a,b, c) and is defined by

d
Dzf(a,b,c) = %[f(a%—sul, b+ suy, ¢+ sug)] .

= fu(a,b,c)us + fy(a,b,c)us + f.(a,b, c)ug

Example. Find D;f(2,1) in the direction of @ =37 +47

1
f(z,y) =1In (562/3 Y/12sin(x — 2y) + 8y? — 23 — 622y + 32)

Answer: D;f(2,1) = —5/3
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The gradient

Note that
Dif = four+ fyus+ fous = (fai+ fyj+ fo ) (uri+usj+usk)

Definition. Let €; be the standard orthonormal coordinate basis of
R", so that 7=y " | x;€;.
The gradient of f(xy,--- ,x,) is defined by

= —Of (w1, )
Vf(ajl,"' ,xn)zz f(xlax X )62'

In particular

ﬁf(a?,y) - fT(xvy) ;_‘_ fy($>y>j

Vi, 2) = fol,y,2)i + fo(x,y,2) ]+ fola,y, 2) k

The symbol V is read as either “nabla” (from ancient Hebrew) or “del”
(it is inverted A).

Dﬁf(aa b) - 6f(aa 6)67 Dgf(&, b7 C) — ﬁf(a’a ba C)'ﬁa Dﬁf - 6fﬂ:

Example. Find Vr; r = Va2 +y?+ 22 and Dgr(1,1,1) in the
direction of @ =74 27 + 2 k.
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Properties of the gradient

+ Maximum
7 : '*-.‘increase
../ Slope = Vf-u |
AZ 74
/
//
/ s
/,v-/'\"“-ﬂ
/ 7 — oy
A z=f(x,y)
7 i
AR y
S
VA
X 7 o u
(x,y)

Dif(a,b) =V f(a,b) - @ = |V f(a, )| |ii] cosf = |V f(a,b)| cost

Since —1 < cos 0 < 1, if [V f(a, b)| # 0 then the maximum value of
Dif(a,b)is |V f(a,b)| and it occurs when 6 = 0, that is, when @ is
in the direction of V f(a, b).

Geometrically, the maximum slope of the surface z = f(x,y) at

(a,b) is in the direction of the gradient and is equal to |V f(a, b)|.

If [V f(a,b)| = 0 then Dyf(a,b) = 0 in all directions at (a, b).
It occurs where the surface z = f(x,y) has a relative maximum or

minimum or a saddle point.
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Since Dgf(x1,...,%,) = \ﬁf(azl, ..., Xy)| cos B, these properties

hold for functions of any number of variables.

Theorem. Let f be a function differentiable at a point P.
LIV f =0 at P then all directional derivatives of f at P are 0.

2. 1f Vf # 0 at P then the derivative in the direction of V f at P
has the largest value equal to |V f| at P.

3.1V f # 0 at P then the derivative in the direction opposite to
that of V f at P has the smallest value equal to —|V f| at P.

Example. The point P = (2,3, —1)
f(x,y, 2) = \/2xy + 324 — 6 cos(3x — 2y)
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Gradients are normal to level curves and level surfaces

Vi(a,b)

Level curve C: f(x,y) = k.
Let C' be smoothly parametrised as x = x(s), y = y(s) where

s is an arc length parameter. The unit tangent vector to C'is

Since f(x,y) is constant on C' we expect Dzf(z,y) = 0. Indeed

dr - dy -

Dyf(z, ):ﬁf-f:(fxf+fyj) (it o))

d - -
= 150 1, = L fas)y(s) =0 = VF LT

Thus if (a, b) belongs to the level curve, and V f(a,b) # 0 then
V f(a,b) is normal to T at (a, b) and therefore to the level curve.
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Definition. A vector is called normal to a surface at (a, b, ¢) if it is
normal to a tangent vector to any curve on the surface through (a, b, ¢).

AZ , \
VF( X0s Yoo Z0)

i o5
-7 dumesvinglng By

'-q‘ __..7".' e " . -
3 _ \\\_E‘() Yo» 20)

F(x,y,z2)=c y
>

Level surface o: F(x,y,2) =k
Let C', smoothly parametrised as x = x(s), y = y(s), z = z(s)

be any curve on ¢ through (a, b, c). The unit tangent vector to C'is

- de - dy- dz -

T(s) = 71 22 i
(5) dsz+d3]+dsk
and DzF(x,y, 2) is
- - - - - dr- dy- dz-
D=F =VF - T=(F,i+F,i+F.k) - (—i+ 27+ —
dx dy dz d - ~
=F—+F—+F,—=—F : : =0 F1T
p + v + o= (x(s),y(s), z(s)) = V

Thus, VF (a,b, c) is normal to T at (a, b, c) and therefore to o.

26



Tangent planes

Consider a level surface o: F(x,y,z) = k,
and let P = (a, b, ¢) belong to o.
Since VF(a, b, ¢) is normal to tangent
vectors to curves on o through P,

E e
e

all these tangent vectors belong to one

and the same plane.
This plane is called the tangent plane
to the surface o at P.

To find an equation of the tangent plane
we use that if we know a vector m normal
to a plane through a point 7y =at1+bj+ck
then an equation of the plane is
n-(r—ry)=0 < ni(r—a)+n(y—>)+ns(z—c)=0
because ¥ — 7 is parallel to the plane and therefore normal to 7.

Choosing 7t = VF (a,b, c), we get the equation of the tangent plane to
the level surface o at P = (a, b, ¢)

Fy(a,b,c)(x —a)+ Fy(a,b,c)(y —b) + F.(a,b,c)(z —c) =0

The line through P parallel to VF (a,b,c) is perpendicular to the
tangent plane, and is called the normal line to the surface o at
P. Its parametric equations are

r=a+ Fy(a,bc)t, y=b+ Fya,b,c)t, z=c+ F.(a,b,c)t

Example. 422 + 9% + 2 = 18 at (2,1, 1).
Tangent plane, normal line, the angle the tangent plane makes with
the xy-plane?
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Tangent planes to z = f(z,y)

The graph of a function z = f(x,y) can be thought of as the level
surface of the function F(x,y, z) = f(x,y) — z with constant 0.

We find
1. the gradient
VF(a,b,c) = fo(a,b)i+ fyla,d)j—k, c= f(a,b)
2. the equation of the tangent plane to the surface z = f(z,y) at
(a,b, f(a,b))

fl’(aab)(m o a’) + fy(a7b)(y - b) — (Z — C) =0 =
z = f(a,b) + fo(a,b)(x — a) + f,(a,b)(y — b)

that is the local linear approximation of f at (a,b),

3. the parametric equations of the normal line to the surface

z = f(z,y) at (a,b, f(a,0))
r=a+ fy(a,b)t, y=b+ f,(a,b)t, z= f(a,b)—1t

Example. Consider the surface

1
z= f(z,y) =1In (562/3 V12sin(x — 2y) + 8y? — 23 — 622y + 32)

1. Find an equation for the tangent plane and parametric equations
for the normal line to the surface at the point P = (2,1, zy) where

R0 = f(27 1)

2. Find points of intersection of the tangent plane with the z-, y-
and z-axes. Sketch the tangent plane, and show the point P on it.
Sketch the normal line to the surface at P.
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8 Maxima and minima of functions of two variables

Definition. A function f

of two variables is said to have a
relative maximum (minimum)
at a point (a, b) if there is a disc
centred at (a,b) such that

fla,b) = f(z,y) (f(a,b) < f(z,y))
for all points (z,y) that lie inside
the disc.

A function f is said to have an
absolute maximum (minimum)
at (a,b) if

fla,b) = f(z,y) (fla,b) < f(z,y))
for all points (x,y) that lie inside

in the domain of f.

If f has a relative (absolute)
maximum or minimum at (a, b)
then we say that f has a relative

(absolute) extremum at (a,b).

relative < local
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Absolute

h < maximum i

. z=f y)f
Relative |
maximum

Relative minimum

baolute minimum



=

A bounded set An unbounded A bounded
in 2-space set in 2-space set in 3-space

The extreme-value theorem. If f(z,y) is continuous on a closed
and bounded set R, then f has both absolute maximum and an abso-
lute minimum on R.

Finding relative extrema

Theorem. If f has a relative extremum at (a, b), and if the first-order
derivatives of f exist at this point, then

fola,b) =0 and f,(a,b) =0

Definition. A point (a,b) in the domain of f(x,y) is called a crit-
ical point of f if f.(a,b) = 0 and f,(a,b) = 0, or if one or both
partial derivatives do not exist at (a, b).

%) 4

Z 2= yi—x
i 7 A
S a /

Example. f(z,y) = y* — 2°

hyperbolic paraboloid. /
fo= =2z, f, =2y = (0,0) is critical by -
but it is not a relative extremum.
It is a saddle point.
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We say that a surface z = f(x,y) has a saddle point at (a,b) if
there are two distinct vertical planes through this point such that the
trace of the surface in one of the planes has a relative maximum at
(a,b), and the trace in the other has a relative minimum at (a, b).

Example.
Ar Z AZ A
Z=X"+y° z=1-x%-y? 7= V&2 + 2
silf 8 e .
¥ X X
. flx, ) = oL \3 Flazy) =1 =~a® —_\'2 flx,y) = Vx2 + .\'2
. 10, 0) = £,(0, 0)‘ =0 £:(0,0) =/,(0,0) =0 f:(0,0) and £,(0, 0) do not exist
relative and absolute min at (0, 0) relative and absolute max at (0, 0) relative and absolute min at (0, 0)

How to determine whether a critical point is a max or min?
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The second partials test

Theorem. Let f(x,y) have continuous second-order partial
derivatives in some disc centred at a critical point (a, b), and let

2
D = fwm(aa b)fyy(aa b) - (fxy(aa b))
1.If D > 0 and f,.(a,b) > 0, then f has a relative minimum at
(a,b).

2.If D > 0 and f,.(a,b) < 0, then f has a relative maximum at
(a,b).

3. If D <0, then f has a saddle point at(a, b).

4. If D = 0, then no conclusion can be drawn.

Example.
fla,y) =o' — 2’y +y* — 3y + 4

How to find the absolute extrema of a continuous function of two
variables on a closed and bounded set R?

1. Find the critical points of f that lie in the interior of R.

2. Find all the boundary points at which the absolute extrema can
OCCUT.

3. Evaluate f(z,y) at the found points. The largest of these values is
the absolute maximum, and the smallest the absolute minimum.

Example.

flz,y) =3z +6y —3zy — 7, R is the triangle (0,0), (0, 3), (5, 0)
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Lagrange multipliers

Extremum problems with constraints:

Find max or min of the function f(x1,...,x,) subject to constraints
a1, .. xn),a=1,....,m
Consider f(z,y) and g(z,y) = 0. AY

The graph of g(z,y) = 0 is a curve.

Consider level curves of f: f(x,y) = k.

a common tangent line at (a, b). Since V f(a, b)

At (a,b) the curves just touch, and thus have \\

100 x
o N =0

is normal to the level curve at (a,b), and |

Vg(a,b) is normal to the constraint curve Maxinumor 7ie ) ks 400

at (a,b), we get V f(a,b)||Vg(a,b) (@

Vf(a,b) = AVyg(a,b)

for some scalar A called the Lagrange multiplier.
Proof. Parametrise g(z,y) = 0.
Then, f(x,y) = f(x(t),y(t)) is a function of ¢

and its local extrema are at

d _af , 9f ,
%f(fc(t)ay(t» = 5.0t o

=Vf @ity j)=Vf-T
Thus, both ﬁf and ﬁg are 1 to T.

Minimum of f(x, y) is 200
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In general, we introduce a Lagrange multiplier A\, for each of the con-
straint g,, and the equations are

ﬁf:i)\aﬁga.
a=1

Example. Find the points on the sphere z? + y? + 2z? = 36 that are
closest to and farthest from the point (1,2, 2).
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