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P art |, Devices and Basic Circuits, includes the most fundamental and essential topics
for the study of electronic circuits. At the same time, it constitutes a complete pack-
age for a first course on the subject.

The heart of Part | is the study of the three basic semiconductor devices: the diode
(Chapter 4); the MOS transistor (Chapter 5); and the bipolar transistor (Chapter 6). In each
case, we study the device operation, its characterization, and its basic circuit applications.
For those who have not had a prior course on device physics, Chapter 3 provides an over-
view of semiconductor concepts at a level sufficient for the study of electronic circuits. A
review of Chapter 3 should prove useful even for those with prior knowledge of semi-
conductors.

Since the purpose of electronic circuits is the processing of signals, an understanding
is essential of signals, their characterization in the time and frequency domains, and their
analog and digital representations. This is provided in Chapter 1, which also introduces
the most common signal-processing function, amplification, and the characterization
and types of amplifiers.

Besides diodes and transistors, the basic electronic devices, the op amp is studied in
Part I. Although not an electronic device in the most fundamental sense, the op amp is
commercially available as an integrated circuit (IC) package and has well-defined termi-
nal characteristics. Thus, despite the fact that the op amp’s internal circuit is complex, typ-
ically incorporating 20 or more transistors, its almost-ideal terminal behavior makes it
possible to treat the op amp as a circuit element and to use it in the design of powerful
circuits, as we do in Chapter 2, without any knowledge of its internal construction. We
should mention, however, that the study of op amps can be delayed to a later point, and
Chapter 2 can be skipped with no loss of continuity.

The foundation of this book, and of any electronics course, is the study of the two
transistor types in use today: the MOS transistor in Chapter 5 and the bipolar transistor
in Chapter 6. These two chapters have been written to be completely independent of one
another and thus can be studied in either order as desired. Furthermore, the two chap-
ters have the same structure, making it easier and faster to study the second device, as
well as to draw comparisons between the two device types.

After the study of Part I, the reader will be fully prepared to undertake the study of
either integrated-circuit amplifiers in Part Il or digital integrated circuits in Part IlI.
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IN THIS CHAPTER YOU WILL LEARN

1. That electronic circuits process signals, and thus understanding electri-
cal signals is essential to appreciating the material in this book.

2. The Thévenin and Norton representations of signal sources.
3. The representation of a signal as the sum of sine waves.
4. The analog and digital representations of a signal.

5. The most basic and pervasive signal-processing function: signal amplifi-
cation, and correspondingly, the signal amplifier.

6. How amplifiers are characterized (modeled) as circuit building blocks
independent of their internal circuitry.

7. How the frequency response of an amplifier is measured, and how it is
calculated, especially in the simple but common case of a single-time-
constant (STC) type response.

Introduction

The subject of this book is modern electronics, afield that has come to be known as micro-
electronics. Microelectronics refers to the integrated-circuit (1C) technology that at the
time of this writing is capable of producing circuits that contain hundreds of millions of
components in asmall piece of silicon (known as a silicon chip) whose areais on the order
of 100 mm?. One such microelectronic circuit, for example, is a complete digital computer,
which accordingly is known as a microcomputer or, more generally, a microprocessor .

In this book we shall study electronic devices that can be used singly (in the design of dis-
crete circuits) or as components of an integrated-circuit (1C) chip. We shall study the
design and analysis of interconnections of these devices, which form discrete and integrated
circuits of varying complexity and perform a wide variety of functions. We shall also learn
about available I C chips and their application in the design of electronic systems.

The purpose of this first chapter is to introduce some basic concepts and terminology. In
particular, we shall learn about signals and about one of the most important signal-processing
functions electronic circuits are designed to perform, namely, signal amplification. We shall
then look at circuit representations or models for linear amplifiers. These models will be
employed in subsequent chaptersin the design and analysis of actual amplifier circuits.
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In addition to motivating the study of electronics, this chapter serves as a bridge between
the study of linear circuits and that of the subject of this book: the design and analysis of
electronic circuits.

1.1 Signals

Signals contain information about a variety of things and activities in our physical world.
Examples abound: Information about the weather is contained in signals that represent the
air temperature, pressure, wind speed, etc. The voice of aradio announcer reading the news
into a microphone provides an acoustic signal that contains information about world affairs.
To monitor the status of a nuclear reactor, instruments are used to measure a multitude of
relevant parameters, each instrument producing a signal.

To extract required information from a set of signals, the observer (be it a human or a
machine) invariably needs to process the signals in some predetermined manner. This signal
processing is usually most conveniently performed by electronic systems. For thisto be possi-
ble, however, the signal must first be converted into an electrical signal, that is, avoltage or a
current. This process is accomplished by devices known as transducers. A variety of trans-
ducers exist, each suitable for one of the various forms of physical signals. For instance, the
sound waves generated by a human can be converted into electrical signals by using a micro-
phone, which isin effect a pressure transducer. It is not our purpose here to study transducers;
rather, we shall assume that the signals of interest aready exist in the electrical domain and
represent them by one of the two equivalent formsshowninFig. 1.1. In Fig. 1.1(a) thesignal is
represented by a voltage source v(t) having a source resistance R.. In the alternate representa-
tion of Fig. 1.1(b) the signd is represented by a current source i (t) having a source resistance
R.. Although the two representations are equivalent, that in Fig. 1.1(a) (known as the Thévenin
form) is preferred when R, is low. The representation of Fig. 1.1(b) (known as the Norton
form) is preferred when R, is high. The reader will come to appreciate this point later in this
chapter when we study the different types of amplifiers. For the time being, it is important to
be familiar with Thévenin’'s and Norton’s theorems (for abrief review, see Appendix D) and to
note that for the two representationsin Fig. 1.1 to be equivalent, their parameters are related by

"Us(t) = Rsl s(t)

Figure 1.1 Two aternative representations of

asignal source: (a) the Thévenin form; (b) the
(a) (b) Norton form.

The output resistance of a signa source, athough inevitable, is an imperfection that limits the ability of the
source to deliver its full signal strength to aload. To see this point more clearly, consider the signal source
when connected to aload resistance R, as shown in Fig. 1.2. For the case in which the source is represented
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by its Thévenin equivalent form, find the voltage v, that appears across R , and hence the condition that R,
must satisfy for v, to be close to the value of v, Repeat for the Norton-represented source; in this case
finding the current i, that flows through R_and hence the condition that R, must satisfy for i, to be close to
thevalueof i

i

is R R

Figure 1.2 Circuits for
(b) Example 1.1.

Solution

For the Thévenin-represented signal source shown in Fig. 1.2(a), the output voltage v, that appears across
the load resistance R, can be found from the ratio of the voltage divider formed by R;and R ,

RL
Ug = U,
(o] SRL + RS
From this equation we see that for
Vg = Ug

the source resistance R, must be much lower than the load resistance R ,

Ra<R.

Thus, for asource represented by its Thévenin equivalent, ideally R, = 0, and as R, isincreased, relative to
the load resistance R_with which this source isintended to operate, the voltage v, that appears across the
load becomes smaller, not a desirable outcome.

Next, we consider the Norton-represented signal source in Fig. 1.2(b). To obtain the current i, that flows
through the load resistance R , we utilize the ratio of the current divider formed by R,and R,

ig= i Ry
°7 S R+R,
From this relationship we see that for
io=lg
the source resistance R, must be much larger that R ,
R,> R,

Thus for asignal source represented by its Norton equivalent, idesally R, = <, and as R, is reduced, relative
to the load resistance R with which this source isintended to operate, the current i, that flows through the
load becomes smaller, not a desirable outcome.

Finally, we note that although circuit designers cannot usually do much about the value of R;; they may
have to devise a circuit solution that minimizes or eliminates the loss of signal strength that results when
the source is connected to the load.
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1.1

1.2

1.3

1.4

For the signal-source representations shown in Figs. 1.1(a) and 1.1(b), what are the open-circuit
output voltages that would be observed? If, for each, the output terminals are short-circuited (i.e.,
wired together), what current would flow? For the representations to be equivalent, what must the re-
lationship be between v, i, and R?

Ans. For (a), v, = ut); for (b), y,, = Ri(t); for (8), iy, = vs(t)/Rg; for (b), i, =i (t); for equivalency,
uft) = Ri(t)

A signal source has an open-circuit voltage of 10 mV and a short-circuit current of 10 uA. What isthe
source resistance?

Ans. 1kQ

A signal source that is most conveniently represented by its Thévenin equivalent has v, = 10 mV and
R, =1 kQ. If the source feeds aload resistance R, find the voltage v, that appears across the load for
R =100 kR, 10 k€, 1 k2, and 100 Q2. Also, find the lowest permissible value of R_for which the
output voltageis at least 80% of the source voltage.

Ans. 9.9mV; 9.1 mV;5mV; 09mV; 4kQ

A signal source that is most conveniently represented by its Norton equivalent form has i, = 10 uA
and R, = 100 kQ. If the source feeds aload resistance R , find the current i, that flows through the load
for R =1kQ, 10kQ, 100 k2, and 1 MQ. Also, find the largest permissible value of R_for which the
load current is at least 80% of the source current.

Ans. 9.9 HA; 9.1 uA; 5 1A; 0.9 pA; 25 kQ

From the discussion above, it should be apparent that asignal is atime-varying quantity that
can be represented by a graph such as that shown in Fig. 1.3. In fact, the information content of
thesignd isrepresented by the changesin itsmagnitude astime progresses; that is, theinformation
is contained in the “wiggles’ in the signal waveform. In general, such waveforms are difficult to
characterize mathematically. In other words, it is not easy to describe succinctly an arbitrary-
looking waveform such asthat of Fig. 1.3. Of course, such adescription isof great importancefor
the purpose of designing appropriate signal-processing circuits that perform desired functions on
the given signd. An effective approach to signal characterization is studied in the next section.

udt) A

[\,

Time, ¢

Figure 1.3 An arbitrary voltage signal v(t).
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1.2 Frequency Spectrum of Signals

An extremely useful characterization of asignal, and for that matter of any arbitrary function
of time, is in terms of its frequency spectrum. Such a description of signals is obtained
through the mathematical tools of Fourier seriesand Fourier transform.* We are not inter-
ested here in the details of these transformations; suffice it to say that they provide the means
for representing a voltage signal v(t) or a current signal i(t) as the sum of sine-wave signals
of different frequencies and amplitudes. This makes the sine wave avery important signal in
the analysis, design, and testing of electronic circuits. Therefore, we shall briefly review the
properties of the sinusoid.
Figure 1.4 shows a sine-wave voltage signal v(t),

v,(t) = V,sin wt (1.1)

where V, denotes the peak value or amplitude in volts and @ denotes the angular frequency in
radians per second; that is, @ = 2xf rad/s, wheref isthefrequency in hertz, f = UT Hz, and
T isthe period in seconds.

The sine-wave signal is completely characterized by its pesk value V,, its frequency w,
and its phase with respect to an arbitrary reference time. In the case depicted in Fig. 1.4, the
time origin has been chosen so that the phase angleis 0. It should be mentioned that it is com-
mon to express the amplitude of a sine-wave signal in terms of its root-mean-square (rms)
value, which isegual to the peak value divided by /2. Thusthe rms value of the sinusoid v,(t)
of Fig. 1.4isV,/ /2. For instance, when we speak of the wall power supply in our homes as
being 120 V, we mean that it has a sine waveform of 120./2 volts peak value.

Returning now to the representation of signals as the sum of sinusoids, we note that the Fou-
rier seriesis utilized to accomplish thistask for the special case of asignal that isa periodic func-
tion of time. On the other hand, the Fourier transform is more general and can be used to obtain
the frequency spectrum of asignal whose waveform is an arbitrary function of time.

The Fourier series allows usto express a given periodic function of time as the sum of an
infinite number of sinusoids whose frequencies are harmonically related. For instance, the
symmetrical square-wave signal in Fig. 1.5 can be expressed as

o(t) = ‘%/(sin oot +2sin3awt +3sin5apt+ - - +) 12y ©

-/1\_ /\
Va
y /.
| t
: Figure 1.4 Sine-wave voltage signa of

T . amplitude V, and frequency f = 1T Hz. The
angular frequency @ = 2nf radls.

The reader who has not yet studied these topics should not be alarmed. No detailed application of this
material will be made until Chapter 9. Nevertheless, a general understanding of Section 1.2 should be
very helpful in studying early parts of this book.
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v A

fee—— 71—

+V

Figure 1.5 A symmetrical square-wave signal of amplitude V.

where V is the amplitude of the square wave and @, = 2z/T (T is the period of the square
wave) is called the fundamental frequency. Note that because the amplitudes of the
harmonics progressively decrease, the infinite series can be truncated, with the truncated
series providing an approximation to the square waveform.

The sinusoidal components in the series of Eq. (1.2) constitute the frequency spectrum of
the square-wave signal. Such a spectrum can be graphically represented asin Fig. 1.6, where
the horizontal axis represents the angular frequency  in radians per second.

The Fourier transform can be applied to a nonperiodic function of time, such as that
depicted in Fig. 1.3, and provides its frequency spectrum as a continuous function of fre-
guency, asindicated in Fig. 1.7. Unlike the case of periodic signals, where the spectrum con-
sists of discrete frequencies (at w, and its harmonics), the spectrum of a nonperiodic signal
contains in general all possible frequencies. Nevertheless, the essential parts of the spectra
of practical signals are usualy confined to relatively short segments of the frequency (w)
axis—an observation that is very useful in the processing of such signals. For instance, the
spectrum of audible sounds such as speech and music extends from about 20 Hz to about
20 kHz—a frequency range known as the audio band. Here we should note that although
some musical tones have frequencies above 20 kHz, the human ear is incapable of hearing
frequencies that are much above 20 kHz. As another example, analog video signals have
their spectrain the range of 0 MHz to 4.5 MHz.

Ar
T
A
1 4y
R
Laro o,
S 7 1 4y
7
wy 34)0 S Ty w (rad/;)

Figure 1.6 The frequency spectrum (also known as the line spectrum) of the periodic
square wave of Fig. 1.5.
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Figure 1.7 The frequency spectrum of
> an arbitrary waveform such as that in Fig.
0 o (radfs) 13

Frequency spectrum V, (w) in volts

We conclude this section by noting that asignal can be represented either by the manner in
which its waveform varies with time, as for the voltage signal v (t) shown in Fig. 1.3, or in
terms of its frequency spectrum, asin Fig. 1.7. The two aternative representations are known
as the time-domain representation and the frequency-domain representation, respectively. The
frequency-domain representation of v,(t) will be denoted by the symbol V,(@).

1.5 Find the frequenciesf and w of asine-wave signal with a period of 1 ms.
Ans. f=1000 Hz, @ = 27 x 10° rad/s

1.6 What isthe period T of sine waveforms characterized by frequencies of (a) f=60 Hz? (b) f = 10° Hz?
(c) f=1MHz?
Ans. 16.7ms; 1000 s; 1 us

1.7 The UHF (ultra high frequency) television broadcast band begins with channel 14 and extends from
470 MHz to 806 MHz. If 6 MHz is allocated for each channel, how many channels can this band
accommodate?
Ans. 56; channels 14 to 69

1.8 When the square-wave signal of Fig. 1.5, whose Fourier seriesisgivenin Eq. (1.2), isapplied to aresis-
tor, thetotal power dissipated may be calculated directly using therelationship P = 1/T IE (*/R)dt
or indirectly by summing the contribution of each of the harmonic components, that is, P =P, + P, +
P+ ..., which may be found directly from rms values. Verify that the two approaches are equivalent.
What fraction of the energy of asguare waveisinitsfundamental ? Initsfirst five harmonics? Initsfirst
seven? Firgt nine? In what number of harmonicsis 90% of the energy? (Notethat in counting harmonics,
the fundamental at @, isthefirgt, the one at 2w, is the second, etc.)
Ans. 0.81; 0.93; 0.95; 0.96; 3

1.3 Analog and Digital Signals

The voltage signal depicted in Fig. 1.3 is called an analog signal. The name derives from
the fact that such a signal is analogous to the physical signal that it represents. The magni-
tude of an analog signal can take on any value; that is, the amplitude of an analog signal
exhibits a continuous variation over its range of activity. The vast majority of signalsin the
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world around us are analog. Electronic circuits that process such signals are known as ana-
log circuits. A variety of analog circuits will be studied in this book.

An alternative form of signal representation is that of a sequence of numbers, each num-
ber representing the signal magnitude at an instant of time. The resulting signal is called a
digital signal. To see how asignal can be represented in this form—that is, how signals can
be converted from analog to digital form—consider Fig. 1.8(a). Here the curve represents a
voltage signal, identical to that in Fig. 1.3. At equal intervals along the time axis, we have
marked the time instants t,, t,, t,, and so on. At each of these time instants, the magnitude of
the signal is measured, a process known as sampling. Figure 1.8(b) shows a representation
of thesignal of Fig. 1.8(a) in terms of its samples. The signal of Fig. 1.8(b) is defined only at
the sampling instants; it no longer is a continuous function of time; rather, it is a discrete-
time signal. However, since the magnitude of each sample can take any value in a continuous
range, the signal in Fig. 1.8(b) is still an analog signal.

Now if we represent the magnitude of each of the signal samplesin Fig. 1.8(b) by anumber
having a finite number of digits, then the signal amplitude will no longer be continuous;
rather, it is said to be quantized, discretized, or digitized. The resulting digital signal thenis
simply a sequence of numbers that represent the magnitudes of the successive signal samples.

The choice of number system to represent the signal samples affects the type of digital
signal produced, and has a profound effect on the complexity of the digital circuits required
to process the signals. It turns out that the binary number system results in the simplest pos-
sible digital signalsand circuits. In abinary system, each digit in the number takes on one of

r .
il e

Lhytitrty -+ - !

u?) |

@

u(r) A

bty thty -

(b)

Figure 1.8 Sampling the continuous-time analog signal in (a) resultsin the discrete-time signal in (b).
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v(t) A

+5

| | |
_ 0 -
Logicvaues—> 1 0 1 1 0 1 0 0 Time, t

Figure 1.9 Variation of aparticular binary digital signa with time.

only two possible values, denoted 0 and 1. Correspondingly, the digital signalsin binary sys-
tems need have only two voltage levels, which can be labeled low and high. Asan example, in
some of the digital circuits studied in this book, the levels are 0 V and +5 V. Figure 1.9
shows the time variation of such adigital signal. Observe that the waveform is a pulse train
with 0V representing a0 signal, or logic 0, and +5 V representing logic 1.

If we use N binary digits (bits) to represent each sample of the analog signal, then the dig-
itized sample value can be expressed as

D = b2’ + b, 2" +b,2°+ --- +by ;2" (13 ©

where b, b,, ..., by, denote the N bits and have values of O or 1. Here bit b is the least
sgnificant bit (L SB), and bit by, isthemost significant bit (M SB). Conventionally, this binary
number iswritten as by, b, ... b,. We observe that such a representation quantizes the analog
sample into one of 2N levels. Obvioudy the greater the number of bits (i.e,, the larger the N), the
closer the digital word D approximates the magnitude of the analog sample. That is, increasing
the number of bits reduces the quantization error and increases the resolution of the analog-to-
digital conversion. Thisimprovement is, however, usualy obtained at the expense of more com-
plex and hence more codtly circuit implementations. It is not our purpose here to delve into this
topic any deeper; we merely want the reader to appreciate the nature of analog and digital signdls.
Nevertheless, it is an opportune time to introduce a very important circuit building block of mod-
ern electronic systems:. the analog-to-digital converter (A/D or ADC) shown in block formin
Fig. 1.10 The ADC accepts at its input the samples of an andog signal and provides for each
input sample the corresponding N-bit digital representation (according to Eq. 1.3) at its N output
terminals. Thus although the voltage at the input might be, say, 6.51 V, at each of the output ter-
minals (say, at theith termindl), the voltage will be either low (0 V) or high (5 V) if b, is supposed

4Ob0
o |
Analog * A/D ——ob | Dpigita
input A converter L output
o N—1
E

Figure 1.10 Block-diagram representation of the analog-to-digital converter (ADC).
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tobe0or 1, respectively. Thedual circuit of the ADC isthe digital-to-analog converter (D/A or
DAC). It converts an N-bit digital input to an analog output voltage.

Once the signal is in digital form, it can be processed using digital circuits. Of course
digital circuits can deal also with signals that do not have an analog origin, such as the sig-
nals that represent the various instructions of a digital computer.

Since digital circuits deal exclusively with binary signals, their design is simpler than that of
anadog circuits. Furthermore, digital systems can be designed using a relatively few different
kinds of digital circuit blocks. However, alarge number (e.g., hundreds of thousands or even mil-
lions) of each of these blocks are usually needed. Thusthe design of digitd circuits posesits own
set of chalenges to the designer but provides reliable and economic implementations of a great
variety of signa-processing functions, many of which are not possible with analog circuits. At
the present time, more and more of the signa-processing functions are being performed digitally.
Examples around us abound: from the digital watch and the calculator to digital audio systems,
digital cameras and, more recently, digital television. Moreover, some longstanding analog sys-
tems such as the telephone communication system are now amost entirely digital. And we
should not forget the most important of al digital systems, the digital computer.

The basic building blocks of digital systems are logic circuits and memory circuits. We
shall study both in this book, beginning in Chapter 13.

One final remark: Although the digital processing of signalsis at present all-pervasive,
there remain many signal-processing functions that are best performed by analog circuits.
Indeed, many electronic systemsinclude both analog and digital parts. It follows that a good
electronics engineer must be proficient in the design of both analog and digital circuits, or
mixed-signal or mixed-mode design asit is currently known. Such isthe aim of this book.

1.9 Consider a4-hit digital word D = b;b,b,b, (see Eq. 1.3) used to represent an analog signal v, that varies
between OV and +15 V.
(a) GiveD correspondingtov,=0V,1V,2V,and15V.
(b) What changein v, causes a change from 0 to 1in (i) by, (ii) by, (iii) b,, and (iv) b,?
(o) If v, =5.2V, what do you expect D to be? What is the resulting error in representation?
Ans. (a) 0000, 0001, 0010, 1111; (b) +1V,+2V,+4V,+8V; (c) 0101, -4%

1.4 Amplifiers

In this section, we shall introduce the most fundamental signal-processing function, one that
is employed in some form in almost every electronic system, namely, signal amplification.
We shall study the amplifier asacircuit building-block; that is, we shall consider its external
characteristics and leave the design of itsinternal circuit to later chapters.

1.4.1 Signal Amplification

From a conceptual point of view the simplest signal-processing task isthat of signal amplifica-
tion. The need for amplification arises because transducers provide signas that are said to be
“wesk,” that is, in the microvolt (uV) or millivolt (mV) range and possessing little energy. Such
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signals are too small for reliable processing, and processing is much easier if the signal magni-
tudeis made larger. The functional block that accomplishes thistask isthe signal amplifier.

It is appropriate at this point to discuss the need for linearity in amplifiers. Care must be
exercised in the amplification of a signal, so that the information contained in the signal is
not changed and no new information isintroduced. Thus when we feed the signal shownin Fig.
1.3to an amplifier, we want the output signal of the amplifier to be an exact replica of that at
the input, except of course for having larger magnitude. In other words, the “wiggles’ in the
output waveform must be identical to those in the input waveform. Any change in waveform
is considered to be distortion and is obviously undesirable.

An amplifier that preserves the details of the signal waveform is characterized by the rela-
tionship

vo(1) = Azi(1) 14 O

where v, and v, are the input and output signals, respectively, and A is a constant representing
the magnitude of amplification, known as amplifier gain. Equation (1.4) is a linear relation-
ship; hence the amplifier it describesis alinear amplifier. It should be easy to see that if the
relationship between v, and v contains higher powers of v, then the waveform of v, will no
longer beidentical to that of v. The amplifier is then said to exhibit nonlinear distortion.

The amplifiers discussed so far are primarily intended to operate on very small input signals.
Their purpose is to make the signal magnitude larger and therefore are thought of as voltage
amplifiers. The preamplifier in the home stereo system is an example of a voltage amplifier.

At this time we wish to mention another type of amplifier, namely, the power amplifier.
Such an amplifier may provide only a modest amount of voltage gain but substantial current
gain. Thus while absorbing little power from the input signal source to which it is connected,
often apreamplifier, it delivers large amounts of power to itsload. An exampleisfound in the
power amplifier of the home stereo system, whose purpose is to provide sufficient power to
drive the loudspeaker, which is the amplifier load. Here we should note that the loudspeaker is
the output transducer of the stereo system; it converts the electric output signal of the system
into an acoustic signal. A further appreciation of the need for linearity can be acquired by
reflecting on the power amplifier. A linear power amplifier causes both soft and loud music
passages to be reproduced without distortion.

1.4.2 Amplifier Circuit Symbol

The signa amplifier is obvioudy atwo-port network. Itsfunction is conveniently represented by
the circuit symbol of Fig. 1.11(a). This symbol clearly distinguishes the input and output ports
and indicates the direction of signal flow. Thus, in subsequent diagrams it will not be necessary
to label the two ports “input” and “output.” For generality we have shown the amplifier to have
two input terminds that are distinct from the two output terminals. A more common situation is
illustrated in Fig. 1.11(b), where acommon terminal exists between the input and output ports of
the amplifier. This common termina is used as a reference point and is caled the circuit
ground.

1.4.3 Voltage Gain

A linear amplifier acceptsan input signal v, (t) and provides at the output, across aload resis-
tance R (see Fig. 1.12(a)), an output signal v(t) that is a magnified replica of v (t). The
voltage gain of the amplifier is defined by

Voltagegain (A,) = Lo 15 O

Y
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Figure 1.11 (a) Circuit symbol for amplifier. (b) An amplifier with a common terminal (ground) between
the input and output ports.

Fig. 1.12(b) shows the transfer characteristic of alinear amplifier. If we apply to the input
of this amplifier a sinusoidal voltage of amplitude V, we obtain at the output a sinusoid of
amplitude A V.

1.4.4 Power Gain and Current Gain

An amplifier increases the signal power, an important feature that distinguishes an amplifier
from a transformer. In the case of a transformer, although the voltage delivered to the load
could be greater than the voltage feeding the input side (the primary), the power delivered to
the load (from the secondary side of the transformer) islessthan or at most equal to the power
supplied by the signal source. On the other hand, an amplifier provides the load with power
greater than that obtained from the signal source. That is, amplifiers have power gain. The
power gain of the amplifier in Fig. 1.12(a) is defined as

load power (P,)

Power gain (A,) = input power (P) (1.6)
_ volo .7
AT
Yo A ,
/
/
A,
1
vy(?) 0 >
vy

@ (b)

Figure 1.12 (a) A voltage amplifier fed with asignal v (t) and connected to aload resistance R, .
(b) Transfer characteristic of alinear voltage amplifier with voltage gain A,.
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where i, is the current that the amplifier deliversto theload (R), i, = v,/R, and i, isthe cur-
rent the amplifier draws from the signal source. The current gain of the amplifier isdefined as

Current gain (A) = IIQ (1.8) (1)
|

From Egs. (1.5) to (1.8) we note that
A, = AA (1.9) (1)

1.4.5 Expressing Gain in Decibels

The amplifier gains defined above are ratios of similarly dimensioned quantities. Thus they
will be expressed either as dimensionless numbers or, for emphasis, as V/V for the voltage
gain, A/A for the current gain, and W/W for the power gain. Alternatively, for a number of
reasons, some of them historic, electronics engineers express amplifier gain with a logarith-
mic measure. Specifically the voltage gain A, can be expressed as

Voltage gain in decibels = 20 log|A)| dB (1)
and the current gain A can be expressed as
Current gain in decibels = 20 log| A dB (1)

Since power isrelated to voltage (or current) squared, the power gain A, can be expressed in
decibels as

Power gain in decibels = 10 log A, dB (1)

The absolute values of the voltage and current gains are used because in some cases A, or
A will be anegative number. A negative gain A simply means that there is a 180° phase dif-
ference between input and output signals; it does not imply that the amplifier is attenuating
the signal. On the other hand, an amplifier whose voltage gain is, say, —20 dB isin fact atten-
uating the input signal by afactor of 10 (i.e,, A,=0.1V/V).

1.4.6 The Amplifier Power Supplies

Since the power delivered to the load is greater than the power drawn from the signal source,
the question arises as to the source of this additional power. The answer isfound by observ-
ing that amplifiers need dc power supplies for their operation. These dc sources supply the
extra power delivered to the load as well as any power that might be dissipated in the inter-
nal circuit of the amplifier (such power is converted to heat). In Fig. 1.12(a) we have not
explicitly shown these dc sources.

Figure 1.13(a) shows an amplifier that requires two dc sources. one positive of value V.
and one negative of value V.. The amplifier hastwo terminals, labeled V" and V -, for connec-
tion to the dc supplies. For the amplifier to operate, the termina labeled V* has to be con-
nected to the positive side of a dc source whose voltage is V. and whose negative side is
connected to the circuit ground. Also, the termina labeled V ~ has to be connected to the nega-
tive side of a dc source whose voltage is V. and whose positive side is connected to the circuit
ground. Now, if the current drawn from the positive supply is denoted | . and that from the
negative supply is| . (see Fig. 1.13a), then the dc power delivered to the amplifier is
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Pac = Vecelee + Veelee

If the power dissipated in the amplifier circuit is denoted P4 the power-balance equa-
tion for the amplifier can be written as

P+ P = PL+ Pissipated

where P, isthe power drawn from the signal source and P, isthe power delivered to the load.
Since the power drawn from the signal source is usualy small, the amplifier power effi-
ciency isdefined as

0 7= —= x 100 (1.10)

The power efficiency is an important performance parameter for amplifiers that handle large
amounts of power. Such amplifiers, called power amplifiers, are used, for example, as out-
put amplifiers of stereo systems.

In order to smplify circuit diagrams, we shal adopt the convention illustrated in Fig. 1.13(b).
Herethe V™ terminal is shown connected to an arrowhead pointing upward and the V ~ terminal
to an arrowhead pointing downward. The corresponding voltage isindicated next to each arrow-
head. Note that in many cases we will not explicitly show the connections of the amplifier to the
dc power sources. Finally, we note that some amplifiers require only one power supply.

I
cc
Vee

vy

@ (b)

Figure 1.13 Anamplifier that requires two dc supplies (shown as batteries) for operation.

Consider an amplifier operating from £10-V power supplies. It isfed with asinusoidal voltage having 1V
peak and delivers asinusoidal voltage output of 9 V peak to a 1-kQ load. The amplifier draws a current of
9.5 mA from each of its two power supplies. The input current of the amplifier is found to be sinusoidal
with 0.1 mA peak. Find the voltage gain, the current gain, the power gain, the power drawn from the dc
supplies, the power dissipated in the amplifier, and the amplifier efficiency.

Solution
=9VNV

[l [<e]

A, =
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or

A, = 20log9 = 19.1 dB

r -2V _9ma

[}
—_
—

or

A, = 201og90 = 39.1 dB

Po=V, I = ]9—2%2 = 405 mW
P=V I = é% = 0.05 mW
P, 405
A = = = == - gl0W/W
P~ P, 005 BR

or
A, = 101log 810 = 29.1 dB
Pge = 10x 9.5+ 10x 9.5 = 190 mW
Pisspated = Pac+ P1—PL
=190+ 0.05-40.5 = 149.6 mW

P
7==x100 = 21.3%
Pdc

From the above example we observe that the amplifier converts some of the dc power it
draws from the power suppliesto signal power that it deliversto the load.

1.4.7 Amplifier Saturation

Practically speaking, the amplifier transfer characteristic remains linear over only a limited
range of input and output voltages. For an amplifier operated from two power supplies the out-
put voltage cannot exceed a specified positive limit and cannot decrease bel ow a specified neg-
ative limit. The resulting transfer characterigtic is shown in Fig. 1.14, with the positive and
negative saturation levels denoted L, and L_, respectively. Each of the two saturation levelsis
usually within afraction of avolt of the voltage of the corresponding power supply.

Obviously, in order to avoid distorting the output signal waveform, theinput signal swing
must be kept within the linear range of operation,

L_ L,
ESU,S&

In Fig. 1.14, which shows two input waveforms and the corresponding output waveforms,
the peaks of the larger waveform have been clipped off because of amplifier saturation.
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Figure 1.14 Anamplifier transfer characteristic that is linear except for output saturation.

1.4.8 Symbol Convention

At this point, we draw the reader’ s attention to the terminology we shall employ throughout
the book. To illustrate the terminology, Fig. 1.15 shows the waveform of a current i (t) that
is flowing through a branch in a particular circuit. The current i.(t) consists of a dc compo-
nent I on which is superimposed a sinusoidal component i (t) whose peak amplitude is | .
Observe that at atimet, the total instantaneous current i (t) is the sum of the dc current | .
and the signal current i.(t),

ic(t) = lc+ic(b) (1.11)
where the signal current is given by
i.(t) = I, Snot

Thus, we state some conventions: Tota instantaneous quantities are denoted by a lowercase
symbol with uppercase subscript(s), for example, i (t), yps(t). Direct-current (dc) quantities are
denoted by an uppercase symbol with uppercase subscript(s), for example |, V;q. Incremental
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0

~Y

Figure 1.15 Symbol convention employed throughout the book.

signal quantities are denoted by alowercase symbol with lowercase subscript(s), for example,
(1), v(®). If the signal is a sine wave, then its amplitude is denoted by an uppercase symbol
with lowercase subscript(s), for example |, V.. Finaly, athough not shown in Fig. 1.15, dc
power supplies are denoted by an uppercase letter with a double-letter uppercase subscript, for
example, V., Vpp- A sSimilar notation is used for the dc current drawn from the power supply,
for example, 1, Ipp.

1.10 Anamplifier hasavoltage gain of 100 V/V and a current gain of 1000 A/A. Express the voltage and
current gains in decibels and find the power gain.
Ans. 40dB; 60 dB; 50 dB

111 An amplifier operating from a single 15-V supply provides a 12-V peak-to-peak sine-wave signal
to a 1-kQ load and draws negligible input current from the signd source. The dc current drawn from the
15-V supply is8 mA. What is the power dissipated in the amplifier, and what isthe amplifier efficiency?
Ans. 102 mW; 15%

1.5 Circuit Models for Amplifiers

A substantia part of this book is concerned with the design of amplifier circuits that use transis-
tors of varioustypes. Such circuitswill vary in complexity from those using asingle transistor to
those with 20 or more devices. In order to be able to apply the resulting amplifier circuit as a
building block in a system, one must be able to characterize, or modé, its terminal behavior. In
this section, we study simple but effective amplifier models. These models apply irrespective of
the complexity of theinterna circuit of the amplifier. The values of the model parameters can be
found either by analyzing the amplifier circuit or by performing measurements at the amplifier
terminals.
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1.5.1 Voltage Amplifiers

Figure 1.16(a) shows acircuit model for the voltage amplifier. The model consists of avolt-
age-controlled voltage source having a gain factor A, an input resistance R that accounts
for the fact that the amplifier draws an input current from the signal source, and an output
resistance R, that accounts for the change in output voltage as the amplifier is called upon to
supply output current to aload. To be specific, we show in Fig. 1.16(b) the amplifier model
fed with a signal voltage source v, having a resistance R, and connected at the output to a
load resistance R _. The nonzero output resistance R, causes only a fraction of A v, to
appear across the output. Using the voltage-divider rule we obtain

R
Uo = Aol R +R,
Thus the voltage gain is given by
v, R
A === L 1.12
v _Ui vORL+ RO ( )

It follows that in order not to lose gain in coupling the amplifier output to aload, the out-
put resistance R, should be much smaller than the load resistance R, . In other words, for
agiven R_one must design the amplifier so that its R, is much smaller than R, . Further-
more, there are applications in which R_isknown to vary over acertain range. In order to
keep the output voltage v, as constant as possible, the amplifier is designed with R, much
smaller than the lowest value of R . An ideal voltage amplifier is one with R, = 0. Equa-
tion (1.12) indicates also that for R, = e, A, = A,,. Thus A, is the voltage gain of the
unloaded amplifier, or the open-cir cuit voltage gain. It should also be clear that in spec-
ifying the voltage gain of an amplifier, one must also specify the value of load resistance

Figure 1.16 (a) Circuit model for the voltage amplifier. (b) The voltage amplifier with input signal source
and load.
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at which thisgain is measured or calculated. If aload resistance is not specified, it is nor-
mally assumed that the given voltage gain is the open-circuit gain A,,.

The finite input resistance R introduces another voltage-divider action at the input, with
theresult that only afraction of the source signal v, actually reaches the input terminals of the
amplifier; that is,

_ . _R (1.13)
vi = vsRi—}—Rs .

It follows that in order not to lose a significant portion of the input signal in coupling the
signal source to the amplifier input, the amplifier must be designed to have an input resis-
tance R much greater than the resistance of the signal source, R, > R.. Furthermore, there
are applications in which the source resistance is known to vary over a certain range. To
minimize the effect of this variation on the value of the signal that appears at the input of the
amplifier, the design ensures that R is much greater than the largest value of R,. An ideal
voltage amplifier isone with R = <. In thisideal case both the current gain and power gain
become infinite.
The overall voltage gain (v,/vy) can be found by combining Egs. (1.12) and (1.13),

) R R
vs  “R+RR +R, 0o

There are situations in which oneisinterested not in voltage gain but only in a significant
power gain. For instance, the source signal can have arespectable voltage but a source resis-
tance that is much greater than the load resistance. Connecting the source directly to the load
would result in significant signal attenuation. In such a case, one requires an amplifier with a
high input resistance (much greater than the source resistance) and a low output resistance
(much smaller than the load resistance) but with a modest voltage gain (or even unity gain).
Such an amplifier isreferred to as a buffer amplifier. We shall encounter buffer amplifiers
often throughout this book.

1.12 A transducer characterized by avoltage of 1 V rms and aresistance of 1 MQ is available to drive
a10-Q load. If connected directly, what voltage and power levelsresult at theload? If aunity-gain (i.e.,
A, = 1) buffer amplifier with 1-MQ input resistance and 10-Q output resistanceisinterposed between
source and load, what do the output voltage and power levels become? For the new arrangement, find
the voltage gain from source to load, and the power gain (both expressed in decibels).
Ans. 10 uV rms; 10" W; 0.25V; 6.25 mW; —12 dB; 44 dB

1.13 The output voltage of avoltage amplifier has been found to decrease by 20% when aload resistance
of 1 kQ is connected. What is the value of the amplifier output resistance?
Ans. 250 Q

1.14 An amplifier with a voltage gain of +40 dB, an input resistance of 10 kQ, and an output resistance
of 1 kQ isused to drive a 1-kQ load. What is the value of A, ? Find the value of the power gainin
decibels.

Ans. 100V/V; 44 dB
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1.5.2 Cascaded Amplifiers

To meet given amplifier specifications, we often need to design the amplifier as a cascade of
two or more stages. The stages are usually not identical; rather, each is designed to serve a
specific purpose. For instance, in order to provide the overall amplifier with a large input
resistance, the first stageis usually required to have alarge input resistance. Also, in order to
equip the overall amplifier with alow output resistance, the final stage in the cascade is usu-
ally designed to have a low output resistance. To illustrate the analysis and design of cas-
caded amplifiers, we consider a practical example.

Figure 1.17 depicts an amplifier composed of a cascade of three stages. The amplifier is fed by a signd
source with a source resistance of 100 kQ and delivers its output into a load resistance of 100 Q. The first
stage has arelatively high input resistance and amodest gain factor of 10. The second stage has ahigher gain
factor but lower input resistance. Finally, the last, or output, stage has unity gain but alow output resistance.
We wish to evaluate the overall voltage gain, that is, v,/v,, the current gain, and the power gain.

[ i | |
Source | Stage 1 I Stage 2 | Stage 3 | Load

L
m——r
> ;.
108 > 1kQ 1 kQ 10 Q
: 3 1 MO 100 " 3 10k0 100 Q
Uiy S Upp kQ U3 S

| l
| |
| |
| |
| |
| |
| |
| |
| |

Figure 1.17 Three-stage amplifier for Example 1.3.

Solution

The fraction of source signal appearing at the input terminals of the amplifier is obtained using the volt-
age-divider rule at the input, as follows:
Yip _ 1MQ

v, T IMQ+ 100k - G99V

The voltage gain of thefirst stage is obtained by considering the input resistance of the second stage to be
the load of the first stage; that is,

_ U 100kQ
Ao = U1 030 ka+1ka = #OVNV

Similarly, the voltage gain of the second stage is obtained by considering the input resistance of the third
stage to be the load of the second stage,
10 kQ

_ Yz _ _
A= 32 = 100050 oG — 0OV
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Finally, the voltage gain of the output stageis as follows:

A oo 1000

=3 "l 100 - M9OVNV

The total gain of the three stages in cascade can be now found from
A, =5 = A ALA, = 818 VIV
Y1

or 58.3 dB.
To find the voltage gain from source to load, we multiply A, by the factor representing the loss of gain at
the input; that is,

oAU p %

Us Vi1 Us Us

= 818x0.909 = 743.6 VIV

or 57.4 dB.
The current gain is found as follows:
Aoy 0/100Q
T ti/1MQ
= 10°x A, = 8.18x 10° A/A
or 138.3 dB.
The power gain is found from

= A, A = 818x8.18x10° = 66.9x 10° W/W
or 98.3 dB. Note that
Ay (dB) = J[A(dB) + A (dB)]

A few comments on the cascade amplifier in the above example are in order. To avoid losing
sgnd drength at the amplifier input where the signdl is usualy very smdll, the first stage is
designed to have ardatively large input resistance (1 MQ), which is much larger than the source
resistance. The trade-off appears to be a moderate voltage gain (10 V/V). The second stage does
not need to have such a high input resistance; rather, here we need to redlize the bulk of the
required voltage gain. Thethird and final, or output, stageis not asked to provide any voltage gain;
rather, it functions as abuffer amplifier, providing ardatively large input resistance and alow out-
put resistance, much lower than R . It isthis stage that enables connecting the amplifier to the 10-
Q load. These points can be made more concrete by solving the following exercises. In so doing,
observe that in finding the gain of an amplifier stage in a cascade amplifier, the loading effect of
the succeeding amplifier stage must be taken into account as we have done in the above example.
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1.15 What would the overall voltage gain of the cascade amplifier in Example 1.3 be without stage 3?
Ans. 81.8V/V

1.16 For the cascade amplifier of Example 1.3, let v,be 1 mV. Find u,, v,, v,, and v,.
Ans. 0.91mV; 9mV; 818 mV; 744 mV

1.17 (a) Model the three-stage amplifier of Example 1.3 (without the source and load), using the voltage
amplifier model. What are the valuesof R, A ,, and R,?
(b) If R variesin therange 10 Q to 1000 €, find the corresponding range of the overall voltage gain,
Uyl U
Ans. 1MQ, 900 V/V, 10 Q; 409 V/V to 810 VIV

1.5.3 Other Amplifier Types

In the design of an dectronic system, the signd of interest—whether at the system input, at an
intermediate stage, or at the output—can be either avoltage or a current. For instance, some trans-
ducers have very high output resistances and can be more appropriately modeled as current
sources. Similarly, there are applications in which the output current rather than the voltage is of

Table 1.1 The Four Amplifier Types
Type Circuit Model Gain Parameter Ideal Characteristics
Voltage Amplifier R, i Open-Circuit Voltage Gain
©. RI =00
U,
Avo = _(_) (VN) Ro: 0
Hig=0
Current Amplifier i i Short-Circuit Current Gain
i o .  _ O
O——> —> i R
L + A= I_ (A/A) R=oo
3R Ai SR Hog=0
o T o
Transconductance i Short-Circuit
Amplifier _°_ Transconductance R=co
i = o0
: L Gu==| (AN) R=
i v,=0
Transresistance Open-Circuit Transresistance
Amplifier v R=0
R,= = VIA
n=3| (VIA) R=0
i,=0
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interest. Thus, dthough it isthe most popular, the voltage amplifier considered above isjust one of
four possible amplifier types. The other three are the current amplifier, the transconductance ampli-
fier, and the transresistance amplifier. Table 1.1 shows the four amplifier types, their circuit mod-
els, the definition of their gain parameters, and theideal values of their input and output resi stances.

1.5.4 Relationships between the Four Amplifier Models

Although for a given amplifier a particular one of the four modelsin Table 1.1 ismost pref-
erable, any of the four can be used to model any amplifier. In fact, simple relationships can
be derived to relate the parameters of the various models. For instance, the open-circuit volt-
age gain A, can be related to the short-circuit current gain A as follows: The open-circuit
output voltage given by the voltage amplifier model of Table1.1is A ,u. The current ampli-
fier model in the same table gives an open-circuit output voltage of A ; R,. Equating these
two values and noting that i, = v /R gives

Ro
A = Ais(ﬁi) (1.14)
Similarly, we can show that
A, = GuR, (1.15)
and
A, = %m (1.16)

The expressionsin Egs. (1.14) to (1.16) can be used to relate any two of the gain parameters
Avo’ As' Gm’ and I:Qm

1.5.5 Determining R, and R,

From the amplifier circuit models given in Table 1.1, we observe that the input resistance R, of
the amplifier can be determined by applying an input voltage v, and measuring (or calculating)
the input current i; that is, R = »/i,. The output resistance is found as the ratio of the open-
circuit output voltage to the short-circuit output current. Alternatively, the output resistance
can be found by eliminating theinput signal source (then i, and » will both be zero) and apply-
ing a voltage signal v, to the output of the amplifier, as shown in Fig. 1.18. If we denote the
current drawn from o, into the output terminals asi, (note that i, is opposite in directiontoi ),
then R, = v, /i,. Although these techniques are conceptually correct, in actual practice more
refined methods are employed in measuring R and R,

X Figure 1.18 Determining the output resistance.
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1.5.6 Unilateral Models

The amplifier models considered above are unilateral; that is, signa flow is unidirectional,
from input to output. Most real amplifiers show some reverse transmission, which is usually
undesirable but must nonetheless be modeled. We shall not pursue this point further at this
time except to mention that more complete models for linear two-port networks are given in
Appendix C. Also, in later chapters, we will find it necessary in certain cases to augment the
models of Table 1.1 to take into account the nonunilateral nature of some transistor amplifiers.

Example 1.4

The bipolar junction transistor (BJT), which will be studied in Chapter 6, is a three-terminal device
that when powered-up by a dc source (battery) and operated with small signals can be modeled by the lin-
ear circuit shown in Fig. 1.19(a). The three terminals are the base (B), the emitter (E), and the collector
(C). The heart of the model is a transconductance amplifier represented by an input resistance between B
and E (denoted r ), a short-circuit transconductance g,,, and an output resistancer,,.

B c R
, »—0
+ + +
Ye S lr Io Ug Upe & g R Uy
. Imlbe . Omtbe B

E

@ =

Figure 1.19 (a) Small-signal circuit model for a bipolar junction transistor (BJT). (b) The BJT connected as an
amplifier with the emitter asa common terminal between input and output (called acommon-emitter amplifier).
(c) An dternative small-signal circuit model for the BJT.

(a) With the emitter used as a common terminal between input and output, Fig. 1.19(b) shows a tran-
sistor amplifier known asacommon-emitter or grounded-emitter circuit. Derive anexpression for the
voltage gain v,/v,, and evaluate its magnitude for the case R,= 5 kQ, r, = 2.5 kQ, g,,= 40 mA/V,
r, =100 kQ, and R_= 5 kQ2. What would the gain value be if the effect of r_, were neglected?

(b) Analternative model for the transistor in which a current amplifier rather than atransconductance am-
plifier isutilized is shown in Fig. 1.19(c). What must the short-circuit current gain S be? Give both an
expression and avalue.
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Solution

(a) Refer to Fig. 1.19(b). We use the voltage-divider rule to determine the fraction of input signal that
appears at the amplifier input as
rﬂ'
UYpe — UsT—
be = TSt 4R,

Next we determine the output voltage v, by multiplying the current (g,v.,.) by the resistance (R_|| r,),

(1.17)

Uo = ~Imte(RL[| 7o) (1.18)
Substituting for v,, from Eq. (1.17) yields the voltage-gain expression
Yo Mz

o = " RInRUIT) (1.19)

Observe that the gain is negative, indicating that this amplifier isinverting. For the given component values,

Y% _ 25
o 2545 40%(5]/100)
= -635V/IV
Neglecting the effect of r,, we obtain
Y% _ 25
v 25+5 0%
= -66.7 VIV

which is quite close to the value obtained including r,. Thisis not surprising, since r, > R, .
(b) For the model in Fig. 1.19(c) to be equivalent to that in Fig. 1.19(a),
ﬂib = gmvbe

But iy, = v,e/T,; thus,

B=0.r,
For the values given,

£ =40mA/V x 25kQ

=100 A/A

1.18 Consider acurrent amplifier having the model shown in the second row of Table 1.1. Let the ampli-
fier be fed with asignal current-source i having aresistance R, and et the output be connected to a
load resistance R,. Show that the overall current gain is given by

o, R R
is R+ RR+R.
1.19 Consider the transconductance amplifier whose model is shown in the third row of Table 1.1. Let a

voltage signal source v, with a source resistance R, be connected to the input and aload resistance R,
be connected to the output. Show that the overall voltage-gainis given by

Y% _ g R IR
vs mRi+RS(R° 2
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1.20 Consider atransresistance amplifier having the model shown in the fourth row of Table 1.1. Let the
amplifier befed with asignal current-sourceig having aresistance R, and let the output be connected
to aload resistance R . Show that the overall gain is given by

B_g R R
is "R+ R R +R,
1.21 Find the input resistance between terminals B and G in the circuit shown in Fig. E1.21. The voltage
v, is atest voltage with the input resistance R, defined asR, = v, /1,.

B
—>= E: Tar Bip
Uy Ct) R,
E
R,
G —
R, - Figure E1.21

Ans. R =r,+(8+ DR

1.6 Frequency Response of Amplifiers?

From Section 1.2 we know that the input signal to an amplifier can always be expressed as
the sum of sinusoidal signals. It follows that an important characterization of an amplifier is
in terms of its response to input sinusoids of different frequencies. Such a characterization of
amplifier performance is known as the amplifier frequency response.

1.6.1 Measuring the Amplifier Frequency Response

We shall introduce the subject of amplifier frequency response by showing how it can be
measured. Figure 1.20 depicts a linear voltage amplifier fed at its input with a sine-wave
signal of amplitude V, and frequency w. As the figure indicates, the signal measured at the
amplifier output also is sinusoidal with exactly the same frequency . Thisis an important
point to note: Whenever a sine-wave signal is applied to a linear circuit, the resulting output
is sinusoidal with the same frequency as the input. In fact, the sine wave is the only signal
that does not change shape as it passes through a linear circuit. Observe, however, that the
output sinusoid will in general have a different amplitude and will be shifted in phase relative
to the input. The ratio of the amplitude of the output sinusoid (V,) to the amplitude of the
input sinusoid (V;) is the magnitude of the amplifier gain (or transmission) at the test fre-
guency . Also, the angle ¢ is the phase of the amplifier transmission at the test frequency
w. If we denote the amplifier transmission, or transfer function as it is more commonly

2Except for itsusein the study of the frequency response of op-amp circuitsin Sections 2.5 and 2.7, the
material in this section will not be needed in a substantial manner until Chapter 9.
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Linear amplifier

+

vy =V sin wt Ct)

Uo = Vo SN (wt + ¢)

Figure 1.20 Mesasuring the frequency response of a linear amplifier: At the test frequency w, the amplifier
gain is characterized by its magnitude (V,/V,) and phase ¢.

known, by T(w), then

T(w) = =

s <<

ZT(w) =

The response of the amplifier to a sinusoid of frequency wis completely described by |T(w)|
and £T(w). Now, to obtain the complete frequency response of the amplifier we simply
change the frequency of the input sinusoid and measure the new value for [T| and ZT. The
end result will be a table and/or graph of gain magnitude [|T(w)|] versus frequency and a
table and/or graph of phase angle [£T(w)] versus frequency. These two plots together
constitute the frequency response of the amplifier; the first is known as the magnitude or
amplituderesponse, and the second isthe phase r esponse. Finally, we should mention that
it isacommon practice to express the magnitude of transmission in decibels and thus plot
20 log [T(w)| versus frequency.

1.6.2 Amplifier Bandwidth

Figure 1.21 shows the magnitude response of an amplifier. It indicates that the gain is almost
constant over awide frequency range, roughly between @, and @,. Signals whose frequencies
are below @, or above w, will experience lower gain, with the gain decreasing as we move
farther away from @, and w,. The band of frequencies over which the gain of the amplifier is
almost constant, to within a certain number of decibels (usually 3 dB), is called the amplifier
bandwidth. Normally the amplifier is designed so that its bandwidth coincides with the
spectrum of the signals it is required to amplify. If this were not the case, the amplifier
would distort the frequency spectrum of the input signal, with different components of the
input signal being amplified by different amounts.

1.6.3 Evaluating the Frequency Response of Amplifiers

Above, we described the method used to measure the frequency response of an amplifier.
We now briefly discuss the method for analytically obtaining an expression for the fre-
guency response. What we are about to say isjust a preview of thisimportant subject, whose
detailed study isin Chapter 9.
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Figure 1.21 Typical magnitude response of an amplifier: [T(w)| is the magnitude of the amplifier transfer
function—that is, the ratio of the output V (@) to the input V().

To evaluate the frequency response of an amplifier, one has to analyze the amplifier
equivalent circuit model, taking into account all reactive components.® Circuit analysis
proceeds in the usua fashion but with inductances and capacitances represented by their
reactances. An inductance L has a reactance or impedance jal, and a capacitance C has a
reactance or impedance 1/j @C or, equivalently, a susceptance or admittance j@C. Thusin a
frequency-domain analysis we deal with impedances and/or admittances. The result of the
analysisisthe amplifier transfer function T(w)

V(o)

T(w) = V()

where V(@) and V(@) denote the input and output signals, respectively. T(w) is generally a
complex function whose magnitude |T()| gives the magnitude of transmission or the mag-
nitude response of the amplifier. The phase of T(w) gives the phase response of the ampli-
fier.

In the analysis of a circuit to determine its frequency response, the algebraic manipulations
can be considerably smplified by using the complex frequency variable s. In terms of s, the
impedance of an inductance L issL and that of acapacitance Cis1/sC. Replacing the reactive
elements with their impedances and performing standard circuit analysis, we obtain the transfer
function T(s) as

_ VoS

T =G

Subsequently, we replace s by jw to determine the transfer function for physical frequen-
cies, T(jw). Note that T(jw) is the same function we called T(w) above’; the additiond j is
included in order to emphasize that T(j ) is obtained from T(s) by replacing s with jw.

*Note that in the models considered in previous sections no reactive components were included. These
were simplified models and cannot be used alone to predict the amplifier frequency response.

“At this stage, we are using s simply as a shorthand for jw. We shall not require detailed knowledge of
s-plane concepts until Chapter 9. A brief review of s-plane analysisis presented in Appendix F.



1.6 Frequency Response of Amplifiers 33

1.6.4 Single-Time-Constant Networks

In analyzing amplifier circuits to determine their frequency response, oneis greatly aided by
knowledge of the frequency-response characteristics of single-time-constant (STC) networks.
An STC network is one that is composed of, or can be reduced to, one reactive component
(inductance or capacitance) and one resistance. Examples are shown in Fig. 1.22. An STC
network formed of an inductance L and a resistance R has atime constant 7 = L/R. The
time constant 7 of an STC network composed of a capacitance C and aresistance Ris given
by 7=CR.

Appendix E presents a study of STC networks and their responses to sinusoidal, step, and
pulseinputs. Knowledge of this material will be needed at various points throughout this book,
and the reader will be encouraged to refer to the appendix. At this point we need in particular
the frequency response results; we will, in fact, briefly discuss thisimportant topic, now.

Most STC networks can be classified into two categories,® low pass (LP) and high pass
(HP), with each of the two categories displaying distinctly different signal responses. As an
example, the STC network shown in Fig. 1.22(a) is of the low-pass type and that in Fig.
1.22(b) is of the high-pass type. To see the reasoning behind this classification, observe that
the transfer function of each of these two circuits can be expressed as a voltage-divider ratio,
with the divider composed of aresistor and a capacitor. Now, recalling how the impedance of
a capacitor varies with frequency (Z = 1/jwC), it is easy to see that the transmission of the
circuit in Fig. 1.22(a) will decrease with frequency and approach zero as @ approaches . Thus
the circuit of Fig. 1.22(a) acts as a low-pass filter; it passes low-frequency, sine-wave inputs
with little or no attenuation (at w= 0, the transmission is unity) and attenuates high-frequency
input sinusoids. The circuit of Fig. 1.22(b) does the opposite; itstransmission is unity at @= o
and decreases as wis reduced, reaching O for @= 0. The latter circuit, therefore, performsasa
high-passfilter.

Table 1.2 provides a summary of the frequency-response results for STC networks of
both types.” Also, sketches of the magnitude and phase responses are given in Figs. 1.23 and
1.24. These frequency-response diagrams are known as Bode plots and the 3-dB frequency

R C
+ i
Vi C Vo R Vo
Figure 1.22 Two examplesof STC
networks: (a) alow-pass network and
€) (b) (b) a high-pass network.

SAn important exception is the all-pass STC network studied in Chapter 16.

°A filter is acircuit that passes signalsin a specified frequency band (the filter passband) and stops or
severely attenuates (filters out) signalsin another frequency band (the filter stopband). Filters will be
studied in Chapter 16.

"The transfer functionsin Table 1.2 are given in general form. For the circuits of Fig. 1.22, K= 1 and
w,=1/CR.
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Table 1.2 Frequency Response of STC Networks

Low-Pass (LP) High-Pass (HP)

Transfer Function T(s) K Ks

1+ (s/ ay) S+ wy
Transfer Function (for physical K K
frequencies) T(jw) 1+j(w/ wp) 1-j(wy/ )
Magnitude Response [T(j @)| K| K]

J1+(0/ )’ J1+ (wy/ ®)°
Phase Response £T(j @) ~tan " (/ @) tan ™ (ay/ )
Transmissionat @=0 (dc) K
Transmission a @= oo K
3-dB Freguency w,=1/7, 7 =time constant

7 =CRor L/R
Bode Plots inFig. 1.23 inFig. 1.24
T(jw) ‘
20 1o |
0 log K (dB)
A
3 fB

—6 dB/octave

_20 ________

or

/ ~20 dB/decade

-
.

P
Lot
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(b)
Figure 1.23 (a) Magnitude and (b) phase response of STC networks of the low-pass type.
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Figure 1.24 (a) Magnitude and (b) phase response of STC networks of the high-pass type.

(@) is also known as the corner freguency, break frequency, or pole frequency. The
reader is urged to become familiar with thisinformation and to consult Appendix E if further
clarifications are needed. In particular, it is important to develop a facility for the rapid
determination of the time constant 7 of an STC circuit. The process is very simple: Set the
independent voltge or current source to zero; “grab hold” of the two terminals of the reactive
element (capacitor C or inductor L); and determine the equivalent resistance R that appears
between these two terminals. The time-constant isthen CR or L/R.

35
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Figure 1.25 shows a voltage amplifier having an input resistance R, an input capacitance C,, a gain factor
M, and an output resistance R,. The amplifier isfed with a voltage source V, having a source resistance R,
and aload of resistance R_is connected to the output.

R,

Figure 1.25 Circuit for Example 1.5.

(a) Derive an expression for the amplifier voltage gain V,/V, as a function of frequency. From this find
expressions for the dc gain and the 3-dB frequency.

(b) Calculatethe values of the dc gain, the 3-dB frequency, and the frequency at which the gain becomes
0dB (i.e., unity) for thecase R,=20 kQ2, R =100 kQ2, C, =60 pF, £ = 144 V/V, R =200Q, and R
=1kQ.

(c) Find y,(t) for each of the following inputs:

(i) »=01s€n10°t,V
(i) »=01€n10°t,V
(iii) »z=01€n10°t, V
(iv) z=01s€n10°t, V

Solution

(a) Utilizing the voltage-divider rule, we can express V, in terms of V as follows
Z;
*Z; + Ry
where Z; is the amplifier input impedance. Since Z, is composed of two parallel elements, it is obviously

easier towork interms of Y, = 1/Z;. Toward that end we divide the numerator and denominator by Z;
thus obtaining

Vi=V

1

= VR,
—v 1
© 81+ RJ(1/R) +sC]
Thus,
Vi 1
Vy, 1+ (Ry/R)+SCR



1.6 Frequency Response of Amplifiers 37

This expression can be put in the standard form for alow-pass STC network (see the top line of Table 1.2)
by extracting [1 + (Ry/R;)] from the denominator; thus we have

Vi = L L (1.20)
Vs 1+(R/R)1+sC(RR)/(Rs+ R)] ’
At the output side of the amplifier we can use the voltage-divider rule to write
V, = iV
o IRL L Ro
This equation can be combined with Eq. (1.20) to obtain the amplifier transfer function as
V,
=2 1 1 1 (1.21)

V. "I+ (R/R)1+(R/R) 1+SCl(RR)/ (Rt R)]
We note that only the last factor in this expression is new (compared with the expression derived in the
last section). Thisfactor isaresult of the input capacitance C,, with the time constant being
RR;
'R+ R, (1.22)
= Gi(RsIIR)

7=C

We could have obtained this result by inspection: From Fig. 1.25 we see that the input circuit isan STC
network and that its time constant can be found by reducing V, to zero, with the result that the resistance
seen by C, is R in parallel with R, The transfer function in Eq. (1.21) is of the form K/ (1 + (s/ ay)),
which corresponds to alow-pass STC network. The dc gain is found as

K=\-/—°(s=0)=u L 1 (1.23)
YA 1+(R/R) 1+ (R,/R)) :
The 3-dB frequency @, can be found from
1 1
Wy === T/ 1.24
"= 7T SRR (129

Since the frequency response of this amplifier is of the low-pass STC type, the Bode plots for the gain
magnitude and phase will take the form shown in Fig. 1.23, where K is given by Eq. (1.23) and ), is given
by Eq. (1.24).

(b) Substituting the numerical values given into Eq. (1.23) resultsin

1 1
K= 1441+(20/100)1+(200/1000) = BLONIAY

Thusthe amplifier hasadc gain of 40 dB. Substituting the numerical valuesinto Eq. (1.24) givesthe 3-dB
frequency

1
~ 60 pF x (20 KQ//100kQ)
1

60 102 % (20 x 100/(20 + 100)) x 10°

@

= 10° rad/s
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Example 1.5 continued

Thus,

6
fo = ;2(_:_[ — 159.2 kKHz

Sincethe gain falls off at the rate of —20 dB/decade, starting at @, (see Fig. 1.238) the gain will reach 0 dB
in two decades (afactor of 100); thus we have

Unity-gain frequency = 100X @, = 10° rad/s or 15.92 MHz

(c) Tofind v,(t) we need to determine the gain magnitude and phase at 107, 10°, 10° and 10 rad/s. This can
be done either approximately utilizing the Bode plots of Fig. 1.23 or exactly utilizing the expression for
the amplifier transfer function,
Tio)= 2w = —%
s 1+j(w/107)
We shall do both:

(i) For @ = 10? rad/s, which is (a)o/104), the Bode plots of Fig. 1.23 suggest that [T| = K = 100 and
¢= 0°. The transfer function expression gives [T| = 100 and ¢ = —tan™ 10 = 0°. Thus,

u,(t) = 10 sin 10%, V

(ii) For @ = 10° rad/s, which is (w,/10), the Bode plots of Fig. 1.23 suggest that [T| = K = 100 and
¢ =-5.7°. The transfer function expression gives [T| = 99.5 and ¢ = —tan™ 0.1 = -5.7°. Thus,

u,(t) = 9.95 SiN(10°t — 5.7°), V
(iii) For @= 10°rad/s = @,, |T| = 100/4/2 = 70.7 V/V or 37 dB and ¢ = —45°. Thus,
u(t) = 7.07 sin(10% — 45°), V

(iv) For @= 108 rad/s, which is (100a,), the Bode plots suggest that |T| = 1 and ¢ = —90°. The transfer
function expression gives

Tl=1 and ¢ = —tan™ 100 = —89.4°

Thus,
u,(t) = 0.1 sin(10% — 89.4°), V

1.6.5 Classification of Amplifiers Based on
Frequency Response

Amplifiers can be classified based on the shape of their magnitude-response curve. Figure 1.26
shows typical frequency-response curves for various amplifier types. In Fig. 1.26(a) the gain
remains constant over awide frequency range, but falls off at low and high frequencies. This
type of frequency response is common in audio amplifiers.

As will be shown in later chapters, internal capacitances in the device (a transistor)
cause the falloff of gain at high frequencies, just as C, did in the circuit of Example 1.5. On
the other hand, the falloff of gain at low frequenciesis usually caused by coupling capacitors
used to connect one amplifier stage to another, asindicated in Fig. 1.27. This practiceis usu-
ally adopted to simplify the design process of the different stages. The coupling capacitors
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Figure 1.26 Freguency response for (a) a capacitively coupled amplifier, (b) a direct-coupled amplifier,
and (c) atuned or bandpass amplifier.

Two amplifier
stages

- ‘> I N
T

capacitor

Figure 1.27 Use of a capacitor
- to couple amplifier stages.

are usualy chosen quite large (a fraction of a microfarad to a few tens of microfarads) so
that their reactance (impedance) is small at the frequencies of interest. Nevertheless, at suffi-
ciently low frequencies the reactance of a coupling capacitor will become large enough to
cause part of the signal being coupled to appear as a voltage drop across the coupling capac-
itor, thus not reaching the subsequent stage. Coupling capacitors will thus cause loss of gain
at low frequencies and cause the gain to be zero at dc. Thisisnot at all surprising, since from

39
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Fig. 1.27 we observe that the coupling capacitor, acting together with the input resistance of
the subsequent stage, forms a high-pass STC circuit. It is the frequency response of this
high-pass circuit that accounts for the shape of the amplifier frequency response in Fig.
1.26(a) at the low-frequency end.

There are many applicationsin which it isimportant that the amplifier maintain itsgain at
low freguencies down to dc. Furthermore, monolithic integrated-circuit (IC) technology
does not allow the fabrication of large coupling capacitors. Thus IC amplifiers are usualy
designed as directly coupled or dc amplifiers (as opposed to capacitively coupled, or
ac amplifiers). Figure 1.26(b) shows the frequency response of a dc amplifier. Such afrequency
response characterizes what is referred to as alow-pass amplifier.

In anumber of applications, such asin the design of radio and TV receivers, the need arises
for an amplifier whose frequency response peaks around a certain frequency (called the center
frequency) and fals off on both sides of this frequency, as shown in Fig. 1.26(c). Amplifiers
with such aresponse are called tuned amplifiers, bandpass amplifiers, or bandpass filters.
A tuned amplifier forms the heart of the front-end or tuner of a communication receiver; by
adjusting its center frequency to coincide with the frequency of a desired communications
channel (e.g., aradio station), the signal of this particular channel can be received while those
of other channels are attenuated or filtered out.

1.22 Consider avoltage amplifier having a frequency response of the low-pass STC type with adc
gain of 60 dB and a 3-dB frequency of 1000 Hz. Find thegainin dB at f= 10 Hz, 10 kHz, 100
kHz, and 1 MHz.

Ans. 60dB; 40dB; 20dB; 0 dB

D1.23 Consider atransconductance amplifier having the model shownin Table 1.1 withR =5kQ, R =50
kQ, and G, = 10 mA/V. If the amplifier load consists of aresistance R_in parallel with a capaci-
tance C,, convince yourself that the voltage transfer function realized, V/V,, is of the low-pass
STC type. What isthe lowest value that R, can have while adc gain of at least 40 dB is obtained?
With this value of R_connected, find the highest value that C,_ can have while a 3-dB bandwidth
of at least 100 kHz is obtained.

Ans. 12.5kQ; 159.2 pF

D1.24 Consider the situation illustrated in Fig. 1.27. Let the output resistance of the first voltage ampli-
fier be 1 kQ and the input resistance of the second voltage amplifier (including the resistor shown)
be 9 kQ. The resulting equivalent circuit is shown in Fig. E1.24 where V, and R, are the output
voltage and output resistance of the first amplifier, C is a coupling capacitor, and R is the input
resistance of the second amplifier. Convince yourself that V.,/V is ahigh-pass STC function. What
isthe smallest value for C that will ensure that the 3-dB frequency is not higher than 100 Hz?
Ans. 0.16 uF

R = 1kQ

C

+

Figure E1.24




Summary

An electrical signd source can berepresented in either the
Thévenin form (avoltage source v, in serieswith asource
resistance R) or the Norton form (a current source i in
parallel with a source resistance R). The Thévenin volt-
age v, is the open-circuit voltage between the source ter-
minals; the Norton current i is equal to the short-circuit
current between the source terminals. For the two repre-
sentations to be equivalent, v, and R, must be equal.

A signal can berepresented either by itswaveform versus
time or as the sum of sinusoids. The latter representation
is known as the frequency spectrum of the signal.

The sine-wave signal is completely characterized by its
peak value (or rms value which is the peak /./2), its fre-
quency (winrad/sor fin Hz; o= 2zfand f = UT, where
T isthe period in seconds), and its phase with respect to
an arbitrary reference time.

Analog signals have magnitudes that can assume any
value. Electronic circuits that process analog signals are
called analog circuits. Sampling the magnitude of an an-
alog signal at discrete instants of time and representing
each signal sample by anumber resultsin adigital signal.
Digital signals are processed by digital circuits.

The simplest digital signals are obtained when the binary
systemisused. Anindividua digital signal then assumes
one of only two possible values: low and high (say, 0 V
and +5 V), corresponding to logic 0 and logic 1, respec-
tively.

An analog-to-digital converter (ADC) provides at its
output the digits of the binary number representing the
analog signal sample applied to itsinput. The output dig-
ital signal can then be processed using digital circuits.
Refer to Fig. 1.10 and Eq. (1.3).

Thetransfer characteristic, v, versus v, of alinear ampli-
fier is a straight line with a slope equal to the voltage
gain. Refer to Fig. 1.12.

Amplifiersincrease the signa power and thus require dc
power supplies for their operation.
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The amplifier voltage gain can be expressed as a ratio
A, in VIV or in decibels, 20 log|A |, dB. Similarly, for
current gain: A, A/A or 20 log|A,|, dB. For power gain:
A, W/W or 10 log A, dB.

Depending on the signal to be amplified (voltage or cur-
rent) and on the desired form of output signal (voltage or
current), there are four basic amplifier types: voltage,
current, transconductance, and transresistance amplifi-
ers. For the circuit models and ideal characteristics of
thesefour amplifier types, refer to Table 1.1. A given am-
plifier can be modeled by any one of the four models, in
which casetheir parametersarerelated by theformulasin
Egs. (1.14) to (1.16).

A sinusoid is the only signa whose waveform is un-
changed through a linear circuit. Sinusoidal signals are
used to measure the frequency response of amplifiers.

The transfer function T(s) =V,(s)/V,(s) of avoltage
amplifier can be determined from circuit analysis. Sub-
stituting s=jw gives T( j @), whose magnitude |T(jw)| is
the magnitude response, and whose phase ¢(w) is the
phase response, of the amplifier.

Amplifiers are classified according to the shape of their
frequency response, [T(j@)|. Refer to Fig. 1.26.

Single-time-constant (STC) networks are those networks
that are composed of, or can be reduced to, one reactive
component (L or C) and oneresistance (R). Thetime con-
stant ziseither L/Ror CR.

STC networks can be classified into two categories: |ow-
pass (LP) and high-pass (HP). LP networks pass dc and
low freguencies and attenuate high frequencies. The op-
positeistrue for HP networks.

Thegain of an LP (HP) STC circuit drops by 3 dB below
the zero-frequency (infinite-frequency) value at a fre-
quency @, = 1/7. At high frequencies (low frequencies)
the gain fals off at the rate of 6 dB/octave or 20 dB/de-
cade. Refer to Table 1.2 on page 34 and Figs. 1.23 and
1.24. Further details are given in Appendix E.



Computer Simulation Problems

Problems involving design are marked with D throughout
the text. As well, problems are marked with asterisks to
describe their degree of difficulty. Difficult problems are
marked with an asterisk (*); more difficult problems with
two asterisks (**); and very challenging and/or time-
consuming problems with three asterisks (***).

Circuit Basics

As areview of the basics of circuit analysis and in order for
the readers to gauge their preparedness for the study of elec-
tronic circuits, this section presents a number of relevant cir-
cuit analysis problems. For a summary of Thévenin's and
Norton’s theorems, refer to Appendix D. The problems are
grouped in appropriate categories.

Resistors and Ohm’s Law

1.1 Ohm’slaw relates V, |, and R for a resistor. For each of
the situations following, find the missing item:

(@) R=1kQ,V=10V
(b) V=10V, =1 mA
(c) R=10kQ, | = 10 mA
(d) R=100Q,V=10V

1.2 Measurements taken on various resistors are shown
below. For each, calculate the power dissipated in the resistor
and the power rating necessary for safe operation using stan-
dard components with power ratings of /8 W, 1/4 W, 1/2 W,
1W,or2W:

(a) 1kQ conducting 30 mA
(b) 1kQ conducting 40 mA
(c) 10 k€ conducting 3 mA
(d) 10 kQ conducting 4 mA
(e) 1k€Q dropping 20 V
(f) 1kQ dropping 11 V

1.3 Ohm'slaw and the power law for aresistor relate V, I,
R, and P, making only two variables independent. For each
pair identified below, find the other two:

(a) R=1kQ, | = 10 mA
() V=10V, =1mA
() V=10V,P=1W
(d) 1=10mA,P=0.1 W
(e) R=1kQ,P=1W

Combining Resistors

1.4 You are given three resistors whose values are 10 kQ,
20kQ, and 40 kQ. How many different resistances can you

creste using series and parallel combinations of these three?
List them in vaue order, lowest first. Be thorough and
organized. (Hint: Inyour search, first consider al parallel com-
binations, then consider series combinations, and then consider
series-paralld combinations, of which there are two kinds).

1.5 Inthe analysis and test of electronic circuits, it is of-
ten useful to connect one resistor in parallel with another
to obtain a nonstandard value, one which is smaller than
the smaller of the two resistors. Often, particularly during
circuit testing, one resistor is already installed, in which
case the second, when connected in parallel, is said to
“shunt” the first. If the original resistor is 10 kQ2, what is
the value of the shunting resistor needed to reduce the
combined value by 1%, 5%, 10%, and 50%7? What isthe re-
sult of shunting a 10-kQ resistor by 1 MQ? By 100 kQ? By
10 kQ?

Voltage Dividers

1.6 Figure P1.6(a) shows a two-resistor voltage divider.
Its function is to generate a voltage V,, (smaller than the
power-supply voltage V) at its output node X. The cir-
cuit looking back at node X is equivalent to that shown in
Fig. P1.6(b). Observe that thisisthe Thévenin equivalent
of the voltage divider circuit. Find expressions for V,

and R,,.

VDD
R,
4 Rod 28
Vo = |_—'\N\«—O
RZ VO -|—_
= RS =
(€Y (b)
Figure P1.6

1.7 A two-resistor voltage divider employing a 3.3-kQ
and a 6.8-kQ resistor is connected to a 9-V ground-refer-
enced power supply to provide a relatively low voltage
(close to 3V). Sketch the circuit. Assuming exact-valued
resistors, what output voltage (measured to ground) and
equivalent output resistance result? If the resistors used are
not ideal but have a £5% manufacturing tolerance, what
are the extreme output voltages and resistances that can
result?



1.8 You are given three resistors, each of 10 kQ, and a 9-V
battery whose negative terminal is connected to ground. With
a voltage divider using some or al of your resistors, how
many positive-voltage sources of magnitude lessthan 9V can
you design? List them in order, smallest first. What isthe out-
put resistance (i.e., the Thévenin resistance) of each?

D *1.9 Two resistors, with nominal values of 4.7 kQ and
10 kQ, are used in a voltage divider with a+15-V supply
to createanominal +10-V output. Assuming the resistor values
to be exact, what is the actua output voltage produced? Which
resistor must be shunted (pardleled) by what third resistor to
create a voltage-divider output of 10.00 V? If an output
resistance of exactly 3.33 kQ is aso required, what do you
suggest? What should be doneif the original 4.7-kQ and 10-kQ
resistors are used but the requirement is 10.00 V and 3.00 kQ2?

Current Dividers

1.10 Current dividers play an important rolein circuit design.
Thereforeit isimportant to develop afacility for dealing with
current dividersin circuit analysis. Figure P1.10 shows atwo-
resistor current divider fed with an ideal current source 1.
Show that

RZ
i = |
R+ R,

Ry
I, = |
R+ R,

and find the voltage V that devel ops across the current divider.

Figure P1.10

< +o0

D 1.11 Design a simple current divider that will reduce the
current provided to a 1-kQ load to 20% of that available from
the source.

D 1.12 A designer searches for a simple circuit to provide
one-third of a signal current | to a load resistance R. Sug-
gest a solution using one resistor. What must its value be?
What is the input resistance of the resulting current
divider? For a particular value R, the designer discovers
that the otherwise-best-available resistor is 10% too high.
Suggest two circuit topologies using one additional
resistor that will solve this problem. What is the value of

Problems 43

the resistor required? What is the input resistance of the
current divider in each case?

D 1.13 A particular electronic signal source generates cur-
rents in the range 0 mA to 1 mA under the condition thet its
load voltage not exceed 1 V. For loads causing more than 1 V
to appear across the generator, the output current is no longer
assured but will be reduced by some unknown amount. This
circuit limitation, occurring, for example, at the peak of asine-
wave signal, will lead to undesirable signal distortion that must
be avoided. If a 10-kQ2 load is to be connected, what must be
done? What is the name of the circuit you must use? How
many resistors are needed? What is (are) the(ir) value(s)?

Thévenin Equivalent Circuits

1.14 For thecircuit in Fig. P1.14, find the Thévenin equiva
lent circuit between terminals (a) 1 and 2, (b) 2 and 3, and
(c) 1and 3.

A o1
1k
3V "= 2
1k
® 03
Figure P1.14

1.15 Through repeated application of Thévenin's theorem,
find the Thévenin equivalent of the circuit in Fig. P1.15
between node 4 and ground, and hence find the current that
flows through aload resistance of 1.5 kQ connected between
node 4 and ground.

1 10k 2 10k 3 10k 4

0oV 10k 10k 10k

1

Figure P1.15

Circuit Analysis

1.16 For the circuit shown in Fig. P1.16, find the current in
al resistors and the voltage (with respect to ground) at their
common node using two methods:
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(a) Current: Define branch currents |, and |, in R, and R,,
respectively; identify two equations; and solve them.

(b) Voltage: Define the node voltage V at the common node;
identify a single equation; and solve it.

Which method do you prefer? Why?

+15V
+10V
R, R,
5kQ 10 kQ)
Rs
2kQ
Figure P1.16

1.17 The circuit shown in Fig. P1.17 represents the equiva
lent circuit of an unbalanced bridge. It isrequired to calculate
the current in the detector branch (R;) and the voltage across
it. Although this can be done by using loop and node equa-
tions, a much easier approach is possible: Find the Thévenin
equivalent of the circuit to the left of node 1 and the Thévenin
equivalent of the circuit to the right of node 2. Then solve the
resulting simplified circuit.

+9V

Figure P1.17

1.18 For the circuit in Fig. P1.18, find the equivalent resis-
tance to ground, R, To do this, apply a voltage V, between
terminal X and ground and find the current drawn from V,.
Note that you can use particular specia properties of the
circuit to get the result directly! Now, if R, israised to 1.2 kQ,
what does R, become?

Ry Rs
1kQ 1kQ
Rs
1kQ
R, R,
1kQ 1kQ
Figure P1.18
AC Circuits

1.19 The periodicity of recurrent waveforms, such as sine
waves or sguare waves, can be completely specified using
only one of three possible parameters: radian frequency, @, in
radians per second (rad/s); (conventional) frequency, f, in
hertz (Hz); or period T, in seconds (s). As well, each of the
parameters can be specified numerically in one of several
ways. using letter prefixes associated with the basic units,
using scientific notation, or using some combination of both.
Thus, for example, a particular period may be specified as
100 ns, 0.1 us, 10 us, 10° ps, or 1 x 10~'s. (For the defini-
tion of the various prefixes used in electronics, see Appendix
H) For each of the measures listed below, express the trio of
terms in scientific notation associated with the basic unit
(e.g., 107 srather than 107 us).

(a) T=10"ms

() f=1GHz

(c) w=6.28 x 10* rad/s
(d) T=10s

(e) f =60Hz

(f) w =1 krad/s

(2) f=1900 MHz

1.20 Find the complex impedance, Z, of each of the follow-
ing basic circuit eements at 60 Hz, 100 kHz, and 1 GHz:

(a) R=1kQ
(b) C=10nF
(¢) C=2pF
(d) L=10mH
(e) L=1nH

1.21 Find the complex impedance at 10 kHz of the following
networks:

(a) 1kQ in series with 10 nF
(b) 1KkQ in parallel with 0.01 uF



(c) 100 kQ in parallel with 100 pF
(d) 100 Q in series with 10 mH

Section 1.1: Signals

1.22 Any given signd source provides an open-circuit volt-
age, v,,, and a short-circuit current i_. For the following
sources, calculate the internal resistance, R; the Norton cur-
rent, i and the Thévenin voltage, v

(@) 1,,=10V, iy =100 uA
(b) v, =0.1V,i =10 pA

1.23 A particular signal source produces an output of 30 mV
when loaded by a 100-kQ resistor and 10 mV when loaded by
a10-kQ resistor. Calculate the Thévenin voltage, Norton cur-
rent, and source resistance.

1.24 A temperature sensor is specified to provide 2 mv/°C.
When connected to aload resistance of 10 k€2, the output voltage
was measured to change by 10 mV, corresponding to achangein
temperature of 10°C. What isthe source resistance of the sensor?

1.25 Refer to the Thévenin and Norton representations of the
signal source (Fig. 1.1). If the current supplied by the source
is denoted i, and the voltage appearing between the source
output terminalsis denoted v, sketch and clearly label v, ver-
susi, for 0<i <iy

1.26 The connection of asignal source to an associated Sgna
processor or amplifier generdly involves some degree of signal
lossasmeasured at the processor or amplifier input. Considering
the two signal-source representations shown in Fig. 1.1, provide
two sketches showing each signal-source representation con-
nected to the input terminals (and corresponding input resis-
tance) of a dgna processor. What signal-processor input
resistance will result in 90% of the open-circuit voltage being
delivered to the processor? What input resistance will result in
90% of the short-circuit Signal current entering the processor?

Section 1.2: Frequency Spectrum of Signals

1.27 To familiarize yourself with typical values of angular
frequency @, conventional frequency f, and period T, com-
plete the entries in the following table:

Case o (rad/s) f (Hz) T (s)
a 1x10°

b 1x10°

c 1x 101
d 60

e 6.28 x 10°

f 1x10°

1.28 For thefollowing peak or rmsvalues of some important
sine waves, calculate the corresponding other value:

(a) 117 V rms, a household-power voltage in North America

Problems 45

(b) 33.9 V peak, a somewhat common peak voltage in recti-
fier circuits

(¢) 220 V rms, a household-power voltage in parts of
Europe

(d) 220 kV rms, a high-voltage transmission-line voltage in
North America

1.29 Give expressions for the sine-wave voltage signals
having:

(a) 10-V peak amplitude and 10-kHz frequency
(b) 120-V rms and 60-Hz frequency

(c) 0.2-V peak-to-peak and 1000-rad/s frequency
(d) 100-mV peak and 1-ms period

1.30 Using the information provided by Eq. (1.2) in associ-
ation with Fig. 1.5, characterize the signal represented by o(t) =
1/2 + 2/x (sin 20007t + 3sin 60007t + £ sin 10,0007t + ---).
Sketch the waveform. What is its average value? Its peak-to-
peak value? Its lowest value? Its highest value? Its frequency?
Its period?

1.31 Measurements taken of a square-wave signa using a
frequency-selective voltmeter (called a spectrum analyzer)
show its spectrum to contain adjacent components (spectral
lines) at 98 kHz and 126 kHz of amplitudes 63 mV and 49
mV, respectively. For this signal, what would direct measure-
ment of the fundamental show its frequency and amplitude to
be? What is the rms value of the fundamental? What are the
peak-to-peak amplitude and period of the originating square
wave?

1.32 What is the fundamental frequency of the highest-
frequency square wave for which the fifth harmonic is barely
audible by arelatively young listener? What is the fundamen-
tal frequency of the lowest-frequency square wave for which
the fifth and some of the higher harmonics are directly heard?
(Note that the psychoacoustic properties of human hearing
alow alistener to sense the lower harmonics as well.)

1.33 Find the amplitude of a symmetrical square wave of
period T that provides the same power as a sine wave of peak
amplitude V and the same frequency. Does this result depend
on equality of the frequencies of the two waveforms?

Section 1.3: Analog and Digital Signals

1.34 Givethe binary representation of the following decimal
numbers: 0, 5, 8, 25, and 57.

1.35 Consider a4-bit digital word b;b,b,b, in aformat called
signed-magnitude, in which the most significant bit, b,, is
interpreted asasign bit—O for positive and 1 for negeative val-
ues. List the values that can be represented by this scheme.
What is peculiar about the representation of zero? For a par-
ticular analog-to-digital converter (ADC), each change in b,
correspondsto a0.5-V changein the analog input. What isthe
full range of the analog signal that can be represented? What
signed-magnitude digital code results for an input of +2.5V?
For-3.0V?For+2.7V?For -2.8V?
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Figure P1.37

1.36 Consider an N-bit ADC whose analog input varies
between 0 and V.4 (where the subscript FS denotes “full
scale’).

(a) Show that the least significant bit (LSB) corresponds to
a change in the analog signal of Veg/(2" —1). This is the
resolution of the converter.

(b) Convince yourself that the maximum error in the con-
version (called the quantization error) is half the resolution;
that is, the quantization error = Vgg/ 2(2N -1).

(c¢) For V=10V, how many bits are required to obtain a
resolution of 5 mV or better? What is the actual resolution
obtained? What is the resulting quantization error?

1.37 Figure P1.37 shows the circuit of an N-bit digital-to-
analog converter (DAC). Each of the N bits of the digital
word to be converted controls one of the switches. When the
bit is 0, the switch isin the position labeled 0; when the bit is
1, the switch isin the position labeled 1. The analog output is
the current i, V. isa constant reference voltage.

(@ Show that

& B b, by

(b) Which bit is the LSB? Which is the MSB?
(c) For V=10V, R=5kQ, and N = 6, find the maximum

value of i, obtained. What is the change in i, resulting from
the LSB changing from 0 to 1?

1.38 In compact-disc (CD) audio technology, the audio sig-
nal issampled at 44.1 kHz. Each sampleis represented by 16
bits. What is the speed of this system in bits per second?

Section 1.4: Amplifiers

1.39 Various amplifier and load combinations are measured
as listed below using rms values. For each, find the voltage,
current, and power gains (A, A, and A, respectively) both
asratiosand in dB:

(@) 1,=100mV,i,= 100 gA, y,=10 V, R = 100 Q
(b) v=10QV,i,=100nA, y,=2V,R =10kQ
(© »=1V,ij=1mA, 5,=10V,R =10 Q

1.40 An amplifier operating from +3-V supplies provides
a 2.2-V peak sine wave across a 100-Q load when pro-

vided with a 0.2-V pesk input from which 1.0 mA pesk is
drawn. The average current in each supply is measured to be
20 mA. Find the voltage gain, current gain, and power gain
expressed as ratios and in decibels as well as the supply
power, amplifier dissipation, and amplifier efficiency.

1.41 Anamplifier using balanced power suppliesisknown to
saturate for signals extending within 1.2 V' of either supply.
For linear operation, its gain is 500 V/V. What is the rms
value of the largest undistorted sine-wave output available,
and input needed, with +5-V supplies? With +10-V supplies?
With £15-V supplies?

1.42 Symmetrically saturating amplifiers, operating in the
so-called clipping mode, can be used to convert sine wavesto
pseudo-square waves. For an amplifier with a small-signal
gain of 1000 and clipping levels of £9 V, what peak value of
input sinusoid is needed to produce an output whose extremes
are just a the edge of clipping? Clipped 90% of the time?
Clipped 99% of thetime?

Section 1.5: Circuit Models for Amplifiers

1.43 Consider the voltage-amplifier circuit model shown
in Fig. 1.16(b), in which A ;= 10 V/V under the following
conditions:

(@) R=10R, R = I0R,
b R=R,R =R,
(©) R=R/10,R =R/10

Calculate the overal voltage gain w,/v, in each case,
expressed both directly and in decibels.

1.44 An amplifier with 40 dB of small-signal, open-circuit
voltage gain, an input resistance of 1 MCQ, and an output
resistance of 10 Q, drives aload of 100 Q. What voltage and
power gains (expressed in dB) would you expect with the
load connected? If the amplifier has a peak output-current
limitation of 100 mA, what is the rms value of the largest
sine-wave input for which an undistorted output is possible?
What is the corresponding output power available?

1.45 A 10-mV signal source having an internal resistance of
100 kQ is connected to an amplifier for which the input resis-
tanceis 10 kQ, the open-circuit voltage gain is 1000 V/V, and
the output resistance is 1 kQ. The amplifier is connected in
turn to a 100-Q load. What overdl voltage gain results as



measured from the source internal voltage to the load? Where
did al the gain go? What would the gain be if the source was
connected directly to the load? What is the ratio of these two
gains? Thisratio is a useful measure of the benefit the ampli-
fier brings.

1.46 A buffer amplifier with a gain of 1 V/V has an input
resistance of 1 MQ and an output resistance of 10 Q. It is
connected between a 1-V, 100-kQ2 source and a 100-Q2 |oad.
What load voltage results? What are the corresponding volt-
age, current, and power gains (in dB)?

1.47 Consider the cascade amplifier of Example 1.3. Find
the overall voltage gain v /v, obtained when the first and sec-
ond stages are interchanged. Compare this value with the
result in Example 1.3, and comment.

1.48 You are given two amplifiers, A and B, to connect in
cascade between a 10-mV, 100-kQ2 source and a 100-Q2 load.
The amplifiers have voltage gain, input resistance, and output
resistance as follows: for A, 100 V/V, 10 kQ, 10 kQ, respec-
tively; for B, 1 V/V, 100 kQ, 100 Q, respectively. Your prob-
lem is to decide how the amplifiers should be connected. To
proceed, evaluate the two possible connections between
source Sand load L, namely, SABL and SBAL. Find the volt-
age gain for each both asaratio and in decibels. Which ampli-
fier arrangement is best?

D *1.49 A designer has available voltage amplifierswith an
input resistance of 10 kQ, an output resistance of 1 kQ, and
an open-circuit voltage gain of 10. The signal source hasa 10-
kQ resistance and provides a 10-mV rms signd, and it is
required to provide asignal of at least 2 V rmsto a 1-kQ load.
How many amplifier stages are required? What is the output
voltage actually obtained.

D *1.50 Design an amplifier that provides 0.5 W of signal
power to a 100-Q2 load resistance. The signa source provides
a 30-mV rms signa and has a resistance of 0.5 MQ. Three
types of voltage-amplifier stages are available:

(a) A high-input-resistance type with R = 1 MQ, A |
and R =10 kQ

(b) A high-gain type with R = 10kQ, A ; =100, and R, =
1 kQ

() A low-output-resistance type with R = 10 kQ, A , =1,
andR,=20Q

=10,

Design a suitable amplifier usng a combination of these
stages. Your design should utilize the minimum number of
stages and should ensure that the signal level is not reduced
below 10 mV at any point in the amplifier chain. Find the load
voltage and power output realized.

D *1.51 It is required to design a voltage amplifier to be
driven from a signal source having a 10-mV peak amplitude
and a source resistance of 10 kQ to supply a pesk output of
3V acrossa 1-kQ load.

(a) What is the required voltage gain from the source to the
load?
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(b) If the peak current available from the source is 0.1 HA,
what is the smallest input resistance allowed? For the design
with this value of R, find the overall current gain and power
gain.

(c) If the amplifier power supply limits the peak value of
the output open-circuit voltage to 5 V, what is the largest
output resistance allowed?

(d) For the design with R as in (b) and R as in (c), what is the

j of
the amplifier?
(e) If, asapossible design option, you are able to increase
R to the nearest value of the form 1 x 10" Q2 and to decrease
R, to the nearest vaue of the form 1 x 10™ Q, find (i) the
input resistance achievable; (ii) the output resistance achiev-
able; and (iii) the open-circuit voltage gain now required to
meet the specifications.

: R R 0
required value of open-circuit voltage gain [I e, =
i

RL:oo

D 1.52 A voltage amplifier with an input resistance of
10 kQ, an output resistance of 200 2, and again of 1000 V/V
is connected between a 100-kQ2 source with an open-circuit
voltage of 10 mV and a 100-Q2 load. For this Situation:

(a) What output voltage results?

(b) What is the voltage gain from source to load?

(c) What is the voltage gain from the amplifier input to the
load?

(d) If the output voltage across the load is twice that needed
and there are signs of internal amplifier overload, suggest the
location and value of a single resistor that would produce the
desired output. Choose an arrangement that would cause
minimum disruption to an operating circuit. (Hint: Use par-
allel rather than series connections.)

1.53 A current amplifier for which R = 1 kQ, R, = 10 kQ,
and A, = 100 A/A is to be connected between a 100-mV
source with a resistance of 100 kQ and aload of 1 kQ. What
are the values of current gain i, /i;, of voltage gain v,/ v, and
of power gain expressed directly and in decibels?

1.54 A transconductance amplifier with R = 2 kQ, G, =
40 mA/V, and R, = 20 kQ is fed with a voltage source having
a source resistance of 2 kQ2 and is loaded with a 1-kQ resis-
tance. Find the voltage gain realized.

D **1.55 A designer isrequired to provide, across a 10-kQ
load, the weighted sum, v, = 10v; + 20v,, of input signals v,
and v,, each having a source resistance of 10 kQ2. She has a
number of transconductance amplifiers for which the input
and output resistances are both 10 kQ and G, = 20 mA/V,
together with a selection of suitable resistors. Sketch an
appropriate amplifier topology with additional resistors
selected to provide the desired result. (Hint: In your design,
arrange to add currents.)

1.56 Figure P156 shows a transconductance amplifier
whose output is fed back to itsinput. Find the input resistance
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n

Figure P1.56

R, of the resulting one-port network. (Hint: Apply atest volt-
age v, between the two input terminals, and find the current i,
drawn from the source. Then, R, = v,/i.)

D 1.57 It is required to design an amplifier to sense the
open-circuit output voltage of a transducer and to provide a
proportional voltage across a load resistor. The equivalent
source resistance of the transducer is specified to vary in the
range of 1 kQ to 10 kQ. Also, the load resistance variesin the
range of 1 kQ to 10 kQ. The change in load voltage corre-
sponding to the specified change in R, should be 10% at most.
Similarly, the change in load voltage corresponding to the
specified change in R_should be limited to 10%. Also, corre-
sponding to a 10-mV transducer open-circuit output voltage,
the amplifier should provide a minimum of 1 V across the
load. What type of amplifier is required? Sketch its circuit
model, and specify the values of its parameters. Specify
appropriate valuesfor R and R, of the form 1 x 10™ Q.

D 1.58 It is required to design an amplifier to sense the
short-circuit output current of a transducer and to provide a
proportional current through a load resistor. The equivaent
source resistance of the transducer is specified to vary in the
range of 1 kQ to 10 kQ. Similarly, the load resistance is
known to vary over therange of 1 kQ to 10 kQ. The change
in load current corresponding to the specified change in R is
required to be limited to 10%. Similarly, the change in load
current corresponding to the specified changein R_should be
10% at most. Also, for a nominal short-circuit output current
of the transducer of 10 pA, the amplifier is required to pro-
vide a minimum of 1 mA through the load. What type of
amplifier is required? Sketch the circuit model of the ampli-
fier, and specify values for its parameters. Select appropriate
valuesfor R and R intheform 1 x 10™ Q.

D 1.59 It is required to design an amplifier to sense the
open-circuit output voltage of a transducer and to provide a
proportional current through a load resistor. The equivalent
source resistance of the transducer is specified to vary in the
range of 1 kQ to 10 kQ. Also, the load resistance is known to
vary in therange of 1 kQ to 10 kQ. The change in the current
supplied to the load corresponding to the specified change in
R, isto be 10% at most. Similarly, the change in load current
corresponding to the specified change in R is to be 10% at

most. Also, for anominal transducer open-circuit output volt-
age of 10 mV, the amplifier isrequired to provide a minimum
of 1 mA current through the load. What type of amplifier is
required? Sketch the amplifier circuit model, and specify val-
ues for its parameters. For R and R, specify vaues in the
form1x 10™ Q.

D 1.60 It is required to design an amplifier to sense the
short-circuit output current of a transducer and to provide a
proportional voltage across a load resistor. The equivalent
source resistance of the transducer is specified to vary in the
range of 1 kQ to 10 kQ. Similarly, the load resistance is
known to vary in the range of 1 kQ to 10 kQ. The changein
load voltage corresponding to the specified change in R
should be 10% at most. Similarly, the change in load voltage
corresponding to the specified changein R _isto be limited to
10%. Also, for a nomina transducer short-circuit output cur-
rent of 10 pA, the amplifier isreguired to provide a minimum
voltage across the load of 1 V. What type of amplifier is
required? Sketch its circuit model, and specify the values of
the model parameters. For R and R, specify appropriate val-
uesin theform 1 x 10™ Q.

1.61 For thecircuit in Fig. P1.61, show that

U _ﬂ RL

U Tt (Bt DR
and
e (o JEBERaN
Uy RE+[r,r/(ﬂ+ 1]

B ©
L 2 O
f
«® i
L 2 O

Figure P1.61

1.62 An amplifier with an input resistance of 10 kQ,
when driven by a current source of 1 pA and a source
resistance of 100 kQ, has a short-circuit output current of
10 mA and an open-circuit output voltage of 10 V. The
device is driving a 4-kQ load. Give the values of the



voltage gain, current gain, and power gain expressed as
ratios and in decibels?

1.63 Figure P1.63(a) shows two transconductance amplifi-
ers connected in aspecial configuration. Find v, in terms of v,
and v,. Let g, =100 mA/V and R=5kQ. If v;=v,=1V, find
the value of v,. Also, find v, for thecase v; =1.01 V and v, =
0.99 V. (Note: This circuit is caled a differential amplifier
and is given the symbol shown in Fig. P1.63(b). A particular
type of differential amplifier known as an operational ampli-
fier will be studied in Chapter 2.)

Uy Em

U EmV2

@)

0y O

Figure P1.63

1.64 Any linear two-port network including linear amplifi-
ers can be represented by one of four possible parameter
sets, given in Appendix C. For the voltage amplifier, the
most convenient representation is in terms of the g parame-
ters. If the amplifier input port is labeled as port 1 and the
output port as port 2, its g-parameter representation is
described by the two equations:

l1 = 911Vi+ 0l

Vo = gnVi+ 0l

Problems 49

Figure P1.64 shows an equivalent circuit representation of
these two equations. By comparing this equivalent circuit
to that of the voltage amplifier in Fig. 1.16(a), identify cor-
responding currents and voltages as well as the correspon-
dence between the parameters of the amplifier equivalent
circuit and the g parameters. Hence give the g parameter
that corresponds to each of R, A , and R,. Notice that there
is an additional g parameter with no correspondence in the
amplifier equivalent circuit. Which one? What does it sig-
nify? What assumption did we make about the amplifier
that resulted in the absence of this particular g parameter
from the equivalent circuit in Fig. 1.16(a)?

5 [

—> 92 <2
B ~
+ +
Vq gin Vs,
Or2l> O Va
o .

Figure P1.64

Section 1.6: Frequency Response of Amplifiers

1.65 Usethe voltage-divider rule to derive the transfer func-
tions T(s) = V,(s)/V;(s) of the circuits shown in Fig. 1.22,
and show that the transfer functions are of the form given at
thetop of Table 1.2.

1.66 Figure P1.66 shows a signal source connected to the
input of an amplifier. Here R, is the source resistance, and
R and C, are the input resistance and input capacitance,
respectively, of the amplifier. Derive an expression for
V;(S)/V(s), and show that it is of the low-pass STC type.
Find the 3-dB frequency for the case R,= 20 kQ2, R = 80 kQ2,
and C, =5pF.

Figure P1.66
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1.67 For the circuit shown in Fig. P1.67, find the transfer
function T(s) = V,(s)/V;(s), and arrange it in the appropri-
ate standard form from Table 1.2. Isthis a high-pass or alow-
pass network? What is its transmission at very high frequen-
cies? [Estimate this directly, as well as by letting s— « in
your expression for T(s).] What is the corner frequency w,?
For R, =10kQ, R,=40kQ, and C= 0.1 pF, find f,. What is
thevaue of |T(j ap)|?

Ry

Figure P1.67

D 1.68 It isrequired to couple a voltage source V, with a
resistance R to a load R_via a capacitor C. Derive an
expression for the transfer function from source to load
(i.e., V /Vy), and show that it is of the high-pass STC type.
For R,=5kQ and R = 20 kQ, find the smallest coupling
capacitor that will result in a 3-dB frequency no greater
than 10 Hz.

1.69 Measurement of the frequency response of an amplifier
yieldsthe datain the following table:

f (Hz) | T|(dB) 2T()
0 40 0
100 40 0
1000
10° 37 45
10° 20
0

Provide plausible approximate vaues for the missing entries.
Also, sketch and clearly label the magnitude frequency
response (i.e., provide aBode plot) for thisamplifier.

1.70 Measurement of the frequency response of an amplifier
yields the datain the following table:

f(Hz) 10 100 100 10 100 10° 107

| T|(dB) 0 20 37 40 8 20 0

Provide approximate plausible values for the missing table
entries. Also, sketch and clearly label the magnitude fre-
quency response (Bode plot) of thisamplifier.

1.71 The unity-gain voltage amplifiers in the circuit of Fig.
P1.71 have infinite input resistances and zero output resis-
tances and thus function as perfect buffers. Convince yourself
that the overall gainV,/V; will drop by 3 dB below the value
at dc at the frequency for which the gain of each RC circuit is
1.0 dB down. What isthat frequency in terms of CR?

1.72 A manufacturing error causes an internal node of a
high-frequency amplifier whose Thévenin-equivalent node
resistanceis 100 kQ to be accidentally shunted to ground by a
capacitor (i.e., the node is connected to ground through a
capacitor). If the measured 3-dB bandwidth of the amplifier is
reduced from the expected 6 MHz to 120 kHz, estimate the
value of the shunting capacitor. If the origina cutoff fre-
quency can be attributed to a small parasitic capacitor at the
same internal node (i.e., between the node and ground), what
would you estimate it to be?

D *1.73 A designer wishing to lower the overall upper 3-dB
frequency of a three-stage amplifier to 10 kHz considers
shunting one of two nodes: Node A, between the output of the
first stage and the input of the second stage, and Node B,
between the output of the second stage and the input of the
third stage, to ground with a small capacitor. While measur-
ing the overall frequency response of the amplifier, she con-
nects a capacitor of 1 nF, first to node A and then to node B,
lowering the 3-dB frequency from 2 MHz to 150 kHz and 15
kHz, respectively. If she knows that each amplifier stage has
an input resistance of 100 kQ, what output resistance must the
driving stage have at node A? At node B? What capacitor
value should she connect to which node to solve her design
problem most economically?

D 1.74 An amplifier with an input resistance of 100 kQ and
an output resistance of 1 kQ is to be capacitor-coupled to a
10-kQ source and a 1-kQ load. Available capacitors have val-
ues only of the form 1 x 10" F. What are the values of the

Figure P1.71
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smallest capacitors needed to ensure that the corner frequency
associated with each is less than 100 Hz? What actual corner
frequencies result? For the situation in which the basic ampli-
fier has an open-circuit voltage gain (A,,) of 100 V/V, find
an expression for T(s) = Vy(S)/ V().

*1.75 A voltage amplifier has the transfer function

100
AP 2
(1+J1—()4)(1+lj_?)

Using the Bode plots for low-pass and high-pass STC net-
works (Figs. 1.23 and 1.24), sketch aBode plot for |A |. Give
approximate values for the gain magnitude at f = 10 Hz, 107
Hz, 10°Hz, 10*Hz, 10°Hz, 10°Hz, and 10" Hz. Find the band-
width of the amplifier (defined as the frequency range over
which the gain remains within 3 dB of the maximum value).

*1.76 For the circuit shown in Fig. P1.76 first, evaluate
T,(s) = Vi(s)/V,(s) and the corresponding cutoff (corner)
frequency. Second, evaluate T,(s) = V,(S)/V,(s) and the
corresponding cutoff frequency. Put each of the transfer
functions in the standard form (see Table 1.2), and com-
bine them to form the overal transfer function,
T(S) = T;(s) x T,(s). Provide a Bode magnitude plot for
|T(jw)|. What is the bandwidth between 3-dB cutoff
points?

4

D **1.77 A transconductance amplifier having the equiva-
lent circuit shown in Table 1.1 is fed with a voltage source V,
having a source resistance R, and its output is connected to a
load consisting of a resistance R_in parallel with a capaci-
tance C,. For given values of R, R, and C,, it is required to
specify the values of the amplifier parameters R, G,, and R,
to meet the following design constraints:

(8 At most, X% of the input signal islost in coupling the sig-
nal sourceto the amplifier (i.e., V; 2 [1 - (x/100)]Vy).

(b) The 3-dB frequency of the amplifier is equal to or greater
than a specified valuef, .

(c) Thedc gainV,/V,isequa to or greater than a specified
value A,.

Show that these constraints can be met by selecting

< R
= 27t348CL - (1/R)

Ay/[1-(x/100)]
(RL ” Ro)

Find R, R, and G, for R, = 10 kQ, x = 20%, A, = 80,
R =10kQ, C =10 pF, andf,,, = 3MHz.

e

*1.78 Usethe voltage-divider rule to find the transfer func-
tion V,(S)/V;(s) of the circuit in Fig. P1.78. Show that the
transfer function can be made independent of frequency if
the condition C,R, = C, R, applies. Under this condition the
circuit is called a compensated attenuator and is fre-
quently employed in the design of oscilloscope probes. Find
the transmission of the compensated attenuator in terms of

R, and R,

Figure P1.78

*1.79 An amplifier with a frequency response of the type
shown in Fig. 1.21 is specified to have a phase shift of magni-
tude no greater than 11.4° over the amplifier bandwidth,
which extends from 100 Hz to 1 kHz. It has been found that
the gain faloff at the low-frequency end is determined by the
response of a high-pass STC circuit and that at the high-
frequency end it is determined by a low-pass STC circuit.
What do you expect the corner frequencies of these two cir-
cuitsto be? What isthe drop in gain in decibels (relative to the
maximum gain) at the two frequencies that define the ampli-
fier bandwidth? What are the frequencies at which thedrop in
ganis3dB?
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IN THIS CHAPTER YOU WILL LEARN

1. The terminal characteristics of the ideal op amp.
2. How to analyze circuits containing op amps, resistors, and capacitors.
3. How to use op amps to design amplifiers having precise characteristics.

4. How to design more sophisticated op-amp circuits, including summing
amplifiers, instrumentation amplifiers, integrators, and differentiators.

5. Important nonideal characteristics of op amps and how these limit the
performance of basic op-amp circuits.

Introduction

Having learned basic amplifier concepts and terminology, we are now ready to undertake the
study of a circuit building block of universal importance: The operational amplifier (op amp).
Op amps have been in use for a long time, their initial applications being primarily in the areas
of analog computation and sophisticated instrumentation. Early op amps were constructed
from discrete components (vacuum tubes and then transistors, and resistors), and their cost was
prohibitively high (tens of dollars). In the mid-1960s the first integrated-circuit (IC) op amp
was produced. This unit (the ¢ZA 709) was made up of a relatively large number of transistors
and resistors all on the same silicon chip. Although its characteristics were poor (by today’s
standards) and its price was still quite high, its appearance signaled a new era in electronic cir-
cuit design. Electronics engineers started using op amps in large quantities, which caused their
price to drop dramatically. They also demanded better-quality op amps. Semiconductor manu-
facturers responded quickly, and within the span of a few years, high-quality op amps became
available at extremely low prices (tens of cents) from a large number of suppliers.

One of the reasons for the popularity of the op amp is its versatility. As we will shortly
see, one can do almost anything with op amps! Equally important is the fact that the 1C op
amp has characteristics that closely approach the assumed ideal. This implies that it is quite
easy to design circuits using the 1C op amp. Also, op-amp circuits work at performance levels
that are quite close to those predicted theoretically. It is for this reason that we are studying op
amps at this early stage. It is expected that by the end of this chapter the reader should be able
to design nontrivial circuits successfully using op amps.

As already implied, an IC op amp is made up of a large number (tens or more) of tran-
sistors, resistors, and (usually) one capacitor connected in a rather complex circuit. Since
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54 Chapter 2 Operational Amplifiers

we have not yet studied transistor circuits, the circuit inside the op amp will not be dis-
cussed in this chapter. Rather, we will treat the op amp as a circuit building block and study
its terminal characteristics and its applications. This approach is quite satisfactory in many
op-amp applications. Nevertheless, for the more difficult and demanding applications it is
quite useful to know what is inside the op-amp package. This topic will be studied in Chap-
ter 12. More advanced applications of op amps will appear in later chapters.

2.1 The Ideal Op Amp

2.1.1 The Op-Amp Terminals

From a signal point of view the op amp has three terminals: two input terminals and one output
terminal. Figure 2.1 shows the symbol we shall use to represent the op amp. Terminals 1 and 2
are input terminals, and terminal 3 is the output terminal. As explained in Section 1.4, amplifiers
require dc power to operate. Most IC op amps require two dc power supplies, as shown in
Fig. 2.2. Two terminals, 4 and 5, are brought out of the op-amp package and connected to a pos-
itive voltage V.. and a negative voltage —V,, respectively. In Fig. 2.2(b) we explicitly show the
two dc power supplies as batteries with a common ground. It is interesting to note that the refer-
ence grounding point in op-amp circuits is just the common terminal of the two power supplies;
that is, no terminal of the op-amp package is physically connected to ground. In what follows
we will not, for simplicity, explicitly show the op-amp power supplies.

o—1+ Figure 2.1 Circuit symbol for the op amp.

(a) (b)

Figure 2.2 The op amp shown connected to dc power supplies.
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In addition to the three signal terminals and the two power-supply terminals, an op amp
may have other terminals for specific purposes. These other terminals can include terminals
for frequency compensation and terminals for offset nulling; both functions will be explained
in later sections.

2.1 What is the minimum number of terminals required by a single op amp? What is the minimum
number of terminals required on an integrated-circuit package containing four op amps (called a
quad op amp)?

Ans. 5;14

2.1.2 Function and Characteristics of the Ideal Op Amp

We now consider the circuit function of the op amp. The op amp is designed to sense the dif-
ference between the voltage signals applied at its two input terminals (i.e., the quantity v, —
v;), multiply this by a number A, and cause the resulting voltage A(v, — v,) to appear at out-
put terminal 3. Thus v, = A(v, — v;). Here it should be emphasized that when we talk about
the voltage at a terminal we mean the voltage between that terminal and ground; thus v,
means the voltage applied between terminal 1 and ground.

The ideal op amp is not supposed to draw any input current; that is, the signal current
into terminal 1 and the signal current into terminal 2 are both zero. In other words, the input
impedance of an ideal op amp is supposed to be infinite.

How about the output terminal 3? This terminal is supposed to act as the output termi-
nal of an ideal voltage source. That is, the voltage between terminal 3 and ground will
always be equal to A(v, — v;), independent of the current that may be drawn from terminal 3
into a load impedance. In other words, the output impedance of an ideal op amp is supposed
to be zero.

Putting together all of the above, we arrive at the equivalent circuit model shown in
Fig. 2.3. Note that the output is in phase with (has the same sign as) v, and is out of phase
with (has the opposite sign of) ;. For this reason, input terminal 1 is called the inverting
input terminal and is distinguished by a “~” sign, while input terminal 2 is called the nonin-
verting input terminal and is distinguished by a “+” sign.

As can be seen from the above description, the op amp responds only to the difference
signal v, — v, and hence ignores any signal common to both inputs. That is, if v, = v, =1V,
then the output will (ideally) be zero. We call this property common-mode rejection, and we
conclude that an ideal op amp has zero common-mode gain or, equivalently, infinite com-
mon-mode rejection. We will have more to say about this point later. For the time being
note that the op amp is a differential-input, single-ended-output amplifier, with the lat-
ter term referring to the fact that the output appears between terminal 3 and ground.’

'Some op amps are designed to have differential outputs. This topic will not be discussed in this book.
Rather, we confine ourselves here to single-ended-output op amps, which constitute the vast majority
of commercially available op amps.
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Inverting input

Output

(Power-supply
common terminal)

U2
— Noninverting input

Figure 2.3 Equivalent circuit of the ideal op amp.

Furthermore, gain A is called the differential gain, for obvious reasons. Perhaps not so obvi-
ous is another name that we will attach to A: the open-loop gain. The reason for this name
will become obvious later on when we “close the loop” around the op amp and define another
gain, the closed-loop gain.

An important characteristic of op amps is that they are direct-coupled or dc amplifiers,
where dc stands for direct-coupled (it could equally well stand for direct current, since a
direct-coupled amplifier is one that amplifies signals whose frequency is as low as zero). The
fact that op amps are direct-coupled devices will allow us to use them in many important
applications. Unfortunately, though, the direct-coupling property can cause some serious
practical problems, as will be discussed in a later section.

How about bandwidth? The ideal op amp has a gain A that remains constant down to
zero frequency and up to infinite frequency. That is, ideal op amps will amplify signals of any
frequency with equal gain, and are thus said to have infinite bandwidth.

We have discussed all of the properties of the ideal op amp except for one, which in
fact is the most important. This has to do with the value of A. The ideal op amp should have
a gain A whose value is very large and ideally infinite. One may justifiably ask: If the gain A
is infinite, how are we going to use the op amp? The answer is very simple: In almost all
applications the op amp will not be used alone in a so-called open-loop configuration.
Rather, we will use other components to apply feedback to close the loop around the op
amp, as will be illustrated in detail in Section 2.2.

For future reference, Table 2.1 lists the characteristics of the ideal op amp.

Table 2.1 Characteristics of the Ideal Op Amp

. Infinite input impedance

. Zero output impedance

. Zero common-mode gain or, equivalently, infinite common-mode rejection
. Infinite open-loop gain A

. Infinite bandwidth

a B~ W DN
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2.1.3 Differential and Common-Mode Signals

The differential input signal v,, is simply the difference between the two input signals
v, and v,; that is,

Vg = Vp— Vg (2.1) (1)

The common-mode input signal v, is the average of the two input signals », and v,
namely,

Viem = %(Ul"' v;) (2.2) (1]

Equations (2.1) and (2.2) can be used to express the input signals v, and v, in terms of their
differential and common-mode components as follows:

U1 = Uiem— 'U|d/2 (23)
and
Uy = Uiem + 'U|d/2 (24)

These equations can in turn lead to the pictorial representation in Fig. 2.4.

U

N

Uy

Figure 2.4 Representation of the signal sources v, and v, in terms of their differential and common-mode
components.

2.2 Consider an op amp that is ideal except that its open-loop gain A = 10°. The op amp is used in a feed-
back circuit, and the voltages appearing at two of its three signal terminals are measured. In each of
the following cases, use the measured values to find the expected value of the voltage at the third ter-
minal. Also give the differential and common-mode input signals in each case. (a) v,=0V and v, =
2V; (b) v,=+5V and v, =-10 V; (€) v, =1.002 V and v, =0.998 V; (d) v»,=-3.6 V and v,=-3.6 V.
Ans. (a) v,=-0.002V, vy=2mV, y,, =-1mV; (b) v, =+5.01 V, y,=-10 mV, vy, =5.005 =5 V;
©) v,=-4V, vy=—4mV, vy, =1V, (d) v,=-3.6036 V, v,=-3.6 mV, v, = -3.6 V
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2.3 The internal circuit of a particular op amp can be modeled by the circuit shown in Fig. E2.3. Express
v, as a function of v, and v,. For the case G,, = 10 mA/V, R = 10 kQ, and ¢ = 100, find the value of
the open-loop gain A.

Ans. v, = uG R(v,— v); A=10,000 V/V or 80 dB
O
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2.2 The Inverting Configuration

As mentioned above, op amps are not used alone; rather, the op amp is connected to passive
components in a feedback circuit. There are two such basic circuit configurations employing
an op amp and two resistors: the inverting configuration, which is studied in this section, and
the noninverting configuration, which we shall study in the next section.

Figure 2.5 shows the inverting configuration. It consists of one op amp and two resistors R,
and R,. Resistor R, is connected from the output terminal of the op amp, terminal 3, back to the
inverting or negative input terminal, terminal 1. We speak of R, as applying negative feedback;
if R, were connected between terminals 3 and 2 we would have called this positive feedback.
Note also that R, closes the loop around the op amp. In addition to adding R,, we have grounded
terminal 2 and connected a resistor R, between terminal 1 and an input signal source with a volt-
age vu. The output of the overall circuit is taken at terminal 3 (i.e., between terminal 3 and
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Ry

N =

vy

Figure 2.5 The inverting closed-loop
configuration.

lw
)i s+

ground). Terminal 3 is, of course, a convenient point from which to take the output, since the
impedance level there is ideally zero. Thus the voltage v, will not depend on the value of the cur-
rent that might be supplied to a load impedance connected between terminal 3 and ground.

2.2.1 The Closed-Loop Gain

We now wish to analyze the circuit in Fig. 2.5 to determine the closed-loop gain G, defined as

G=2

Y

We will do so assuming the op amp to be ideal. Figure 2.6(a) shows the equivalent circuit,
and the analysis proceeds as follows: The gain A is very large (ideally infinite). If we assume
that the circuit is “working” and producing a finite output voltage at terminal 3, then the
voltage between the op-amp input terminals should be negligibly small and ideally zero.
Specifically, if we call the output voltage v, then, by definition,

Yo
Up— UV = &= = O

A

It follows that the voltage at the inverting input terminal (v,) is given by v, = v,. That is,
because the gain A approaches infinity, the voltage v, approaches and ideally equals v,. We
speak of this as the two input terminals “tracking each other in potential.” We also speak of a
“virtual short circuit” that exists between the two input terminals. Here the word virtual should
be emphasized, and one should not make the mistake of physically shorting terminals 1 and 2
together while analyzing a circuit. A virtual short circuit means that whatever voltage is at 2
will automatically appear at 1 because of the infinite gain A. But terminal 2 happens to be con-
nected to ground; thus v, = 0 and v, = 0. We speak of terminal 1 as being a virtual ground—
that is, having zero voltage but not physically connected to ground.

Now that we have determined », we are in a position to apply Ohm’s law and find the
current i, through R, (see Fig. 2.6) as follows:

Where will this current go? It cannot go into the op amp, since the ideal op amp has an infinite
input impedance and hence draws zero current. It follows that i, will have to flow through R, to
the low-impedance terminal 3. We can then apply Ohm’s law to R, and determine v; that is,

vo = v;-11R,

Thus,
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(b)
Figure 2.6 Analysis of the inverting configuration. The circled numbers indicate the order of the analysis
steps.

which is the required closed-loop gain. Figure 2.6(b) illustrates these steps and indicates by
the circled numbers the order in which the analysis is performed.

We thus see that the closed-loop gain is simply the ratio of the two resistances R, and R;.
The minus sign means that the closed-loop amplifier provides signal inversion. Thus if
R,/R; = 10 and we apply at the input (v,) a sine-wave signal of 1 V peak-to-peak, then the
output v, will be a sine wave of 10 V peak-to-peak and phase-shifted 180° with respect to the
input sine wave. Because of the minus sign associated with the closed-loop gain, this config-
uration is called the inverting configuration.
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The fact that the closed-loop gain depends entirely on external passive components
(resistors R, and R,) is very significant. It means that we can make the closed-loop gain as
accurate as we want by selecting passive components of appropriate accuracy. It also
means that the closed-loop gain is (ideally) independent of the op-amp gain. This is a dra-
matic illustration of negative feedback: We started out with an amplifier having very large
gain A, and through applying negative feedback we have obtained a closed-loop gain
R,/R; that is much smaller than A but is stable and predictable. That is, we are trading gain
for accuracy.

2.2.2 Effect of Finite Open-Loop Gain

The points just made are more clearly illustrated by deriving an expression for the closed-
loop gain under the assumption that the op-amp open-loop gain A is finite. Figure 2.7 shows
the analysis. If we denote the output voltage v, then the voltage between the two input
terminals of the op amp will be vo/A. Since the positive input terminal is grounded, the
voltage at the negative input terminal must be —vg/A. The current i, through R, can now be
found from

_u=(-v/A)  vtu/A

i, =
Ry Ry
iz = i1 Rz
AAA
vy
g R, 0
AAA —
A\A A4
_Yo A ——0
A 1 +
v
! Yo Figure 2.7 Analysis of the inverting
configuration taking into account the finite

open-loop gain of the op amp.

The infinite input impedance of the op amp forces the current i, to flow entirely through
R,. The output voltage v, can thus be determined from

U = —Ko—ile
_ % _(v,+v0/A)R
A R, 2

Collecting terms, the closed-loop gain G is found as

E _ _RZ/Rl
v 1+ (1+Ry/R)/A

G (2.5)
We note that as A approaches oo, G approaches the ideal value of —R,/R;. Also, from Fig. 2.7
we see that as A approaches o, the voltage at the inverting input terminal approaches zero.
This is the virtual-ground assumption we used in our earlier analysis when the op amp was
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assumed to be ideal. Finally, note that Eq. (2.5) in fact indicates that to minimize
the dependence of the closed-loop gain G on the value of the open-loop gain A, we should
make

R,
1+ <A
+R1

Consider the inverting configuration with R, = 1 kQ and R, = 100 k<.

(a) Find the closed-loop gain for the cases A = 10% 10% and 10°. In each case determine the percentage
error in the magnitude of G relative to the ideal value of R,/R; (obtained with A = o). Also deter-
mine the voltage v, that appears at the inverting input terminal when v, =0.1 V.

(b) If the open-loop gain A changes from 100,000 to 50,000 (i.e., drops by 50%), what is the correspond-
ing percentage change in the magnitude of the closed-loop gain G?

Solution

(a) Substituting the given values in Eq. (2.5), we obtain the values given in the following table, where the
percentage error ¢is defined as

|Gl - (Ry/Ry)
e= ——2—1x100
(Ry/Ry)

The values of v, are obtained from v; = —v5/A = Gy /A withy, = 0.1 V.

A |G| £ v,

10° 90.83 -9.17% -9.08 mV
10* 99.00 —-1.00% —0.99 mV
10° 99.90 -0.10% -0.10 mV

(b) Using Eg. (2.5), we find that for A = 50,000, |G| = 99.80. Thus a —50% change in the open-loop gain
results in a change of only —0.1% in the closed-loop gain!

2.2.3 Input and Output Resistances

Assuming an ideal op amp with infinite open-loop gain, the input resistance of the closed-loop
inverting amplifier of Fig. 2.5 is simply equal to R,. This can be seen from Fig. 2.6(b), where

U U\

o = TR

Ry

Now recall that in Section 1.5 we learned that the amplifier input resistance forms a voltage
divider with the resistance of the source that feeds the amplifier. Thus, to avoid the loss of signal
strength, voltage amplifiers are required to have high input resistance. In the case of the invert-
ing op-amp configuration we are studying, to make R, high we should select a high value for R,.
However, if the required gain R,/R; is also high, then R, could become impractically large
(e.g., greater than a few megohms). We may conclude that the inverting configuration suffers
from a low input resistance. A solution to this problem is discussed in Example 2.2 below.
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Since the output of the inverting configuration is taken at the terminals of the ideal voltage
source A(v, — v;) (see Fig. 2.6a), it follows that the output resistance of the closed-loop ampli-
fier is zero.

Assuming the op amp to be ideal, derive an expression for the closed-loop gain vy/ v, of the circuit
shown in Fig. 2.8. Use this circuit to design an inverting amplifier with a gain of 100 and an input
resistance of 1 MQ. Assume that for practical reasons it is required not to use resistors greater than
1 MQ. Compare your design with that based on the inverting configuration of Fig. 2.5.

3
A\
:

| |
it
il

Figure 2.8 Circuit for Example 2.2. The circled numbers indicate the sequence of the steps in the analysis.

Solution

The analysis begins at the inverting input terminal of the op amp, where the voltage is

Here we have assumed that the circuit is “working” and producing a finite output voltage v,. Know-
ing »;, we can determine the current i, as follows:

. U
I, =1, = R_1
Now we can determine the voltage at node x:
v = v —i,R, = 0 - %Rz = —%v,
1 1
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Example 2.2 continued

This in turn enables us to find the current iy:
P 0-v, R
T R3 - RlRSUI

Next, a node equation at x yields i,:

iy = iy = 2
4 =1z 3_R1 Rlevl

Finally, we can determine v, from

o = vy — 4Ry

R_2 (ﬂ+ Ry )R
_Rlvl - Rl R1R3vl N
o [%, Ry, By
Y R; Ry R,

o _ Ry, R, B
Y R, R, R;

Thus the voltage gain is given by

which can be written in the form

Now, since an input resistance of 1 MQ is required, we select R, = 1 MQ. Then, with the limita-
tion of using resistors no greater than 1 MQ, the maximum value possible for the first factor in the
gain expression is 1 and is obtained by selecting R, = 1 MQ. To obtain a gain of -100, R, and R,
must be selected so that the second factor in the gain expression is 100. If we select the maximum
allowed (in this example) value of 1 MQ for R,, then the required value of R, can be calculated to
be 10.2 kQ. Thus this circuit utilizes three 1-MQ resistors and a 10.2-kQ resistor. In comparison,
if the inverting configuration were used with R, = 1 MQ we would have required a feedback resis-
tor of 100 MQ, an impractically large value!

Before leaving this example it is insightful to inquire into the mechanism by which the circuit is
able to realize a large voltage gain without using large resistances in the feedback path. Toward that
end, observe that because of the virtual ground at the inverting input terminal of the op amp, R, and R,
are in effect in parallel. Thus, by making R, lower than R, by, say, a factor k (i.e., where k> 1), R, is
forced to carry a current k-times that in R,. Thus, while i, =i,, i, =ki, and i, = (k + 1)i,. It is the current
multiplication by a factor of (k + 1) that enables a large voltage drop to develop across R, and hence a
large v, without using a large value for R,. Notice also that the current through R, is independent of the
value of R,. It follows that the circuit can be used as a current amplifier as shown in Fig. 2.9.

L=I_ R, Iy R,

Figure 2.9 A current amplifier based on the

o circuit of Fig. 2.8. The amplifier delivers its

output current to R,. It has a current gain of

i + (1+ R,/R,), a zero input resistance, and an infi-

I nite output resistance. The load (R,), however,

R, )i must be floating (i.e., neither of its two termi-
: nals can be connected to ground).

1
|
2
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D2.4 Use the circuit of Fig. 2.5 to design an inverting amplifier having a gain of —10 and an input resist-
ance of 100 kQ. Give the values of R, and R,.
Ans. R, =100 kQ; R, =1 MQ

2.5 The circuit shown in Fig. E2.5(a) can be used to implement a transresistance amplifier (see Table

1.1 in Section 1.5). Find the value of the input resistance R, the transresistance R, and the output
resistance R, of the transresistance amplifier. If the signal source shown in Fig. E2.5(b) is connected
to the input of the transresistance amplifier, find its output voltage.
Ans. Rj=0;R,=-10kQ; R, =0; y, =5V

10 kQ
——MW—
Input
o—= Output
——0 0.5 mA 10 kQ
(a) (b
Figure E2.5

2.6 Forthe circuit in Fig. E2.6 determine the values of v, iy, i,, v,, i, and i,. Also determine the voltage
gain vy /v, current gain i, /i,, and power gain P, /P,.
Ans. 0V;1mA;1mA;-10V;-10 mA; -11 mA; -10 V/V (20 dB), -10 A/A (20 dB); 100 W/W (20 dB)

2 10kQ
i
L 1kQ

1v Y

>
-4 1kQ

A

= Figure E2.6

2.2.4 An Important Application—The Weighted Summer

A very important application of the inverting configuration is the weighted-summer cir-
cuit shown in Fig. 2.10. Here we have a resistance R, in the negative-feedback path (as
before); but we have a number of input signals v,, v, . .., u, each applied to a corre-
sponding resistor R;, R,, . . ., R,, which are connected to the inverting terminal of the op
amp. From our previous discussion, the ideal op amp will have a virtual ground appearing
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at its negative input terminal. Ohm’s law then tells us that the currents iy, i,, . . ., i, are
given by
i L i
1_R1: 2_R29 ’ n_Rn
1 Rl

R, i
Uy —

in ’ R I
—
vrl
oV —

Vo= — % R Vn)

Figure 2.10 A weighted summer.

All these currents sum together to produce the current i; that is,
=0+ + -+, (2.6)

will be forced to flow through R, (since no current flows into the input terminals of an ideal op
amp). The output voltage v, may now be determined by another application of Ohm’s law,

Vo = O—in = —in

Thus,
Re R Ry
o Vo = _(R_]_v1+R_2v2+'“+R_nvn) (27)
That is, the output voltage is a weighted sum of the input signals v,, v,, . . ., v,. This circuit

is therefore called a weighted summer. Note that each summing coefficient may be inde-
pendently adjusted by adjusting the corresponding “feed-in” resistor (R, to R,). This nice
property, which greatly simplifies circuit adjustment, is a direct consequence of the virtual
ground that exists at the inverting op-amp terminal. As the reader will soon come to appreci-
ate, virtual grounds are extremely “handy.” In the weighted summer of Fig. 2.10 all the sum-
ming coefficients must be of the same sign. The need occasionally arises for summing
signals with opposite signs. Such a function can be implemented, however, using two op
amps as shown in Fig. 2.11. Assuming ideal op amps, it can be easily shown that the output
voltage is given by

oo oD@ E) B)-n(E e



2.3 The Noninverting Configuration 67

Ra Re
ANA AN,

Rl
U1 Rb

RZ Y
Uy R, —O Up

U3
R,

— Uy —

Figure 2.11 A weighted summer capable of implementing summing coefficients of both signs.

D2.7 Design an inverting op-amp circuit to form the weighted sum v, of two inputs v, and v,. It is
required that v, = — (v, + 5v,). Choose values for R;, R,, and R; so that for a maximum output volt-
age of 10 V the current in the feedback resistor will not exceed 1 mA.

Ans. A possible choice: R, =10 kQ, R, =2 kQ, and R, =10 kQ

D2.8 Use the idea presented in Fig. 2.11 to design a weighted summer that provides
v = 2+ v, -4y

Ans. A possible choice: R, =5kQ, R, =10 kQ, R, =10 kQ, R, =10 kQ, R, = 2.5 kQ,
R, =10 kQ.

2.3 The Noninverting Configuration

The second closed-loop configuration we shall study is shown in Fig. 2.12. Here the input
signal v, is applied directly to the positive input terminal of the op amp while one terminal of
R, is connected to ground.

2.3.1 The Closed-Loop Gain

Analysis of the noninverting circuit to determine its closed-loop gain (vo/v,) is illustrated
in Fig. 2.13. Again the order of the steps in the analysis is indicated by circled numbers.
Assuming that the op amp is ideal with infinite gain, a virtual short circuit exists between its
two input terminals. Hence the difference input signal is

Yo
=—==0 forA =
Uig A
Thus the voltage at the inverting input terminal will be equal to that at the noninverting input
terminal, which is the applied voltage v,. The current through R, can then be determined as
v,/ R;. Because of the infinite input impedance of the op amp, this current will flow through
R,, as shown in Fig. 2.13. Now the output voltage can be determined from

U
U = U|+(R_:.)R2
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Figure 2.12 The noninverting configuration.

Figure 2.13 Analysis of the noninverting circuit. The sequence of the steps in the analysis is indicated by
the circled numbers.

which yields
Yo R,
—= =1+=F 2.9
o Y, R, (29)
Further insight into the operation of the noninverting configuration can be obtained by
considering the following: Since the current into the op-amp inverting input is zero, the cir-
cuit composed of R, and R, acts in effect as a voltage divider feeding a fraction of the output

voltage back to the inverting input terminal of the op amp; that is,

_ Ry )
U, = vo(R1+R2 (210)

Then the infinite op-amp gain and the resulting virtual short circuit between the two input termi-
nals of the op amp forces this voltage to be equal to that applied at the positive input terminal; thus,

wl i) = v
°\R, +R, '

which yields the gain expression given in Eg. (2.9).

This is an appropriate point to reflect further on the action of the negative feedback present
in the noninverting circuit of Fig. 2.12. Let v, increase. Such a change in v, will cause v, to
increase, and v, will correspondingly increase as a result of the high (ideally infinite) gain of the
op amp. However, a fraction of the increase in v, will be fed back to the inverting input terminal
of the op amp through the (R,, R,) voltage divider. The result of this feedback will be to counter-
act the increase in v,4, driving v, back to zero, albeit at a higher value of v, that corresponds to
the increased value of v,. This degenerative action of negative feedback gives it the alternative
name degenerative feedback. Finally, note that the argument above applies equally well if v,
decreases. A formal and detailed study of feedback is presented in Chapter 10.




2.3 The Noninverting Configuration

2.3.2 Effect of Finite Open-Loop Gain

As we have done for the inverting configuration, we now consider the effect of the finite
op-amp open-loop gain A on the gain of the noninverting configuration. Assuming the op amp
to be ideal except for having a finite open-loop gain A, it can be shown that the closed-loop
gain of the noninverting amplifier circuit of Fig. 2.12 is given by

oot _ _1+(Ry/R)) @1
U 1+l+(RAz/R1)

Observe that the denominator is identical to that for the case of the inverting configuration
(Eg. 2.5). This is no coincidence; it is a result of the fact that both the inverting and the non-
inverting configurations have the same feedback loop, which can be readily seen if the input
signal source is eliminated (i.e., short-circuited). The numerators, however, are different, for
the numerator gives the ideal or nominal closed-loop gain (-R,/R; for the inverting con-
figuration, and 1 + R,/R; for the noninverting configuration). Finally, we note (with reas-
surance) that the gain expression in Eq. (2.11) reduces to the ideal value for A = . In fact, it
approximates the ideal value for

A>1+ R,

R,
This is the same condition as in the inverting configuration, except that here the quantity on
the right-hand side is the nominal closed-loop gain.The expressions for the actual and ideal
values of the closed-loop gain G in Egs. (2.11) and (2.9), respectively, can be used to deter-
mine the percentage error in G resulting from the finite op-amp gain A as

1+(R,/Ry)

Percent gain error = “A+1+(R,/Ry)

x 100 2.12)

Thus, as an example, if an op amp with an open-loop gain of 1000 is used to design a nonin-
verting amplifier with a nominal closed-loop gain of 10, we would expect the closed-loop
gain to be about 1% below the nominal value.

2.3.3 Input and Output Resistance

The gain of the noninverting configuration is positive—hence the name noninverting. The
input impedance of this closed-loop amplifier is ideally infinite, since no current flows into
the positive input terminal of the op amp. The output of the noninverting amplifier is taken
at the terminals of the ideal voltage source A(v, — v;) (see the op-amp equivalent circuit in
Fig. 2.3), thus the output resistance of the noninverting configuration is zero.

2.3.4 The Voltage Follower

The property of high input impedance is a very desirable feature of the noninverting configura-
tion. It enables using this circuit as a buffer amplifier to connect a source with a high imped-
ance to a low-impedance load. We have discussed the need for buffer amplifiers in Section 1.5.
In many applications the buffer amplifier is not required to provide any voltage gain; rather, it
is used mainly as an impedance transformer or a power amplifier. In such cases we may make
R, = 0 and R, = o to obtain the unity-gain amplifier shown in Fig. 2.14(a). This circuit is
commonly referred to as a voltage follower, since the output “follows” the input. In the ideal
case, v, =1, R,, =<0, R ,, =0, and the follower has the equivalent circuit shown in Fig. 2.14(b).
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OoO——©O
+ +
'_O
Y 1 Xy Uo
O +

Vo = Y -
+(D ° - °

@ (b)

Figure 2.14 (a) The unity-gain buffer or follower amplifier. (b) Its equivalent circuit model.

Since in the voltage-follower circuit the entire output is fed back to the inverting input,
the circuit is said to have 100% negative feedback. The infinite gain of the op amp then acts
to make v, =0 and hence v, = v,. Observe that the circuit is elegant in its simplicity!

Since the noninverting configuration has a gain greater than or equal to unity, depending
on the choice of R,/R;, some prefer to call it “a follower with gain.”

2.9 Use the superposition principle to find the output voltage of the circuit shown in Fig. E2.9.
Ans. v, =06y, +4v,

9 kO
MAN

1kQ
—E—Wv —

2kQ
v O—AM +

3 kQ
v, O—NMW—

|||1§+l

Figure E2.9

2.10 Ifinthe circuit of Fig. E2.9 the 1-kQ resistor is disconnected from ground and connected to a third
signal source v, use superposition to determine v, in terms of v, v,, and .
Ans. v, =69, +4v,— 9,
D2.11 Design a noninverting amplifier with a gain of 2. At the maximum output voltage of 10 V the cur-

rent in the voltage divider is to be 10 pA.
Ans. R, =R,=0.5MQ

2.12 (a) Show that if the op amp in the circuit of Fig. 2.12 has a finite open-loop gain A, then the closed-
loop gain is given by Eq. (2.11). (b) For R, =1 kQ and R, = 9 kQ find the percentage deviation &
of the closed-loop gain from the ideal value of (1 +R,/R;) for the cases A = 10°, 104 and 10°.
For v,=1V, find in each case the voltage between the two input terminals of the op amp.

Ans. £=-1%, —0.1%, —0.01%; v, — v, =9.9mV, 1 mV, 0.1 mV
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2.13 For the circuit in Fig. E2.13 find the values of i,, v,, iy, i,, v, i,, and i,. Also find the voltage gain
1o/ v, the current gain i, /i;, and the power gain P _/P;.
Ans. 0;1V;1mA;1mA;10V; 10 mA; 11 mA; 10 V/V (20 dB); oo; o

—0 o

1

2.14 1t is required to connect a transducer having an open-circuit voltage of 1 V and a source resistance
of 1 MQ to a load of 1-kQ resistance. Find the load voltage if the connection is done (a) directly and
(b) through a unity-gain voltage follower.
Ans. (@) 1 mV; (b) 1V

Figure E2.13

A

2.4 Difference Amplifiers

Having studied the two basic configurations of op-amp circuits together with some of their
direct applications, we are now ready to consider a somewhat more involved but very
important application. Specifically, we shall study the use of op amps to design difference or
differential amplifiers.? A difference amplifier is one that responds to the difference between
the two signals applied at its input and ideally rejects signals that are common to the two
inputs. The representation of signals in terms of their differential and common-mode com-
ponents was given in Fig. 2.4. It is repeated here in Fig. 2.15 with slightly different symbols
to serve as the input signals for the difference amplifiers we are about to design. Although
ideally the difference amplifier will amplify only the differential input signal v, and reject
completely the common-mode input signal v, practical circuits will have an output voltage
v, given by

Vo = Aq¥igt+ AcmVicm (2.13)

where A, denotes the amplifier differential gain and A, denotes its common-mode gain (ide-
ally zero). The efficacy of a differential amplifier is measured by the degree of its rejection
of common-mode signals in preference to differential signals. This is usually quantified by a
measure known as the common-mode rejection ratio (CMRR), defined as

CMRR = 20 Iog% (2.14) (1)

*The terms difference and differential are usually used to describe somewhat different amplifier types.
For our purposes at this point, the distinction is not sufficiently significant. We will be more precise near
the end of this section.



72 Chapter 2 Operational Amplifiers

O Uy = Vjgm — Yg/2

UYd = U2~ Ut

1
Yiem = E(“ll + up)

UYiem e e Ug/2
Figure 2.15 Representing the input signals to a

differential amplifier in terms of their differential
O Uy = Uem + V14/2 and common-mode components.

The need for difference amplifiers arises frequently in the design of electronic systems, espe-
cially those employed in instrumentation. As a common example, consider a transducer pro-
viding a small (e.g., 1 mV) signal between its two output terminals while each of the two
wires leading from the transducer terminals to the measuring instrument may have a large
interference signal (e.g., 1 V) relative to the circuit ground. The instrument front end obvi-
ously needs a difference amplifier.

Before we proceed any further we should address a question that the reader might have:
The op amp is itself a difference amplifier; why not just use an op amp? The answer is that
the very high (ideally infinite) gain of the op amp makes it impossible to use by itself. Rather,
as we did before, we have to devise an appropriate feedback network to connect to the op
amp to create a circuit whose closed-loop gain is finite, predictable, and stable.

2.4.1 A Single-Op-Amp Difference Amplifier

Our first attempt at designing a difference amplifier is motivated by the observation that the
gain of the noninverting amplifier configuration is positive, (1 + R,/R;), while that of the
inverting configuration is negative, (—R,/R;). Combining the two configurations together is
then a step in the right direction—namely, getting the difference between two input signals.
Of course, we have to make the two gain magnitudes equal in order to reject common-mode
signals. This, however, can be easily achieved by attenuating the positive input signal to
reduce the gain of the positive path from (1 + R,/R;) to (R,/R;). The resulting circuit
would then look like that shown in Fig. 2.16, where the attenuation in the positive input path
is achieved by the voltage divider (R,, R,). The proper ratio of this voltage divider can be

determined from
L( R_z) _ R
R+R.\"TR) TR,
which can be put in the form
R,+R;  R,+R;
This condition is satisfied by selecting
Ry _ Ry
Ry Ry

(2.15)
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R,
MV
R
Un o—MWW =
R, X
U2 4= +
Yo

= Figure 2.16 A difference amplifier.

This completes our work. However, we have perhaps proceeded a little too fast! Let’s step
back and verify that the circuit in Fig. 2.16 with R, and R, selected according to Eq. (2.15)
does in fact function as a difference amplifier. Specifically, we wish to determine the output
voltage v, in terms of v, and v,,. Toward that end, we observe that the circuit is linear, and
thus we can use superposition.

To apply superposition, we first reduce v,, to zero—that is, ground the terminal to
which v, is applied—and then find the corresponding output voltage, which will be due
entirely to u,. We denote this output voltage ,,. Its value may be found from the circuit in
Fig. 2.17(a), which we recognize as that of the inverting configuration. The existence of R,
and R, does not affect the gain expression, since no current flows through either of them.
Thus,

Uo1 = _R_ U1
1

Next, we reduce v,, to zero and evaluate the corresponding output voltage v,,. The circuit
will now take the form shown in Fig. 2.17(b), which we recognize as the noninverting con-
figuration with an additional voltage divider, made up of R, and R,, connected to the input
v,,- The output voltage v, is therefore given by

_ R, ( R_2) _R
Vo2 = v'2R3+R4 1+R1 = Rlvlz

where we have utilized Eq. (2.15).
The superposition principle tells us that the output voltage v, is equal to the sum of v,
and v,,. Thus we have

R R
Uo = 'R_j(vlz— v) = 'R_ivld (2.16)
Thus, as expected, the circuit acts as a difference amplifier with a differential gain A, of
R,
Ay == 2.17
=R (217)

Of course this is predicated on the op amp being ideal and furthermore on the selection of R,
and R, so that their ratio matches that of R, and R, (Eg. 2.15). To make this matching
requirement a little easier to satisfy, we usually select

73



74 Chapter 2

Operational Amplifiers

R, R,
MV ANV

R, R,

Un o—MWW - -[-'M -

—O Upy = R L—-O 1257

3

+ Up 4

R3 R4 R4
(a) (b)

Figure 2.17 Application of superposition to the analysis of the circuit of Fig. 2.16.

R3 = Rl and R4 = R2

Let’s next consider the circuit with only a common-mode signal applied at the input, as
shown in Fig. 2.18. The figure also shows some of the analysis steps. Thus,

i, = l[v - —-&L—v J
1 = Rl lem R4+R3 lem
R, 1
= = 2.1
UlcmR4+ R3Rl ( 8)
The output voltage can how be found from
R .
Up = RATARSUlcm— LR,
Substituting i, =i, and for i, from Eq. (2.18),
Vg = Ry v —R—2 Rs v
© 7 R,+R; ™ R;R,+R; "
R (i BBy,
R,+R;\" R, R,/ "
Thus,
A= 2 = (=t )(1- 22 2 21
T Ve R4+R) Ri Ry (219
For the design with the resistor ratios selected according to Eq. (2.15), we obtain

A, =0
as expected. Note, however, that any mismatch in the resistance ratios can make A, nonzero,
and hence CMRR finite.
In addition to rejecting common-mode signals, a difference amplifier is usually required
to have a high input resistance. To find the input resistance between the two input terminals
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——O Up

Uiem

Figure 2.18 Analysis of the difference amplifier to determine its common-mode gain A., = vg/ Vjcm-

(i.e., the resistance seen by v,;), called the differential input resistance R,;, consider Fig. 2.19.
Here we have assumed that the resistors are selected so that
R3 = Rl and R4 = RZ
Now
Uyg
0y
Since the two input terminals of the op amp track each other in potential, we may write a
loop equation and obtain

Rig =

Vg = R1i|+O+R1i|
Thus,
Ry = 2R, 2200 ©

Note that if the amplifier is required to have a large differential gain (R,/R;), then R, of
necessity will be relatively small and the input resistance will be correspondingly low, a
drawback of this circuit. Another drawback of the circuit is that it is not easy to vary the dif-
ferential gain of the amplifier. Both of these drawbacks are overcome in the instrumentation
amplifier discussed next.

Uid = —O

i?
<
=
+

—
IR, < \\ , ~ Figure 2.19 Finding the input resis-
Virtual short circuit  tance of the difference amplifier for
the case R,=R, and R, =R,.
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2.15

D2.16

Consider the difference-amplifier circuit of Fig. 2.16 for the case R, =R, =2 kQand R, =R, =
200 kQ. (a) Find the value of the differential gain A,. (b) Find the value of the differential input
resistance R, and the output resistance R,. (c) If the resistors have 1% tolerance (i.e., each can be
within £1% of its nominal value), use Eq. (2.19) to find the worst-case common-mode gain A,
and hence the corresponding value of CMRR.

Ans. (a) 100 V/V (40 dB); (b) 4 kQ, 0 Q; (c) 0.04 V/V, 68 dB

Find values for the resistances in the circuit of Fig. 2.16 so that the circuit behaves as a difference
amplifier with an input resistance of 20 k2 and a gain of 10.

Ans. R, =R,=10kQ; R, =R, =100 kQ

2.4.2 A Superior Circuit—The Instrumentation Amplifier

The low-input-resistance problem of the difference amplifier of Fig. 2.16 can be solved by using
voltage followers to buffer the two input terminals; that is, a voltage follower of the type in Fig. 2.14
is connected between each input terminal and the corresponding input terminal of the difference
amplifier. However, if we are going to use two additional op amps, we should ask the question: Can
we get more from them than just impedance buffering? An obvious answer would be that we
should try to get some voltage gain. It is especially interesting that we can achieve this without com-
promising the high input resistance simply by using followers with gain rather than unity-gain fol-
lowers. Achieving some or indeed the bulk of the required gain in this new first stage of the

U1

U2

@)

Figure 2.20 A popular circuit for an instrumentation amplifier. (a) Initial approach to the circuit (b) The
circuit in (a) with the connection between node X and ground removed and the two resistors R, and R, lumped
together. This simple wiring change dramatically improves performance. (c) Analysis of the circuit in
(b) assuming ideal op amps.
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(b)

W“—ﬁ—ﬁ\\\
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A
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114/2R,

— MV =
(v~ v)$ Ui v <1 + 2R,
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Uo
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(c)
Figure 2.20 (Continued)

differential amplifier eases the burden on the difference amplifier in the second stage, leaving it to
its main task of implementing the differencing function and thus rejecting common-mode signals.

The resulting circuit is shown in Fig. 2.20(a). It consists of two stages in cascade. The first
stage is formed by op amps A, and A, and their associated resistors, and the second stage is the
by-now-familiar difference amplifier formed by op amp A, and its four associated resistors.
Observe that as we set out to do, each of A, and A, is connected in the noninverting configura-
tion and thus realizes a gain of (1 + R,/R;). It follows that each of v, and v, is amplified by
this factor, and the resulting amplified signals appear at the outputs of A, and A,, respectively.

The difference amplifier in the second stage operates on the difference signal
(1 +Ry,/R)) (v, —v1)= (1 +R,/R;)v,4 and provides at its output

R R
%zé@+@%

Thus the differential gain realized is

Ay = (%‘) (1 + E—i) (2.21)
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The common-mode gain will be zero because of the differencing action of the second-stage
amplifier.

The circuit in Fig. 2.20(a) has the advantage of very high (ideally infinite) input resis-
tance and high differential gain. Also, provided A, and A, and their corresponding resistors
are matched, the two signal paths are symmetric—a definite advantage in the design of a dif-
ferential amplifier. The circuit, however, has three major disadvantages:

1. The input common-mode signal v,,, is amplified in the first stage by a gain equal to
that experienced by the differential signal u,,. This is a very serious issue, for it could
result in the signals at the outputs of A, and A, being of such large magnitudes that the
op amps saturate (more on op-amp saturation in Section 2.8). But even if the op amps
do not saturate, the difference amplifier of the second stage will now have to deal
with much larger common-mode signals, with the result that the CMRR of the overall
amplifier will inevitably be reduced.

2. The two amplifier channels in the first stage have to be perfectly matched, otherwise
a spurious signal may appear between their two outputs. Such a signal would get
amplified by the difference amplifier in the second stage.

3. To vary the differential gain A,, two resistors have to be varied simultaneously, say
the two resistors labeled R,. At each gain setting the two resistors have to be perfectly
matched: a difficult task.

All three problems can be solved with a very simple wiring change: Simply disconnect the
node between the two resistors labeled R,, node X, from ground. The circuit with this small
but functionally profound change is redrawn in Fig. 2.20(b), where we have lumped the two
resistors (R, and R,) together into a single resistor (2R,).

Analysis of the circuit in Fig. 2.20(b), assuming ideal op amps, is straightforward, as is
illustrated in Fig. 2.20(c). The key point is that the virtual short circuits at the inputs of op
amps A, and A, cause the input voltages v, and v,, to appear at the two terminals of resistor
(2R,). Thus the differential input voltage v, — v, = v,, appears across 2R, and causes a current
i = v4/2R; to flow through 2R, and the two resistors labeled R,. This current in turn pro-
duces a voltage difference between the output terminals of A, and A, given by

2R
Uoz — Vo1 = (1 + ZR:) Ui
The difference amplifier formed by op amp A, and its associated resistors senses the voltage
difference (v,, — v,,) and provides a proportional output voltage v, :

R
Uo = R_A(Uoz — Ugy)
3

- BBy
= R3 1+R1 Uld
Thus the overall differential voltage-gain is given by
Uo R4( Rz)
Aj=s— = =|1+=+ 2.22
o ‘ Ujg Rs +R1 ( )

Observe that proper differential operation does not depend on the matching of the two resistors
labeled R,. Indeed, if one of the two is of different value, say R,, the expression for A, becomes

A, = E—;‘(l + %} (2.23)
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Consider next what happens when the two input terminals are connected together to a common-
mode input voltage v, It is easy to see that an equal voltage appears at the negative input terminals
of A, and A,, causing the current through 2R, to be zero. Thus there will be no current flowing in the
R, resistors, and the voltages at the output terminals of A, and A, will be equal to the input (i.e., y,,).
Thus the first stage no longer amplifies v, it simply propagates v, to its two output terminals,
where they are subtracted to produce a zero common-mode output by A,. The difference amplifier
in the second stage, however, now has a much improved situation at its input; The difference signal
has been amplified by (1 + R,/R;) while the common-mode voltage remained unchanged.

Finally, we observe from the expression in Eq. (2.22) that the gain can be varied by
changing only one resistor, 2R,. We conclude that this is an excellent differential amplifier
circuit and is widely employed as an instrumentation amplifier; that is, as the input amplifier
used in a variety of electronic instruments.
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Design the instrumentation amplifier circuit in Fig. 2.20(b) to provide a gain that can be varied over
the range of 2 to 1000 utilizing a 100-kQ2 variable resistance (a potentiometer, or “pot” for short).

Solution

It is usually preferable to obtain all the required gain in the first stage, leaving the second stage to
perform the task of taking the difference between the outputs of the first stage and thereby rejecting the
common-mode signal. In other words, the second stage is usually designed for a gain of 1. Adopting
this approach, we select all the second-stage resistors to be equal to a practically convenient value,
say 10 kQ. The problem then reduces to designing the first stage to realize a gain adjustable over the
range of 2 to 1000. Implementing 2R, as the series combination of a fixed resistor R,, and the vari-
able resistor R, obtained using the 100-k< pot (Fig. 2.21), we can write

1+ 2Ry _ 2 t0 1000
Ry+Ry, °
Thus,
2R,
1+—= =1000
Ry
and
2R
1 2 2

TRy +100kQ ~

These two equations yield R, = 100.2 Q and R, = 50.050 k2. Other practical values may be
selected; for instance, R, = 100 Q and R, = 49.9 kQ (both values are available as standard 1%-
tolerance metal-film resistors; see Appendix H) results in a gain covering approximately the
required range.

R

100 kQ } R _ o ) )
pot v Figure 2.21 To make the gain of the circuit in Fig. 2.20(b) variable, 2R, is

implemented as the series combination of a fixed resistor R, and a variable
resistor R, . Resistor R;; ensures that the maximum available gain is limited.
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2.17 Consider the instrumentation amplifier of Fig. 2.20(b) with a common-mode input voltage of +5 V
(dc) and a differential input signal of 10-mV-peak sine wave. Let (2R,) =1 kQ, R, =0.5 MQ, and
R, =R, =10 kQ. Find the voltage at every node in the circuit.
Ans. v, =5-0.005 sin wt; y,=5+ 0.005 sin wt; v_(op amp A,) =5 —0.005 sin wt; v_(op amp
A,) =5+0.005 sin wt; vy, =5-5.005sin wt; v,,=5+5.005sin wt; v (A)) =v, (A;) =2.5+2.5025
sin wt; v, = 10.01 sin wt (all in volts)

2.5 Integrators and Differentiators

The op-amp circuit applications we have studied thus far utilized resistors in the op-amp
feedback path and in connecting the signal source to the circuit, that is, in the feed-in path.
As a result, circuit operation has been (ideally) independent of frequency. By allowing the
use of capacitors together with resistors in the feedback and feed-in paths of op-amp cir-
cuits, we open the door to a very wide range of useful and exciting applications of the op
amp. We begin our study of op-amp-RC circuits by considering two basic applications,
namely, signal integrators and differentiators.

2.5.1 The Inverting Configuration with General Impedances

To begin with, consider the inverting closed-loop configuration with impedances Z,(s) and
Z,(s) replacing resistors R, and R,, respectively. The resulting circuit is shown in Fig. 2.22
and, for an ideal op amp, has the closed-loop gain or, more appropriately, the closed-loop
transfer function

W(s) _ _Za(s)
o Vi(s)  Zy(s)

As explained in Section 1.6, replacing s by jo provides the transfer function for physical fre-
quencies @, that is, the transmission magnitude and phase for a sinusoidal input signal of
frequency w.

(2.24)

Z,
— 1+
Z,
o—{ v, Z,
+ b————O _ = =
+ ¥ Z
Vi v,

Figure 2.22 The inverting configuration with general impedances in the feedback and the feed-in paths.
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Example 2.4

For the circuit in Fig. 2.23, derive an expression for the transfer function V,(s)/V;(s). Show that the
transfer function is that of a low-pass STC circuit. By expressing the transfer function in the stan-
dard form shown in Table 1.2 on page 34, find the dc gain and the 3-dB frequency. Design the circuit
to obtain a dc gain of 40 dB, a 3-dB frequency of 1 kHz, and an input resistance of 1 kQ. At what fre-
quency does the magnitude of transmission become unity? What is the phase angle at this

frequency?
¢
|
|
Ry
—MAN—+
R,
O—AMN—+
+ —O
7 +
— Vo
- = = Figure 2.23 Circuit for Example 2.4.
Solution

To obtain the transfer function of the circuit in Fig. 2.23, we substitute in Eq. (2.24), Z, = R, and
Z, = R,||(1/sC,). Since Z, is the parallel connection of two components, it is more convenient to
work in terms of Y,; that is, we use the following alternative form of the transfer function:

Vo (8) _ 1
Vi(s) Z1(S)Y,(s)

and substitute Z, =R, and Y,(s) = (1/R,) +sC, to obtain

Vo(S) 3 1
Vis) R
i® 2, SC,R,;
R2

This transfer function is of first order, has a finite dc gain (ats =0, V,/V, = -R,/R;), and has zero
gain at infinite frequency. Thus it is the transfer function of a low-pass STC network and can be

expressed in the standard form of Table 1.2 as follows:

Vo(S)  —Ry/Ry
Vi(s)  1+SC,R,

from which we find the dc gain K to be
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Example 2.4 continued
and the 3-dB frequency w, as

1
- CZRZ
We could have found all this from the circuit in Fig. 2.23 by inspection. Specifically, note that the
capacitor behaves as an open circuit at dc; thus at dc the gain is simply (-R,/R;). Furthermore,
because there is a virtual ground at the inverting input terminal, the resistance seen by the capacitor
is R,, and thus the time constant of the STC network is C,R,.

Now to obtain a dc gain of 40 dB, that is, 100 V/V, we select R,/R, = 100. For an input resis-
tance of 1 kQ, we select R, = 1 kQ, and thus R, = 100 kQ. Finally, for a 3-dB frequency f, = 1 kHz,
we select C, from

(2

1

2rx1x10° = ———=——
C,x 100 x 10

which yields C, = 1.59 nF.

The circuit has gain and phase Bode plots of the standard form in Fig. 1.23. As the gain falls off at the
rate of —20 dB/decade, it will reach 0 dB in two decades, that is, at f = 100f, = 100 kHz. As Fig.
1.23(b) indicates, at such a frequency which is much greater than f,, the phase is approximately —90°.
To this, however, we must add the 180° arising from the inverting nature of the amplifier (i.e., the
negative sign in the transfer function expression). Thus at 100 kHz, the total phase shift will be —270°
or, equivalently, +90°.

2.5.2 The Inverting Integrator

By placing a capacitor in the feedback path (i.e., in place of Z, in Fig. 2.22) and a resistor at
the input (in place of Z,), we obtain the circuit of Fig. 2.24(a). We shall now show that this
circuit realizes the mathematical operation of integration. Let the input be a time-varying
function v, (t). The virtual ground at the inverting op-amp input causes v, (t) to appear in
effect across R, and thus the current i,(t) will be v,(t)/R. This current flows through the
capacitor C, causing charge to accumulate on C. If we assume that the circuit begins opera-
tion at time t = 0, then at an arbitrary time t the current i (t) will have deposited on C a
charge equal to [,i,(t) dt. Thus the capacitor voltage u(t) will change by éjgil(t) dt. If
the initial voltage on C (at t = 0) is denoted V, then

ve(t) = Ve + éj;il(t)dt
Now the output voltage v,(t) = —v.(t); thus,
1
(1) vo(t) = —C—szo oy () dt — Vi (2.25)

Thus the circuit provides an output voltage that is proportional to the time integral of the
input, with V.. being the initial condition of integration and CR the integrator time constant.
Note that, as expected, there is a negative sign attached to the output voltage, and thus this
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+ ve —
|l
L t
R0 c uo(t) cR, (t) dt—V¢
o———MAN\
+ oV o Vo 1
u (t) zg(t) V; sCR
(@)
|
v (dB)
4
N

/ —6 dB/octave

» w (log scale)

S
—

|

C

=

(b)

Figure 2.24 (a) The Miller or inverting integrator. (b) Frequency response of the integrator.

integrator circuit is said to be an inverting integrator. It is also known as a Miller integra-
tor after an early worker in this field.

The operation of the integrator circuit can be described alternatively in the frequency
domain by substituting Z,(s) = R and Z,(s) =1/sC in Eq. (2.24) to obtain the transfer
function

Vo(S) 1

Vi(s) = ~CR (2.26)
For physical frequencies, s = jwand
Vo(jo) 1
s = - 2.27
Vi(jw) JwCR (2.27)
Thus the integrator transfer function has magnitude
v, 1
Dl = — 2.2
V, wCR (228)
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(1]

and phase
¢ = +90° (2.29)

The Bode plot for the integrator magnitude response can be obtained by noting from Eqg. (2.28)
that as w doubles (increases by an octave) the magnitude is halved (decreased by 6 dB).
Thus the Bode plot is a straight line of slope —6 dB/octave (or, equivalently, —20 dB/
decade). This line (shown in Fig. 2.24b) intercepts the 0-dB line at the frequency that makes
|V, /V;| = 1, which from Eq. (2.28) is

1

a)mt:b-ﬁ

(2.30)
The frequency @, is known as the integrator frequency and is simply the inverse of the
integrator time constant.

Comparison of the frequency response of the integrator to that of an STC low-pass net-
work indicates that the integrator behaves as a low-pass filter with a corner frequency of zero.
Observe also that at @ = 0, the magnitude of the integrator transfer function is infinite. This
indicates that at dc the op amp is operating with an open loop. This should also be obvious
from the integrator circuit itself. Reference to Fig. 2.24(a) shows that the feedback element is
a capacitor, and thus at dc, where the capacitor behaves as an open circuit, there is no nega-
tive feedback! This is a very significant observation and one that indicates a source of prob-
lems with the integrator circuit: Any tiny dc component in the input signal will theoretically
produce an infinite output. Of course, no infinite output voltage results in practice; rather, the
output of the amplifier saturates at a voltage close to the op-amp positive or negative
power supply (L, or L ), depending on the polarity of the input dc signal.

The dc problem of the integrator circuit can be alleviated by connecting a resistor R-
across the integrator capacitor C, as shown in Fig. 2.25 and thus the gain at dc will be —-R. /R
rather than infinite. Such a resistor provides a dc feedback path. Unfortunately, however, the
integration is no longer ideal, and the lower the value of R., the less ideal the integrator circuit
becomes. This is because R. causes the frequency of the integrator pole to move from its ideal
location at w= 0 to one determined by the corner frequency of the STC network (R, C). Spe-
cifically, the integrator transfer function becomes

V,(s)  Re/R
Vi(s)  1+sCRe

Re
MW/
Cc
R
O—AW\—
+ ——O
}
o (0) o (1) Figure 2.25 The Miller integrator with a large resistance R

— connected in parallel with C in order to provide negative feed-
= back and hence finite gain at dc.
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as opposed to the ideal function of —1/sCR. The lower the value we select for R, the
higher the corner frequency (1/CRg) will be and the more nonideal the integrator
becomes. Thus selecting a value for R presents the designer with a trade-off between dc
performance and signal performance. The effect of R. on integrator performance is investi-
gated further in the Example 2.5.

Find the output produced by a Miller integrator in response to an input pulse of 1-V height and 1-ms
width [Fig. 2.26(a)]. Let R = 10 kQ and C = 10 nF. If the integrator capacitor is shunted by a 1-MQ
resistor, how will the response be modified? The op amp is specified to saturate at £13 V.

Solution

In response to a 1-V, 1-ms input pulse, the integrator output will be
t
1
= - — <t<
vo(t) CRJ.Oldt, 0<t<1lms

where we have assumed that the initial voltage on the integrator capacitor is 0. For C = 10 nF and
R=10kQ, CR=0.1 ms, and

vo(t) = -10t, 0<t<1ms

which is the linear ramp shown in Fig. 2.26(b). It reaches a magnitude of —10 V at t = 1 ms and
remains constant thereafter.

That the output is a linear ramp should also be obvious from the fact that the 1-V input pulse
produces a constant current through the capacitor of 1V /10 kQ = 0.1 mA. This constant current
I = 0.1 mA supplies the capacitor with a charge It, and thus the capacitor voltage changes linearly
as (It/C), resulting in v, = —(1/C)t. It is worth remembering that charging a capacitor with a
constant current produces a linear voltage across it.

Next consider the situation with resistor R = 1 MQ connected across C. As before, the 1-V
pulse will provide a constant current I = 0.1 mA. Now, however, this current is supplied to an STC
network composed of R in parallel with C. Thus, the output will be an exponential heading toward
—100 V with a time constant of CR. = 10 X 10° X 1 X 10°= 10 ms,

-t/10

Up(t) = -100(1-e ), 0<t<1lms

Of course, the exponential will be interrupted at the end of the pulse, that is, at t = 1 ms, and the out-
put will reach the value

-1/10

vo(1 ms) = ~100(1—e %% = 95V

The output waveform is shown in Fig. 2.26(c), from which we see that including R causes the ramp to
be slightly rounded such that the output reaches only —9.5 V, 0.5 V short of the ideal value of —10 V.
Furthermore, for t > 1 ms, the capacitor discharges through R with the relatively long time-constant of
10 ms. Finally, we note that op amp saturation, specified to occur at +£13 V, has no effect on the opera-
tion of this circuit.
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Example 2.5 continued

u () A
1Vv
0 » {
0 1ms .
(@)
uo(t) A
> {
0 1:ms
I
I
I
I
I
I
=PV m—m—mm——=
(b)
o) A
> {
0 l:ms
I
| 0oV
0
| -
I
I
—-95Vpr——————— Exponentials with
\\ time constant of 10 ms
\\
to —100V
(c)

Figure 2.26 Waveforms for Example 2.5: (a) Input pulse. (b) Output linear ramp of ideal integrator with time con-
stant of 0.1 ms. (c) Output exponential ramp with resistor R. connected across integrator capacitor.

The preceding example hints at an important application of integrators, namely, their use
in providing triangular waveforms in response to square-wave inputs. This application is
explored in Exercise 2.18. Integrators have many other applications, including their use in the
design of filters (Chapter 16).
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2.5.3 The Op-Amp Differentiator

Interchanging the location of the capacitor and the resistor of the integrator circuit
results in the circuit in Fig. 2.27(a), which performs the mathematical function of differ-
entiation. To see how this comes about, let the input be the time-varying function v,(t),
and note that the virtual ground at the inverting input terminal of the op amp causes
y(t) to appear in effect across the capacitor C. Thus the current through C will be
C(dw,/dt), and this current flows through the feedback resistor R providing at the

op-amp output a voltage vg(1),

vo(t) = —CR% 231) ©

The frequency-domain transfer function of the differentiator circuit can be found by substi-
tuting in Eq. (2.24), Z,(s) = 1/sC and Z,(s) = R to obtain

Vo(8) _
Vi(s) -sCR (2.32) (1)
which for physical frequencies s = jw yields
Vo(jo) -
———= = —jwCR 2.33
Vo ~ 233) O
i R
:’VW—
i c dy, (t
[ 0 i) = C Idlt()
+ l ——o  wl()= —CR—d;‘t(t)
“ (t) I’OJr(t) VO _
— = v R
= 0V = =
(@
Vo
v, (dB)
A
7/
Ve
\ +6 dB/octave
0 » o (log scale)
s 1
7 CR

(b)

Figure 2.27 (a) A differentiator. (b) Frequency response of a differentiator with a time-constant CR.
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Thus the transfer function has magnitude

= wCR (2.34)

and phase
¢ = -90° (2.35)

The Bode plot of the magnitude response can be found from Eq. (2.34) by noting that for an
octave increase in w, the magnitude doubles (increases by 6 dB). Thus the plot is simply a
straight line of slope +6 dB/octave (or, equivalently, +20 dB/decade) intersecting the 0-dB
line (where |V, /V;| = 1) at @ = 1/CR, where CR is the differentiator time-constant [see
Fig. 2.27(b)].

The frequency response of the differentiator can be thought of as that of an STC highpass
filter with a corner frequency at infinity (refer to Fig. 1.24). Finally, we should note that the
very nature of a differentiator circuit causes it to be a “noise magnifier.” This is due to the
spike introduced at the output every time there is a sharp change in v,(t); such a change
could be interference coupled electromagnetically (“picked up”) from adjacent signal
sources. For this reason and because they suffer from stability problems (Chapter 10), differ-
entiator circuits are generally avoided in practice. When the circuit of Fig. 2.27(a) is used, it
is usually necessary to connect a small-valued resistor in series with the capacitor. This
modification, unfortunately, turns the circuit into a nonideal differentiator.

D2.19

D2.20

2.18 Consider a symmetrical square wave of 20-V peak-to-peak, 0 average, and 2-ms period applied

to a Miller integrator. Find the value of the time constant CR such that the triangular waveform at
the output has a 20-V peak-to-peak amplitude.
Ans. 0.5ms

Use an ideal op amp to design an inverting integrator with an input resistance of 10 kQ and an
integration time constant of 107 s, What is the gain magnitude and phase angle of this circuit at
10 rad/s and at 1 rad/s? What is the frequency at which the gain magnitude is unity?

Ans. R=10kQ, C=0.1uF; at @ = 10rad/s: |V, /V;| = 100 V/V and ¢ =+90°; at w= 1 rad/s:
IVo/V;| = 1,000 V/V and ¢=-+90°; 1000 rad/s

Design a differentiator to have a time constant of 10 s and an input capacitance of 0.01 uF. What
is the gain magnitude and phase of this circuit at 10 rad/s, and at 10° rad/s? In order to limit the
high-frequency gain of the differentiator circuit to 100, a resistor is added in series with the ca-
pacitor. Find the required resistor value.

Ans. C=0.01pF;R=1MQ;at @ =10rad/s: |V, /V;| = 0.1 V/V and ¢=-90°; at &= 1000 rad/s:
[V, /Vi| = 10 VIV and ¢=-90°; 10 kQ

2.6 DC Imperfections

Thus far we have considered the op amp to be ideal. The only exception has been a brief dis-
cussion of the effect of the op-amp finite gain A on the closed-loop gain of the inverting and
noninverting configurations. Although in many applications the assumption of an ideal op
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amp is not a bad one, a circuit designer has to be thoroughly familiar with the characteristics
of practical op amps and the effects of such characteristics on the performance of op-amp cir-
cuits. Only then will the designer be able to use the op amp intelligently, especially if the
application at hand is not a straightforward one. The nonideal properties of op amps will, of
course, limit the range of operation of the circuits analyzed in the previous examples.

In this and the two sections that follow, we consider some of the important nonideal
properties of the op amp.® We do this by treating one nonideality at a time, beginning in this
section with the dc problems to which op amps are susceptible.

2.6.1 Offset Voltage

Because op amps are direct-coupled devices with large gains at dc, they are prone to dc
problems. The first such problem is the dc offset voltage. To understand this problem con-
sider the following conceptual experiment: If the two input terminals of the op amp are tied
together and connected to ground, it will be found that despite the fact that u, = 0, a finite dc
voltage exists at the output. In fact, if the op amp has a high dc gain, the output will be at
either the positive or negative saturation level. The op-amp output can be brought back to its
ideal value of 0 V by connecting a dc voltage source of appropriate polarity and magnitude
between the two input terminals of the op amp. This external source balances out the input
offset voltage of the op amp. It follows that the input offset voltage (Vos) must be of equal
magnitude and of opposite polarity to the voltage we applied externally.

The input offset voltage arises as a result of the unavoidable mismatches Present in the input
differential stage inside the op amp. In later chapters (in particular Chapters 8 and 12) we shall
study this topic in detail. Here, however, our concern is to investigate the effect of V on the oper-
ation of closed-loop op-amp circuits. Toward that end, we note that general-purpose op amps
exhibit V4 in the range of 1 mV to 5 mV. Also, the value of V depends on temperature. The op-
amp data sheets usually specify typical and maximum values for V., at room temperature as well
as the temperature coefficient of Vg (usually in uV/°C). They do not, however, specify the
polarity of V4 because the component mismatches that give rise to V are obviously not known a
priori; different units of the same op-amp type may exhibit either a positive or a negative V.

To analyze the effect of V4 on the operation of op-amp circuits, we need a circuit model
for the op amp with input offset voltage. Such a model is shown in Fig. 2.28. It consists of a

/ Actual op amp

Offset-free op amp

Figure 2.28 Circuit model for an op amp with
input offset voltage V.

*We should note that real op amps have nonideal effects additional to those discussed in this chapter.
These include finite (nonzero) common-mode gain or, equivalently, noninfinite CMRR, noninfinite
input resistance, and nonzero output resistance. The effect of these, however, on the performance of
most of the closed-loop circuits studied here is not very significant, and their study will be postponed
to later chapters (in particular Chapters 8, 9, and 12).

89



90 Chapter 2 Operational Amplifiers

dc source of value V placed in series with the positive input lead of an offset-free op amp.
The justification for this model follows from the description above.

2.21 Use the model of Fig. 2.28 to sketch the transfer characteristic v, versus v, (v, = v, and v, = v, —
v,) of an op amp having an open-loop dc gain A, = 10* V/V, output saturation levels of +10 V, and
Vs Of +5 mV.
Ans. See Fig. E2.21. Observe that true to its name, the input offset voltage causes an offset in the
voltage-transfer characteristic; rather than passing through the origin it is now shifted to the left by V.

Figure E2.21 Transfer characteristic of an op amp with V3 =5 mV.

Analysis of op-amp circuits to determine the effect of the op-amp V on their perfor-
mance is straightforward: The input voltage signal source is short-circuited and the op
amp is replaced with the model of Fig. 2.28. (Eliminating the input signal, done to sim-
plify matters, is based on the principle of superposition.) Following this procedure, we
find that both the inverting and the noninverting amplifier configurations result in the
same circuit, that shown in Fig. 2.29, from which the output dc voltage due to Vq is found
to be

(1) Vo = Vo {1 + EZ} (2.36)
1

This output dc voltage can have a large magnitude. For instance, a noninverting amplifier
with a closed-loop gain of 1000, when constructed from an op amp with a 5-mV input
offset voltage, will have a dc output voltage of +5 V or -5 V (depending on the polarity
of V) rather than the ideal value of 0 V. Now, when an input signal is applied to the
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= Vos (1 + %)

Offset-free
op amp

Figure 2.29 Evaluating the output dc offset voltage due to V4 in a closed-loop amplifier.

Torest — — — —O0——
of circuit
- o]

Offset-nulling —
terminals

V-

Figure 2.30 The output dc offset voltage of an op amp can be trimmed to zero by connecting a
potentiometer to the two offset-nulling terminals. The wiper of the potentiometer is connected to the
negative supply of the op amp.

amplifier, the corresponding signal output will be superimposed on the 5-V dc. Obvi-
ously then, the allowable signal swing at the output will be reduced. Even worse, if the
signal to be amplified is dc, we would not know whether the output is due to V4 or to the
signal!

Some op amps are provided with two additional terminals to which a specified circuit
can be connected to trim to zero the output dc voltage due to V4. Figure 2.30 shows such
an arrangement that is typically used with general-purpose op amps. A potentiometer is
connected between the offset-nulling terminals with the wiper of the potentiometer con-
nected to the op-amp negative supply. Moving the potentiometer wiper introduces an
imbalance that counteracts the asymmetry present in the internal op-amp circuitry and that
gives rise to V. We shall return to this point in the context of our study of the internal cir-
cuitry of op amps in Chapter 12. It should be noted, however, that even though the dc out-
put offset can be trimmed to zero, the problem remains of the variation (or drift) of Vg
with temperature.

One way to overcome the dc offset problem is by capacitively coupling the amplifier.
This, however, will be possible only in applications where the closed-loop amplifier is not
required to amplify dc or very-low-frequency signals. Figure 2.31(a) shows a capacitively
coupled amplifier. Because of its infinite impedance at dc, the coupling capacitor will cause
the gain to be zero at dc. As a result the equivalent circuit for determining the dc output
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R, R,
AV
e wr
+——0 e } —o Vo = Vos
L L Vo Offset free
(@) (b)

Figure 2.31 (a) A capacitively coupled inverting amplifier. (b) The equivalent circuit for determining its
dc output offset voltage V,,.

voltage resulting from the op-amp input offset voltage V¢ will be that shown in Fig. 2.31(b).
Thus V4 sees in effect a unity-gain voltage follower, and the dc output voltage V, will be
equal to V4 rather than Vo5 (1 + R,/R;), which is the case without the coupling capacitor.
As far as input signals are concerned, the coupling capacitor C forms together with R, an STC
high-pass circuit with a corner frequency of @, = 1/CR;. Thus the gain of the capacitively
coupled amplifier will fall off at the low-frequency end [from a magnitude of (1 + R,/R;) at
high frequencies] and will be 3 dB down at a,.

2.22 Consider an inverting amplifier with a nominal gain of 1000 constructed from an op amp with an
input offset voltage of 3 mV and with output saturation levels of £10 V. (a) What is (approximately)
the peak sine-wave input signal that can be applied without output clipping? (b) If the effect of V
is nulled at room temperature (25°C), how large an input can one now apply if: (i) the circuit is to
operate at a constant temperature? (ii) the circuit is to operate at a temperature in the range 0°C to
75°C and the temperature coefficient of Vg is 10 pV/°C?

Ans. (a) 7 mV; (b) 10 mV, 9.5 mV

2.23 Consider the same amplifier as in Exercise 2.22—that is, an inverting amplifier with a nominal gain
of 1000 constructed from an op amp with an input offset voltage of 3 mV and with output saturation
levels of £10 V—except here let the amplifier be capacitively coupled as in Fig. 2.31(a). (a) What
is the dc offset voltage at the output, and what (approximately) is the peak sine-wave signal that can
be applied at the input without output clipping? Is there a need for offset trimming? (b) If R, = 1 kQ
and R,=1 MQ, find the value of the coupling capacitor C, that will ensure that the gain will be greater
than 57 dB down to 100 Hz.

Ans. (a) 3 mV, 10 mV, no need for offset trimming; (b) 1.6 uF
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2.6.2 Input Bias and Offset Currents

The second dc problem encountered in op amps is illustrated in Fig. 2.32. In order for the op
amp to operate, its two input terminals have to be supplied with dc currents, termed the
input bias currents.” In Fig. 2.32 these two currents are represented by two current sources,
Ig; and I, connected to the two input terminals. It should be emphasized that the input bias
currents are independent of the fact that a real op amp has finite (though large) input resis-
tance (not shown in Fig. 2.32). The op-amp manufacturer usually specifies the average value
of I, and I, as well as their expected difference. The average value I; is called the input
bias current,
I, = g1 + lg>
2
and the difference is called the input offset current and is given by

los = ||Bl_ |Bz|

Typical values for general-purpose op amps that use bipolar transistors are 1, = 100 nA and
los =10 nA.

We now wish to find the dc output voltage of the closed-loop amplifier due to the
input bias currents. To do this we ground the signal source and obtain the circuit shown in
Fig. 2.33 for both the inverting and noninverting configurations. As shown in Fig. 2.33, the
output dc voltage is given by

VO = IB1R2 = IBRZ (237)

This obviously places an upper limit on the value of R,. Fortunately, however, a technique
exists for reducing the value of the output dc voltage due to the input bias currents. The
method consists of introducing a resistance R, in series with the noninverting input lead, as

Figure 2.32 The op-amp input bias currents
represented by two current sources Iy, and Ig,.

*This is the case for op amps constructed using bipolar junction transistors (BJTs). Those using
MOSFETSs in the first (input) stage do not draw an appreciable input bias current; nevertheless, the input
terminals should have continuous dc paths to ground. More on this in later chapters.
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Figure 2.33 Analysis of the closed-loop amplifier, taking into account the input bias currents.

| 1§+l

Figure 2.34 Reducing the effect of the input bias currents by introducing a resistor R,.
shown in Fig. 2.34. From a signal point of view, R, has a negligible effect (ideally no effect).
The appropriate value for R, can be determined by analyzing the circuit in Fig. 2.34, where
analysis details are shown, and the output voltage is given by

Vo = —lg2Rs+ Ry(lg; — 1s2R3/Ry) (2.38)

Consider first the case I, = I, = I, which results in

Vo = Ig[R;=R3(1+R;/Ry)]



2.6 DC Imperfections

Thus we can reduce V, to zero by selecting R, such that
AR _ RR
* 7 1+R,/R; R, +R,
That is, R, should be made equal to the parallel equivalent of R, and R,.

Having selected R, as above, let us evaluate the effect of a finite offset current I, Let
1= I+ lbs/2 and I, = Iz — los/2, and substitute in Eq. (2.38). The result is

(2.39)

Vo = Iost (240)

which is usually about an order of magnitude smaller than the value obtained without R,
(Eq. 2.37). We conclude that to minimize the effect of the input bias currents, one should
place in the positive lead a resistance equal to the equivalant dc resistance seen by the
inverting terminal. We emphasize the word dc in the last statement; note that if the ampli-
fier is ac-coupled, we should select R, = R,, as shown in Fig. 2.35.

While we are on the subject of ac-coupled amplifiers, we should note that one must
always provide a continuous dc path between each of the input terminals of the op amp
and ground. This is the case no matter how small I; is. For this reason the ac-coupled
noninverting amplifier of Fig. 2.36 will not work without the resistance R, to ground.
Unfortunately, including R, lowers considerably the input resistance of the closed-loop
amplifier.

Ry
AN
R
Lo
AN~ 7
—L R3 = R2

Figure 2.35 In an ac-coupled amplifier the dc resistance seen by the inverting terminal is R,; hence
R, is chosen equal to R,.

R,
ANA
G
[
} AAN N
o

. o—I +

G Ry=R,

Figure 2.36 lllustrating the need for a continuous dc path for each of the op-amp input terminals. Specifi-
cally, note that the amplifier will not work without resistor R,.
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2.24 Consider an inverting amplifier circuit designed using an op amp and two resistors, R, = 10 kQ and
R, =1 MQ. If the op amp is specified to have an input bias current of 100 nA and an input offset
current of 10 nA, find the output dc offset voltage resulting and the value of a resistor R, to be placed
in series with the positive input lead in order to minimize the output offset voltage. What is the new
value of V,?

Ans. 0.1V;9.9kQ (= 10kQ); 0.01V

2.6.3 Effect of V,, and I, on the Operation of the
Inverting Integrator

Our discussion of the inverting integrator circuit in Section 2.5.2 mentioned the susceptibility
of this circuit to saturation in the presence of small dc voltages or currents. It behooves us
therefore to consider the effect of the op-amp dc offsets on its operation. As will be seen, these
effects can be quite dramatic.

To see the effect of the input dc offset voltage Vs, consider the integrator circuit in Fig.
2.38, where for simplicity we have short-circuited the input signal source. Analysis of the
circuit is straightforward and is shown in Fig. 2.37. Assuming for simplicity that attimet=0
the voltage across the capacitor is zero, the output voltage as a function of time is given by

Y/

(1) U = Vos + E:O—F;t (2.41)
Thus v, increases linearly with time until the op amp saturates—clearly an unacceptable sit-
uation! As should be expected, the dc input offset current I, produces a similar problem.
Figure 2.38 illustrates the situation. Observe that we have added a resistance R in the op-
amp positive-input lead in order to keep the input bias current I, from flowing through C.
Nevertheless, the offset current I, will flow through C and cause v, to ramp linearly with
time until the op amp saturates.

As mentioned in Section 2.5.2 the dc problem of the integrator circuit can be allevi-
ated by connecting a resistor R; across the integrator capacitor C, as shown in Fig. 2.25.

Vos’lR C
= ||
|

t
1 V.
o vo=Vos+6£7%Sd’

Vos o v
+ = VOS + ﬂt
Yo

3
2
=

CR

Figure 2.37 Determining the effect of the op-amp input offset volage V,; on the Miller integra-
tor circuit. Note that since the output rises with time, the op amp eventually saturates.
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Such a resistor provides a dc path through which the dc currents (Vos/R) and I can
flow, with the result that v, will now have a dc component [Vgs(1 + Re/R) + 15sR(]
instead of rising linearly. To keep the dc offset at the output small, one would select a
low value for R.. Unfortunately, however, the lower the value of R., the less ideal the
integrator circuit becomes.

o
Il
]
l,('sl = lgo) = los
Ig,:RR =1 |
B2 B2 ‘Vls,,, B1
J_ O Yo Figure 2.38 Effectof the op-amp
= —> = _1..R @ input bias and offset currents on the
R Igs Uo goR + t L
C performance of the Miller integrator
= —IgR circuit.

2.25 Consider a Miller integrator with a time constant of 1 ms and an input resistance of 10 kQ. Let the
op amp have Vo, =2 mV and output saturation voltages of +12 V. (a) Assuming that when the
power supply is turned on the capacitor voltage is zero, how long does it take for the amplifier to
saturate? (b) Select the largest possible value for a feedback resistor R so that at least +10 V of
output signal swing remains available. What is the corner frequency of the resulting STC net-
work?

Ans. (a) 65s; (b) 10 MQ, 0.16 Hz
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2.7 Effect of Finite Open-Loop Gain and
Bandwidth on Circuit Performance

2.7.1 Frequency Dependence of the Open-Loop Gain

The differential open-loop gain A of an op amp is not infinite; rather, it is finite and decreases
with frequency. Figure 2.39 shows a plot for |A|, with the numbers typical of some commer-
cially available general-purpose op amps (such as the popular 741-type op amp, available from
many semiconductor manufacturers; its internal circuit is studied in Chapter 12).

Note that although the gain is quite high at dc and low frequencies, it starts to fall off
at a rather low frequency (10 Hz in our example). The uniform —20-dB/decade gain rolloff
shown is typical of internally compensated op amps. These are units that have a network
(usually a single capacitor) included within the same IC chip whose function is to cause
the op-amp gain to have the single-time-constant (STC) low-pass response shown. This
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Figure 2.39 Open-loop gain of a typical general-purpose internally compensated op amp.

process of modifying the open-loop gain is termed frequency compensation, and its
purpose is to ensure that op-amp circuits will be stable (as opposed to oscillatory). The
subject of stability of op-amp circuits—or, more generally, of feedback amplifiers—will
be studied in Chapter 10.

By analogy to the response of low-pass STC circuits (see Section 1.6 and, for more
detail, Appendix E), the gain A(s) of an internally compensated op amp may be expressed as

LA VI
(1) A(s) = T7s/o (2.42)
which for physical frequencies, s = jw, becomes
. A
(1] A(jo) = ———— (2.43)

1+jow/ w,

where A, denotes the dc gain and @, is the 3-dB frequency (corner frequency or “break” fre-
quency). For the example shown in Fig. 2.39, A, = 10° and @, = 27 x 10 rad/s. For frequencies
w > @, (about 10 times and higher) Eq. (2.43) may be approximated by

Ao,

A(jw) = jo_a) (2.44)
Thus,
A(jo)| = o (2.45)

from which it can be seen that the gain |A| reaches unity (0 dB) at a frequency denoted by ¢,
(1) and given by

o = Ay, (2.46)
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Substituting in Eq. (2.44) gives
: 2
A = — 2.47
(o) i @47 O
The frequency f, = @,/ 2 r is usually specified on the data sheets of commercially available
op amps and is known as the unity-gain bandwidth.> Also note that for @ > @, the open-

loop gain in Eg. (2.42) becomes
10}

A(s) = 3 (2.48) (1)
The gain magnitude can be obtained from Eq. (2.47) as
i~ @t

Aol =2 =7 (249 O

Thus if f, is known (10° Hz in our example), one can easily determine the magnitude of the
op-amp gain at a given frequency f. Furthermore, observe that this relationship correlates
with the Bode plot in Fig. 2.39. Specifically, for f > f,, doubling f (an octave increase) results
in halving the gain (a 6-dB reduction). Similarly, increasing f by a factor of 10 (a decade
increase) results in reducing |A| by a factor of 10 (20 dB).

As a matter of practical importance, we note that the production spread in the value of f,
between op-amp units of the same type is usually much smaller than that observed for A, and
f,. For this reason f, is preferred as a specification parameter. Finally, it should be mentioned
that an op amp having this uniform —6-dB/octave (or equivalently —20-dB/decade) gain
rolloff is said to have a single-pole model. Also, since this single pole dominates the ampli-
fier frequency response, it is called a dominant pole. For more on poles (and zeros), the reader
may wish to consult Appendix F.

2.26 Aninternally compensated op amp is specified to have an open-loop dc gain of 106 dB and a unity-
gain bandwidth of 3 MHz. Find f, and the open-loop gain (in dB) at f,, 300 Hz, 3 kHz, 12 kHz, and
60 kHz.
Ans. 15 Hz; 103 dB; 80 dB; 60 dB; 48 dB; 34 dB

2.7.2 Frequency Response of Closed-Loop Amplifiers

We next consider the effect of limited op-amp gain and bandwidth on the closed-loop transfer
functions of the two basic configurations: the inverting circuit of Fig. 2.5 and the noninverting
circuit of Fig. 2.12. The closed-loop gain of the inverting amplifier, assuming a finite op-amp
open-loop gain A, was derived in Section 2.2 and given in Eq. (2.5), which we repeat here as

Vo “R,/R,
V,  1+(1+R,/R,)/A 250 ©

*Since f, is the product of the dc gain A, and the 3-dB bandwidth f, (where f, = @,/27), it is also known
as the gain—-bandwidth product (GB). The reader is cautioned, however, that in some amplifiers, the
unity-gain frequency and the gain-bandwidth product are not equal.
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Example 2.6

Substituting for A from Eq. (2.42) and using Eq. (2.46) gives

V,(3) _ -R,/R; 251)
Vi), l(1 + &) T . S
A, R,/ w/(1+R,/R;)
For A, > 1+R,/R,, which is usually the case,
Vo (S) _ -R,/R; (252)
Vi(s) 14 S '
w/(1+R,/Ry)

which is of the same form as that for a low-pass STC network (see Table 1.2, page 34). Thus
the inverting amplifier has an STC low-pass response with a dc gain of magnitude equal to
R,/R,. The closed-loop gain rolls off at a uniform —20-dB/decade slope with a corner fre-
quency (3-dB frequency) given by

@

~1+R,/R, (2:53)

W34

Similarly, analysis of the noninverting amplifier of Fig. 2.12, assuming a finite open-loop
gain A, yields the closed-loop transfer function
V, 1+R,/R,

V, ~ 1+(1+Ry/R,)/A (254)

Substituting for A from Eq. (2.42) and making the approximation A, > 1+ R,/R, results in

Vo(s) 1+R,/R,
Vi(s) s (2.53)
o/ (1+R,/Ry,)

Thus the noninverting amplifier has an STC low-pass response with a dc gain of (1 + R,/R;)
and a 3-dB frequency given also by Eg. (2.53).

Consider an op amp with f,= 1 MHz. Find the 3-dB frequency of closed-loop amplifiers with nomi-
nal gains of +1000, +100, +10, +1, -1, —10, —100, and —1000. Sketch the magnitude frequency
response for the amplifiers with closed-loop gains of +10 and -10.

Solution

We use Eq. (2.53) to obtain the results given in the following table.

Closed-Loop Gain R,/R, f,ie=1./(1+R,/R,)
+1000 999 1 kHz
+100 99 10 kHz
+10 9 100 kHz
+1 0 1 MHz
-1 1 0.5 MHz
-10 10 90.9 kHz
-100 100 9.9 kHz
-1000 1000 =1kHz
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Figure 2.40 shows the frequency response for the amplifier whose nominal dc gain is +10
(20 dB), and Fig. 2.41 shows the frequency response for the —10 (also 20 dB) case. An interest-
ing observation follows from the table above: The unity-gain inverting amplifier has a 3-dB fre-
quency of f,/2 as compared to f, for the unity-gain noninverting amplifier (the unity-gain voltage

follower).
v,
| @n
4
i
20 ~ 3dB
|
10 | —20 dB/decade
T
|
| | | | I ! >~
07 100 1 10 100 1000 10"

Figure 2.40 Frequency response of an amplifier with a nominal gain of +10 V/V.

%
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Figure 2.41 Frequency response of an amplifier with a nominal gain of —10 V/V.
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The table in Example 2.6 above clearly illustrates the trade-off between gain and band-
width: For a given op amp, the lower the closed-loop gain required, the wider the bandwidth
achieved. Indeed, the noninverting configuration exhibits a constant gain—bandwidth product
equal to f, of the op amp. An interpretation of these results in terms of feedback theory will be
given in Chapter 10.
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2.27 Aninternally compensated op amp has a dc open-loop gain of 10°V/V and an ac open-loop gain of 40
dB at 10 kHz. Estimate its 3-dB frequency, its unity-gain frequency, its gain—bandwidth product,
and its expected gain at 1 kHz.

Ans. 1Hz; 1 MHz; 1 MHz; 60 dB

2.28 An op amp having a 106-dB gain at dc and a single-pole frequency response with f, = 2 MHz is
used to design a noninverting amplifier with nominal dc gain of 100. Find the 3-dB frequency of
the closed-loop gain.

Ans. 20 kHz

2.8 Large-Signal Operation of Op Amps

In this section, we study the limitations on the performance of op-amp circuits when large
output signals are present.

2.8.1 Output Voltage Saturation

Similar to all other amplifiers, op amps operate linearly over a limited range of output volt-
ages. Specifically, the op-amp output saturates in the manner shown in Fig. 1.14 with L, and
L_within 1 V or so of the positive and negative power supplies, respectively. Thus, an op
amp that is operating from £15-V supplies will saturate when the output voltage reaches
about +13 V in the positive direction and —13 V in the negative direction. For this particular
op amp the rated output voltage is said to be £13 V. To avoid clipping off the peaks of the
output waveform, and the resulting waveform distortion, the input signal must be kept corre-
spondingly small.

2.8.2 Output Current Limits

Another limitation on the operation of op amps is that their output current is limited to a
specified maximum. For instance, the popular 741 op amp is specified to have a maximum
output current of £20 mA. Thus, in designing closed-loop circuits utilizing the 741, the
designer has to ensure that under no condition will the op amp be required to supply an out-
put current, in either direction, exceeding 20 mA. This, of course, has to include both the
current in the feedback circuit as well as the current supplied to a load resistor. If the circuit
requires a larger current, the op-amp output voltage will saturate at the level corresponding
to the maximum allowed output current.
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Example 2.7

Consider the noninverting amplifier circuit shown in Fig. 2.42. As shown, the circuit is designed for
anominal gain (1+R,/R,) = 10 V/V. Itis fed with a low-frequency sine-wave signal of peak voltage
V, and is connected to a load resistor R . The op amp is specified to have output saturation voltages
of £13 V and output current limits of £20 mA.

(@) ForV,=1VandR =1k, specify the signal resulting at the output of the amplifier.

(b) ForV, =15V and R =1k, specify the signal resulting at the output of the amplifier.

(c) For R =1k, what is the maximum value of V, for which an undistorted sine-wave output is
obtained?

(d) For V, =1V, what is the lowest value of R, for which an undistorted sine-wave output is
obtained?

U,
? ~~5---15V
\

V4
L \--13V

|
,}
6<
o

-~y

—13V -~
\\ 7
715V —_———

(@) (b)

Figure 2.42 (a) A noninverting amplifier with a nominal gain of 10 V/V designed using an op amp that saturates at
+13-V output voltage and has +20-mA output current limits. (b) When the input sine wave has a peak of 1.5V, the
output is clipped off at +13 V.

Solution

(@ ForV,=1V and R =1 kQ, the output will be a sine wave with peak value of 10 V. This is
lower than output saturation levels of £13 V, and thus the amplifier is not limited that way. Also,
when the output is at its peak (10 V), the current in the load will be 10 V/1 kQ =10 mA, and
the current in the feedback network will be 10 V/(9 + 1) kQ = 1 mA, for a total op-amp output
current of 11 mA, well under its limit of 20 mA.

(b) Now if V is increased to 1.5 V, ideally the output would be a sine wave of 15-V peak. The op
amp, however, will saturate at 13 V, thus clipping the sine-wave output at these levels. Let’s
next check on the op-amp output current: At 13-V output and R, =1 kQ, i, =13 mA and i. =
1.3 mA; thus iy = 14.3 mA, again under the 20-mA limit. Thus the output will be a sine wave
with its peaks clipped off at £13 V, as shown in Fig. 2.42(b).



104 Chapter 2 Operational Amplifiers

Example 2.7 continued
(c) For R =1 kQ, the maximum value of V, for undistorted sine-wave output is 1.3 V. The output
will be a 13-V peak sine wave, and the op-amp output current at the peaks will be 14.3 mA.
(d) ForV,=1V and R reduced, the lowest value possible for R_while the output is remaining an
undistorted sine wave of 10-V peak can be found from
10V 10 V

lomax =20 MA =B =+ 596 T T ko

which results in

Rimin = 526 Q

2.8.3 Slew Rate

Another phenomenon that can cause nonlinear distortion when large output signals are
present is slew-rate limiting. The name refers to the fact that there is a specific maximum
rate of change possible at the output of a real op amp. This maximum is known as the slew
rate (SR) of the op amp and is defined as

o SR = ‘Llf (2.56)

and is usually specified on the op-amp data sheet in units of V/us. It follows that if the input
signal applied to an op-amp circuit is such that it demands an output response that is faster
than the specified value of SR, the op amp will not comply. Rather, its output will change at
the maximum possible rate, which is equal to its SR. As an example, consider an op amp
connected in the unity-gain voltage-follower configuration shown in Fig. 2.43(a), and let the
input signal be the step voltage shown in Fig. 2.43(b). The output of the op amp will not be
able to rise instantaneously to the ideal value V; rather, the output will be the linear ramp of
slope equal to SR, shown in Fig. 2.43(c). The amplifier is then said to be slewing, and its
output is slew-rate limited.

In order to understand the origin of the slew-rate phenomenon, we need to know about
the internal circuit of the op amp, and we will study it in Chapter 12. For the time being,
however, it is sufficient to know about the phenomenon and to note that it is distinct from
the finite op-amp bandwidth that limits the frequency response of the closed-loop amplifi-
ers, studied in the previous section. The limited bandwidth is a linear phenomenon and
does not result in a change in the shape of an input sinusoid; that is, it does not lead to non-
linear distortion. The slew-rate limitation, on the other hand, can cause nonlinear distortion
to an input sinusoidal signal when its frequency and amplitude are such that the corre-
sponding ideal output would require v, to change at a rate greater than SR. This is the ori-
gin of another related op-amp specification, its full-power bandwidth, to be explained later.

Before leaving the example in Fig. 2.43, however, we should point out that if the step
input voltage V is sufficiently small, the output can be the exponentially rising ramp shown in
Fig. 2.43(d). Such an output would be expected from the follower if the only limitation on its
dynamic performance were the finite op-amp bandwidth. Specifically, the transfer function of
the follower can be found by substituting R, = e and R, = 0 in Eq. (2.55) to obtain

V, 1

Vi T 1+ s/ (2:57)
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Figure 2.43 (a) Unity-gain follower. (b) Input step waveform. (c) Linearly rising output waveform
obtained when the amplifier is slew-rate limited. (d) Exponentially rising output waveform obtained when
Vis sufficiently small so that the initial slope (&) is smaller than or equal to SR.

which is a low-pass STC response with a time constant 1/ @,. Its step response would there-
fore be (see Appendix E)

vo(t) =V(1-e™ ™ (2.58)

The initial slope of this exponentially rising function is (¢V). Thus, as long as V is suffi-
ciently small so that @V < SR, the output will be as in Fig. 2.43(d).

2.29 An op amp that has a slew rate of 1 VV/us and a unity-gain bandwidth f, of 1 MHz is connected in the
unity-gain follower configuration. Find the largest possible input voltage step for which the output
waveform will still be given by the exponential ramp of Eq. (2.58). For this input voltage, what is
the 10% to 90% rise time of the output waveform? If an input step 10 times as large is applied, find
the 10% to 90% rise time of the output waveform.

Ans. 0.16 V; 0.35 us; 1.28 us
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2.8.4 Full-Power Bandwidth

Op-amp slew-rate limiting can cause nonlinear distortion in sinusoidal waveforms. Consider
once more the unity-gain follower with a sine-wave input given by

v = \Zsina)t

The rate of change of this waveform is given by
dy,
dt

with a maximum value of @V;. This maximum occurs at the zero crossings of the input

sinusoid. Now if @V, exceeds the slew rate of the op amp, the output waveform will be
distorted in the manner shown in Fig. 2.44. Observe that the output cannot keep up with the
large rate of change of the sinusoid at its zero crossings, and the op amp slews.

The op-amp data sheets usually specify a frequency f,, called the full-power bandwidth.

It is the frequency at which an output sinusoid with amplitude equal to the rated output volt-

age of the op amp begins to show distortion due to slew-rate limiting. If we denote the rated

output voltage V.., then f,, is related to SR as follows:

= aV cosat

OVomax = SR

Thus,
SR
f, =
o M 2o
It should be obvious that output sinusoids of amplitudes smaller than V., will show slew-
rate distortion at frequencies higher than a,,. In fact, at a frequency @ higher than @, the
maximum amplitude of the undistorted output sinusoid is given by

(1) Vo = Vm(—a;—“”) (2.60)

(2.59)

Theoretical
output

Output when op amp
is slew-rate limited

Figure 2.44 Effect of slew-rate limiting on output sinusoidal waveforms.



2.8 Large-Signal Operation of Op Amps 107

2.30 An op amp has a rated output voltage of £10 V and a slew rate of 1 V/us. What is its full-power
bandwidth? If an input sinusoid with frequency f = 5f,, is applied to a unity-gain follower con-
structed using this op amp, what is the maximum possible amplitude that can be accommodated
at the output without incurring SR distortion?

Ans. 15.9 kHz; 2 V (peak)

Summary

The IC op amp is a versatile circuit building block. It is
easy to apply, and the performance of op-amp circuits
closely matches theoretical predictions.

The op-amp terminals are the inverting input terminal
(1), the noninverting input terminal (2), the output ter-
minal (3), the positive-supply terminal (4) to be con-
nected to the positive power supply (V..), and the
negative-supply terminal (5) to be connected to the
negative supply (V). The common terminal of the
two supplies is the circuit ground.

The ideal op amp responds only to the difference input
signal, that is, (v, — v;); providing at the output, be-
tween terminal 3 and ground, a signal A(v, — v;), where
A, the open-loop gain, is very large (10* to 10° and ide-
ally infinite; and has an infinite input resistance and a
zero output resistance. (See Table 3.1.)

Negative feedback is applied to an op amp by connecting
a passive component between its output terminal and its
inverting (negative) input terminal. Negative feedback
causes the voltage between the two input terminals to
become very small and ideally zero. Correspondingly, a
virtual short circuit is said to exist between the two input
terminals. If the positive input terminal is connected to
ground, a virtual ground appears on the negative input
terminal.

The two most important assumptions in the analysis of
op-amp circuits, presuming negative feedback exists
and the op amps are ideal, are as follows: the two input
terminals of the op amp are at the same voltage, and
zero current flows into the op-amp input terminals.

With negative feedback applied and the loop closed,
the closed-loop gain is almost entirely determined by
external components: For the inverting configuration,
V,/V; = -R,/Ry; and for the noninverting configuration,
V,/Vi = 1+R,/R;.

The noninverting closed-loop configuration features a very

high input resistance. A special case is the unity-gain fol-
lower, frequently employed as a buffer amplifier to con-
nect a high-resistance source to a low-resistance load.

The difference amplifier of Fig. 2.16 is designed with
R4s/R3= Ry,/Ry, resulting in vy = (R,/Ry)
(02— vy1).

The instrumentation amplifier of Fig. 2.20(b) is a very
popular circuit. It provides v = (1 +R,/R;1)(Rs/Rj3)
(12— v11) - Itis usually designed with R;= R,, and R;
and R, selected to provide the required gain. If an adjust-
able gain is needed, part of R; can be made variable.

The inverting Miller integrator of Fig. 2.24 is a popular cir-
cuit, frequently employed in analog signal-processing func-
tions such as filters (Chapter 16) and oscillators (Chapter 17).

The input offset voltage, V, is the magnitude of dc volt-

age that when applied between the op amp input termi-
nals, with appropriate polarity, reduces the dc offset
voltage at the output to zero.

The effect of Vs on performance can be evaluated by
including in the analysis a dc source V4 in series with
the op-amp positive input lead. For both the inverting
and the noninverting configurations, V results in a dc
offset voltage at the output of Vo5(1 +R,/R,).

Capacitively coupling an op amp reduces the dc offset
voltage at the output considerably.

The average of the two dc currents, I, and |, that flow in
the input terminals of the op amp, is called the input bias
current, 1. In a closed-loop amplifier, I, gives rise to a dc
offset voltage at the output of magnitude 1;R,. This voltage
can be reduced to 1R, by connecting a resistance in se-
ries with the positive input terminal equal to the total dc re-
sistance seen by the negative input terminal. 14 is the input
offset current; that is, los = |lg; — Igy|.
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= Connecting a large resistance in parallel with the capaci-
tor of an op-amp inverting integrator prevents op-amp
saturation (due to the effect of Vo and Iy).

= For most internally compensated op amps, the open-loop
gain falls off with frequency at a rate of —20 dB/decade,
reaching unity at a frequency f, (the unity-gain band-
width). Frequency f, is also known as the gain—bandwidth
product of the op amp: f, = A, f,, where A, is the dc gain,
and f, is the 3-dB frequency of the open-loop gain. At any
frequency f (f > f,), the op-amp gain |A| = f/f.

®m  For both the inverting and the noninverting closed-loop
configurations, the 3-dB frequency is equal to
f/(1+R,/Ry).

Computer Simulation Problems

= Problems identified by this icon are intended to dem-
onstrate the value of using SPICE simulation to verify hand
analysis and design, and to investigate important issues such
as allowable signal swing and amplifier nonlinear distortion.
Instructions to assist in setting up PSpice and Multism simu-
lations for all the indicated problems can be found in the
corresponding files on the disc. Note that if a particular
parameter value is not specified in the problem statement,
you are to make a reasonable assumption. * difficult prob-
lem; ** more difficult; *** very challenging and/or time-
consuming; D: design problem.

Section 2.1: The Ideal Op Amp

2.1 What is the minimum number of pins required for a so-
called dual-op-amp IC package, one containing two op
amps? What is the number of pins required for a so-called
quad-op-amp package, one containing four op-amps?

2.2 The circuit of Fig. P2.2 uses an op amp that is ideal
except for having a finite gain A. Measurements indicate
1o =4.0 V when v, = 2.0 V. What is the op-amp gain A?

2.3 Measurement of a circuit incorporating what is thought
to be an ideal op amp shows the voltage at the op-amp output
to be —2.000 V and that at the negative input to be —1.000 V.
For the amplifier to be ideal, what would you expect the volt-
age at the positive input to be? If the measured voltage at the
positive input is —1.010 V, what is likely to be the actual gain
of the amplifier?

®  The maximum rate at which the op-amp output voltage
can change is called the slew rate. The slew rate, SR, is
usually specified in V/us. Op-amp slewing can result in
nonlinear distortion of output signal waveforms.

®  The full-power bandwidth, f,,, is the maximum frequency
at which an output sinusoid with an amplitude equal to
the op-amp rated output voltage (V,,,,,) can be produced

omax.

without distortion: §, = SR/ 27V,

Figure P2.2

2.4 A set of experiments is run on an op amp that is ideal
except for having a finite gain A. The results are tabulated
below. Are the results consistent? If not, are they reason-
able, in view of the possibility of experimental error? What
do they show the gain to be? Using this value, predict values
of the measurements that were accidentally omitted (the blank
entries).

Experiment # v, v, [
1 0.00 0.00 0.00
2 1.00 1.00 0.00
3 1.00 1.00
4 1.00 1.10 10.1
3 2.01 2.00 -0.99
6 1.99 2.00 1.00
7 5.10 -5.10




2.5 Refer to Exercise 2.3. This problem explores an alter-
native internal structure for the op amp. In particular, we
wish to model the internal structure of a particular op amp
using two transconductance amplifiers and one transresistance
amplifier. Suggest an appropriate topology. For equal
transconductances G, and a transresistance R, find an
expression for the open-loop gain A. For G, = 10 mA/V and
R, =2 X 10° Q, what value of A results?

2.6 The two wires leading from the output terminals of a
transducer pick up an interference signal that is a 60-Hz, 1-
V sinusoid. The output signal of the transducer is sinusoi-
dal of 10-mV amplitude and 1000-Hz frequency. Give
expressions for v, v, and the total signal between each
wire and the system ground.

2.7 Nonideal (i.e., real) operational amplifiers respond
to both the differential and common-mode components of
their input signals (refer to Fig. 2.4 for signal representa-
tion). Thus the output voltage of the op amp can be
expressed as

vo = Agtig+ Acn¥iem

where A, is the differential gain (referred to simply as A
in the text) and A, is the common-mode gain (assumed to
be zero in the text). The op amp’s effectiveness in reject-
ing common-mode signals is measured by its CMRR,
defined as
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Consider an op amp whose internal structure is of the type
shown in Fig. E2.3 except for a mismatch AG,, between the
transconductances of the two channels; that is,

G = Gm_%AGm
Gmy = G, +3AG,

Find expressions for A, A, and CMRR. If A, is 80 dB and
the two transconductances are matched to within 0.1% of
each other, calculate A, and CMRR.

Section 2.2: The Inverting
Configuration

2.8 Assuming ideal op amps, find the voltage gain
v,/ v; and input resistance R, of each of the circuits in
Fig. P2.8.

2.9 A particular inverting circuit uses an ideal op amp
and two 10-kQ resistors. What closed-loop gain would
you expect? If a dc voltage of +1.00 V is applied at the
input, what output result? If the 10-kQ resistors are said to
be “1% resistors,” having values somewhere in the range
(1 £ 0.01) times the nominal value, what range of outputs
would you expect to actually measure for an input of pre-
cisely 1.00 VV?

2.10 You are provided with an ideal op amp and three 10-
kQ resistors. Using series and parallel resistor combinations,

CMRR = 20 log Ag how many different inverting-amplifier circuit topologies are
o possible? What is the largest (noninfinite) available voltage
100 kQ 100 kQ
MV ——MANV—
10 k) 10 kQ
Uy O——MN\— y; oO—AWN—
—O 1, —0 0,
>
= = ilo kQ
() (b) -
100 k€ 100 kQ
10 kQ 10 k)
1; O——AMW— v, O——ANN—
—0O vy, —0 v
< ¢
10 kQ2
= = 10 kQ
= (©) (d)

Figure P2.8
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gain? What is the smallest (nonzero) available gain? What
are the input resistances in these two cases?

= 2.1 For ideal op amps operating with the following
feedback networks in the inverting configuration, what closed-
loop gain results?

(@) R,=10kQ, R, =10 kQ
(b) R, =10 kQ, R, = 100 kQ
(©) R,=10kQ, R,=1kQ
(d) R, =100 kQ, R, = 10 MQ
(e) R =100 kQ, R, =1 MQ

D 2.12 Given an ideal op amp, what are the values of the
resistors R, and R, to be used to design amplifiers with the
closed-loop gains listed below? In your designs, use at least
one 10-k< resistor and another equal or larger resistor.

@) -1 VIV
(b) -2 VIV

(c) -0.5 VIV
(d) -100 V/V

D 2.13 Design an inverting op-amp circuit for which the
gain is —4 V/V and the total resistance used is 100 kQ.

D 2.14 Using the circuit of Fig. 2.5 and assuming an ideal
op amp, design an inverting amplifier with a gain of 26 dB
having the largest possible input resistance under the con-
straint of having to use resistors no larger than 1 MQ. What
is the input resistance of your design?

2.15 An ideal op amp is connected as shown in Fig. 2.5
with R, = 10 kQ and R, = 100 kQ. A symmetrical square-
wave signal with levels of 0 V and 1 V is applied at the
input. Sketch and clearly label the waveform of the resulting
output voltage. What is its average value? What is its high-
est value? What is its lowest value?

2.16 For the circuit in Fig. P2.16, assuming an ideal op
amp, find the currents through all branches and the voltages
at all nodes. Since the current supplied by the op amp is
greater than the current drawn from the input signal source,
where does the additional current come from?

10 kQ
MV

1kQ

—O

>
iz kQ

—-05V

Figure P2.16

2.17 An inverting op-amp circuit is fabricated with the
resistors R, and R, having x% tolerance (i.e., the value of
each resistance can deviate from the nominal value by as
much as £ x%). What is the tolerance on the realized closed-
loop gain? Assume the op amp to be ideal. If the nominal
closed-loop gain is —100 V/V and x = 1, what is the range of
gain values expected from such a circuit?

2.18 An ideal op amp with 5-kQ and 15-kQ resistors is
used to create a +5-V supply from a —15-V reference.
Sketch the circuit. What are the voltages at the ends of the 5-
kQ resistor? If these resistors are so-called 1% resistors,
whose actual values are the range bounded by the nominal
value 1%, what are the limits of the output voltage pro-
duced? If the —15-V supply can also vary by +1%, what is
the range of the output voltages that might be found?

2.19 An inverting op-amp circuit for which the required gain
is =50 V/V uses an op amp whose open-loop gain is only
300 V/V. If the larger resistor used is 100 k<, to what must the
smaller be adjusted? With what resistor must a 2-kQ resistor
connected to the input be shunted to achieve this goal? (Note
that a resistor R, is said to be shunted by resistor R, when R, is
placed in parallel with R,.)

D 2.20 (a) Design an inverting amplifier with a closed-
loop gain of —100 V/V and an input resistance of 1 kQ.

(b) If the op amp is known to have an open-loop gain of
2000 V/V, what do you expect the closed-loop gain of
your circuit to be (assuming the resistors have precise
values)?

(c) Give the value of a resistor you can place in parallel
(shunt) with R, to restore the closed-loop gain to its nominal
value. Use the closest standard 1% resistor value (see
Appendix H).

2.21 An op amp with an open-loop gain of 2000 V/V is
used in the inverting configuration. If in this application the
output voltage ranges from —10 V to +10 V, what is the
maximum voltage by which the “virtual ground node”
departs from its ideal value?

2.22 The circuit in Fig. P2.22 is frequently used to provide
an output voltage v, proportional to an input signal current i.

Figure P2.22



Derive expressions for the transresistance R,,= v,/i; and
the input resistance R; = v;/i; for the following cases:

(a) Ais infinite.

(b) Ais finite.

2.23 Show that for the inverting amplifier if the op-amp
gain is A, the input resistance is given by

R,

i Vi

*2.24 For an inverting amplifier with nominal closed-loop
gain R,/Rj, find the minimum value that the op-amp open-
loop gain A must have (in terms of R,/R;) so that the gain
error is limited to 0.1%, 1%, and 10%. In each case find the
value of a resistor R, such that when it is placed in shunt
with R;, the gain is restored to its nominal value.

*2.25 Figure P2.25 shows an op amp that is ideal except for
having a finite open-loop gain and is used to realize an invert-
ing amplifier whose gain has a nominal magnitude
G = R,/R;. To compensate for the gain reduction due to the
finite A, a resistor R, is shunted across R,. Show that perfect
compensation is achieved when R, is selected according to

R A5G
R, 1+G
R, R,
D—m—‘
Vi
R1 >—O\/O

Figure P2.25

*D 2.26 (a) Use Eq. (2.5) to obtain the amplifier open-loop
gain A required to realize a specified closed-loop gain
(Grominat = —R2/Ry) within a specified gain error ¢,

G- Gnominal

= ‘
Gnominal

(b) Design an inverting amplifer for a nominal closed-loop
gain of —100, an input resistance of 2 kQ, and a gain error of
<10%. Specify R,, R,, and the minimum A required.

*2.27 (a) Use Eq. (2.5) to show that a reduction AA in the op-
amp gain A gives rise to a reduction A|G| in the magnitude of
the closed-loop gain G with A|G| and AA related by

AlGI/|G] _ 1+R,/R,
AA/A T A
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(b) If in a closed-loop amplifier with a nominal gain (i.e,
R,/R;) of 100, A decreases by 50%, what is the minimum
nominal A required to limit the percentage change in |G| to
0.5%7?

2.28 Consider the circuit in Fig. 2.8 with R, =R, = R, =
1 MQ, and assume the op amp to be ideal. Find values for R,
to obtain the following gains:

(a) —200 VIV
(b) —20 VIV
(©) —2VIV

D 2.29 An inverting op-amp circuit using an ideal op amp
must be designed to have a gain of —1000 V/V using resis-
tors no larger than 100 kQ.

(a) For the simple two-resistor circuit, what input resis-
tance would result?

(b) If the circuit in Fig. 2.8 is used with three resistors of
maximum value, what input resistance results? What is
the value of the smallest resistor needed?

2.30 The inverting circuit with the T network in the feed-
back is redrawn in Fig. P2.30 in a way that emphasizes the
observation that R, and R, in effect are in parallel (because
the ideal op amp forces a virtual ground at the inverting
input terminal). Use this observation to derive an expression
for the gain (vg/v,) by first finding (vy/v;) and (vg/ vy).
For the latter use the voltage-divider rule applied to R, and
(R [IR).

Figure P2.30

*2.31 The circuit in Fig. P2.31 can be considered to be an
extension of the circuit in Fig. 2.8.

(a) Find the resistances looking into node 1, R;; node 2,
R,; node 3, R,; and node 4, R,.

(b) Find the currents I, I,, I,, and I, in terms of the input
current I.

(c) Find the voltages at nodes 1, 2, 3, and 4, that is, V,, V,,
V,, and V, in terms of (IR).
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—_ |ded

Figure P2.31

2.32 The circuit in Fig. P2.32 utilizes an ideal op amp.

(@) Find 1, I, I, 1,and V,.

(b) IfV, is not to be lower than —13 V, find the maximum
allowed value for R,.

(c) If R, is varied in the range 100 Q to 1 kQ, what is the
corresponding change in I, and in V?

| |
2,10k v R L

) 1000

S

\

Figure P2.32

2.33 Use the circuit in Fig. P2.32 as an inspiration to
design a circuit that supplies a constant current | of 3.1 mA
to a variable resistance R,. Assume the availability of a
1.5V battery and design so that the current drawn from the
battery is 0.1 mA. For the smallest resistance in the circuit,
use 500 Q. If the op amp saturates at +12 V, what is the
maximum value that R, can have while the current-source
supplying it operates properly?

D 2.34 Assuming the op amp to be ideal, it is required to
design the circuit shown in Fig. P2.34 to implement a cur-
rent amplifier with gain i, /i, = 10 A/A.

(a) Find the required value for R.
(b) What are the input and the output resistance of this
current amplifier?

(c) If R, =1 KkQ and the op amp operates in an ideal man-
ner as long as v, is in the range £12 V, what range of i, is
possible?

(d) If the amplifier is fed with a current source having a
current of 0.2 mA and a source resistance of 10 kQ, find i, .

10lkOE SR

Figure P2.34

D 2.35 Design the circuit shown in Fig. P2.35 to have an
input resistance of 100 kQ and a gain that can be varied

Figure P2.35



from -1 V/V to —10 V/V using the 10-kQ potentiometer R,.
What voltage gain results when the potentiometer is set
exactly at its middle value?

2.36 A weighted summer circuit using an ideal op amp has
three inputs using 100-k< resistors and a feedback resistor of
50 kQ. A signal v, is connected to two of the inputs while a
signal v, is connected to the third. Express v, in terms of v,
and v,. If v, =2 V and v, = -2 V, what is v,?

D 2.37 Design an op amp circuit to provide an output
g = —[2v; + (v,/2)]. Choose relatively low values of
resistors but ones for which the input current (from each
input signal source) does not exceed 0.1 mA for 1-V input
signals.

D 2.38 Use the scheme illustrated in Fig. 2.10 to design an
op-amp circuit with inputs v, v, and v, whose output is
vy = —(2v, + 4v, + 8y;) using small resistors but no smaller
than 10 kQ.

D 2.39 An ideal op amp is connected in the weighted
summer configuration of Fig. 2.10. The feedback resistor
R; = 10 k€, and six 10-k€2 resistors are connected to the
inverting input terminal of the op amp. Show, by sketching
the various circuit configurations, how this basic circuit
can be used to implement the following functions:

@) vg = —(v,+2v,+3v3)

(b) vg = (v + v, + 203+ 20,)
(€) vo = —(v;+5vy)

(d) vo = —6v,

In each case find the input resistance seen by each of the
signal sources supplying v;, v,, v,, and v,. Suggest at least
two additional summing functions that you can realize with
this circuit. How would you realize a summing coefficient
that is 0.5?

D 2.40 Give a circuit, complete with component values, for
a weighted summer that shifts the dc level of a sine-wave sig-
nal of 3 sin(wt) V from zero to —3 V. Assume that in addition
to the sine-wave signal you have a dc reference voltage of
1.5V available. Sketch the output signal waveform.

D 2.47 Use two ideal op amps and resistors to implement
the summing function

Ug = vy +2v,—3v3—4v,

D *2.42 In an instrumentation system, there is a need to
take the difference between two signals, one of v, =
2sin(2z x 60t) + 0.01 sin(2z x 1000t) volts and another
of v,= 2 sin(2x x 60t) — 0.01 sin(2z x 1000t) volts. Draw
a circuit that finds the required difference using two op
amps and mainly 100-kQ resistors. Since it is desirable to
amplify the 1000-Hz component in the process, arrange to
provide an overall gain of 100 as well. The op amps
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available are ideal except that their output voltage swing is
limited to £10 V.

*2.43 Figure P2.43 shows a circuit for a digital-to-analog
converter (DAC). The circuit accepts a 4-bit input binary
word a,a,a,a,, Where a,, a,, a,, and a, take the values of 0
or 1, and it provides an analog output voltage v, propor-
tional to the value of the digital input. Each of the bits of
the input word controls the correspondingly numbered
switch. For instance, if a, is 0 then switch S, connects the
20-kQ resistor to ground, while if a, is 1 then S, connects
the 20-kQ resistor to the +5-V power supply. Show that v,
is given by

R
Ug = —E;[Zoao + Zlal + 22a2 + 23a3]

where R; is in kilohms. Find the value of R, so that v, ranges
from 0 to —12 volts.

A

o—>
I
[en)
~
=
|
+
S

“?

T

>

Figure P2.43

Section 2.3: The Noninverting
Configuration

D 2.44 Given an ideal op amp to implement designs for
the following closed-loop gains, what values of resistors (R,,
R,) should be used? Where possible, use at least one 10-kQ
resistor as the smallest resistor in your design.
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(@) +1 VIV
(b) +2 VIV
(c) +11 VIV
(d) +100 VIV

D 2.45 Design a circuit based on the topology of the non-
inverting amplifier to obtain a gain of +1.5 V/V, using only
10-kQ resistors. Note that there are two possibilities. Which
of these can be easily converted to have a gain of either +1.0
VIV or +2.0 VIV simply by short-circuiting a single resistor
in each case?

D 2.46 Figure P2.46 shows a circuit for an analog voltme-
ter of very high input resistance that uses an inexpensive
moving-coil meter. The voltmeter measures the voltage V
applied between the op amp’s positive-input terminal and
ground. Assuming that the moving coil produces full-scale
deflection when the current passing through it is 100 pA,
find the value of R such that full-scale reading is obtained
when V is +10 V. Does the meter resistance shown affect the

voltmeter calibration?
[- Moving-coil meter

G

il
=
<+

Figure P2.46

D *2.47 (a) Use superposition to show that the output of
the circuit in Fig. P2.47 is given by

Ay 59 S8 0
Vo = _[RvaNl RNZUNZ RNnan}
R Rp Rp Rp
+|:1+—:||:—v +=—Upyt -+ = }
RndLRp; 7 Re, & Ren p

where Ry, =Ry,[IRyll - - - [IRy, and
Rp: Rp1||RP2|| 704 ”an”RPo
(b) Design a circuit to obtain
Ug = —3uyy + Upy + 20p,

The smallest resistor used should be 10 kQ.

=0 Uy

s
>
Reo

Figure P2.47

D 2.48 Design a circuit, using one ideal op amp, whose out-
putis v, = v, + 31, — 2(v; + 3v,). (Hint: Use a structure sim-
ilar to that shown in general form in Fig. P2.47.)

2.49 Derive an expression for the voltage gain, vy/v,, of
the circuit in Fig. P2.49.

I:QZ
——MWAV——
—O
+
Uo

Figure P2.49

2.50 For the circuit in Fig. P2.50, use superposition to find
v, in terms of the input voltages v, and v,. Assume an ideal
op amp. For

v, = 10sin(2z x 60t) —0.1sin(2z x 1000t), volts

v, = 10sin(27z x 60t) + 0.1sin(2z x 1000t), volts

find v,

D 2.51 The circuit shown in Fig. P2.51 utilizes a 10-kQ
potentiometer to realize an adjustable-gain amplifier. Derive
an expression for the gain as a function of the potentiometer



20R
——MW—
R
v O—MW =
R b—~C Vo
U +
20R
Figure P2.50
10-k€} pot
% (1 — x)
—O Vo
vy
Figure P2.51

setting x. Assume the op amp to be ideal. What is the range
of gains obtained? Show how to add a fixed resistor so that
the gain range can be 1 to 11 V/V. What should the resistor
value be?

D 2.52 Given the availability of resistors of value 1 kQ
and 10 kQ only, design a circuit based on the noninverting
configuration to realize a gain of +10 V/V.

2.53 Itis required to connect a 10-V source with a source
resistance of 100 kQ to a 1-kQ load. Find the voltage that
will appear across the load if:

(a) The source is connected directly to the load.
(b) A unity-gain op-amp buffer is inserted between the
source and the load.

In each case find the load current and the current supplied
by the source. Where does the load current come from in
case (b)?

2.54 Derive an expression for the gain of the voltage fol-
lower of Fig. 2.14, assuming the op amp to be ideal except
for having a finite gain A. Calculate the value of the
closed-loop gain for A = 1000, 100, and 10. In each case
find the percentage error in gain magnitude from the nomi-
nal value of unity.
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2.55 Complete the following table for feedback amplifiers
created using one ideal op amp. Note that R,, signifies input
resistance and R, and R, are feedback-network resistors as
labelled in the inverting and noninverting configurations.

Case Gain R, R, R,
a -10 VIV 10kQ

b -1V/vV 100 kQ

c -2 VIV 100 kQ
d +1V/V )

® +2 VIV 10 kQ

f +11 VIV 100 kQ
g -05V/vV 10 kQ

D 2.56 A noninverting op-amp circuit with nominal gain
of 10 V/V uses an op amp with open-loop gain of 50 V/V
and a lowest-value resistor of 10 kQ. What closed-loop gain
actually results? With what value resistor can which resistor
be shunted to achieve the nominal gain? If in the manufac-
turing process, an op amp of gain 100 V/V were used, what
closed-loop gain would result in each case (the uncompen-
sated one, and the compensated one)?

2.57 Use Eg. (2.11) to show that if the reduction in the
closed-loop gain G from the nominal value G, = 1+R,/R;
is to be kept less than x% of G,, then the open-loop gain
of the op amp must exceed G, by at least a factor F =
(100/x) — 1 = 100/x. Find the required F for x = 0.01,
0.1, 1, and 10. Utilize these results to find for each value of x
the minimum required open-loop gain to obtain closed-loop
gains of 1, 10, 107, 10° and 10* V/V.

2.58 For each of the following combinations of op-amp
open-loop gain A and nominal closed-loop gain G,, calculate
the actual closed-loop gain G that is achieved. Also, calcu-
late the percentage by which |G| falls short of the nominal
gain magnitude |G| .

Case G, (V/V) A (V/V)
a -1 10
b +1 10
c =il 100
d +10 10
e -10 100
f -10 1000
g +1 2
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2.59 Figure P2.59 shows a circuit that provides an output
voltage v, whose value can be varied by turning the wiper
of the 100-kQ potentiometer. Find the range over which
v, can be varied. If the potentiometer is a “20-turn” device,
find the change in v, corresponding to each turn of the pot.

+I5V

20 kQ

100-k{)
pot

20 kQ)

Figure P2.59

Section 2.4: Difference Amplifiers

2.60 Find the voltage gain vy/v4 for the difference
amplifier of Fig. 2.16 for the case R,=R,=10 kQ and R, =
R,=100 kQ. What is the differential input resistance R;,? If
the two Kkey resistance ratios (R,/R;) and (R,/R;) are dif-
ferent from each other by 1%, what do you expect the
common-mode gain A, to be? Also, find the CMRR in this
case. Neglect the effect of the ratio mismatch on the value
of A,.

D 2.61 Using the difference amplifier configuration of
Fig. 2.16 and assuming an ideal op amp, design the circuit
to provide the following differential gains. In each case, the
differential input resistance should be 20 kQ.

@) 1VIV
(b) 2 VIV

(c) 100 V/V
(d) 0.5V/V

2.62 For the circuit shown in Fig. P2.62, express v, as a
function of v, and v,. What is the input resistance seen by v,
alone? By v, alone? By a source connected between the two
input terminals? By a source connected to both input termi-
nals simultaneously?

2.63 Consider the difference amplifier of Fig. 2.16 with
the two input terminals connected together to an input

R R
(91
—O
+
Yo
(%) i
R R —
Figure P2.62

common-mode signal source. For R,/R; = R,/R3, show
that the input common-mode  resistance is
(R3+Ry) [ (Ry+Ry).

2.64 Consider the circuit of Fig. 2.16, and let each of the
v, and v, signal sources have a series resistance R,. What
condition must apply in addition to the condition in Eq.
(2.15) in order for the amplifier to function as an ideal dif-
ference amplifier?

*2.65 For the difference amplifier shown in Fig. P2.62, let
all the resistors be 10 kQ * x%. Find an expression for the
worst-case common-mode gain that results. Evaluate this for
x=0.1, 1, and 5. Also, evaluate the resulting CMRR in each
case. Neglect the effect of resistor tolerances on A,.

2.66 For the difference amplifier of Fig. 2.16, show that if
each resistor has a tolerance of +100 £% (i.e., for, say, a 5%
resistor, £ = 0.05) then the worst-case CMRR is given
approximately by

CMRR = 20 Iog[KJr 1}

4e
where K is the nominal (ideal) value of the ratios (R,/R;)
and (R,/Rj3). Calculate the value of worst-case CMRR for
an amplifier designed to have a differential gain of ideally
100 V/V, assuming that the op amp is ideal and that 1%
resistors are used.

D *2.67 Design the difference amplifier circuit of Fig. 2.16
to realize a differential gain of 100, a differential input resis-
tance of 20 kQ, and a minimum CMRR of 80 dB. Assume the
op amp to be ideal. Specify both the resistor values and their
required tolerance (e.qg., better than x%).

*2.68 (a) Find A, and A, for the difference amplifier cir-
cuit shown in Fig. P2.68.

(b) If the op amp is specified to operate properly as long
as the common-mode voltage at its positive and negative
inputs falls in the range £2.5 V, what is the corresponding
limitation on the range of the input common-mode signal
Yen? (This is known as the common-mode range of the
differential amplifier.)



(c) The circuit is modified by connecting a 10-k< resistor
between node A and ground, and another 10-kQ resistor
between node B and ground. What will now be the values
of A;, A,,, and the input common-mode range?

cm?

100 k2

Figure P2.68

**2.69 To obtain a high-gain, high-input-resistance differ-
ence amplifier, the circuit in Fig. P2.69 employs positive feed-
back, in addition to the negative feedback provided by the
resistor R connected from the output to the negative input of the
op amp. Specifically, a voltage divider (R, R;) connected
across the output feeds a fraction S of the output, that is, a volt-
age fu, back to the positive-input terminal of the op
amp through a resistor R. Assume that R, and R, are much
smaller than R so that the current through R is much lower than
the current in the voltage divider, with the result that
pB= Re|(Rs + Rg). Show that the differential gain is given by

U,

[e)

1
1=

AdE

=

=

Id
(Hint: Use superposition.)
Design the circuit to obtain a differential gain of 10 V/V and

differential input resistance of 2 MQ. Select values for R, R,
and Ry, such that (Rs + Rg) <R/100.

R R
U1 O—ANWN——MN——
Ud ——— O 1o
< R,
+
U O——AMWW— Bvo
R R
Rs
Figure P2.69
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*2.70 Figure P2.70 shows a modified version of the differ-
ence amplifier. The modified circuit includes a resistor Rg,
which can be used to vary the gain. Show that the differen-
tial voltage gain is given by

Yo _ _2&[1&_1
Uid Ry Re

(Hint: The virtual short circuit at the op-amp input causes
the current through the R, resistors to be v,4/2R;.)

R, R, R,

Figure P2.70

D *2.71 The circuit shown in Fig. P2.71 is a representation
of a versatile, commercially available IC, the INA105, manu-
factured by Burr-Brown and known as a differential ampli-
fier module. It consists of an op amp and precision, laser-
trimmed, metal-film resistors. The circuit can be configured
for a variety of applications by the appropriate connection of
terminals A, B, C, D, and O.

(a) Show how the circuit can be used to implement a dif-
ference amplifier of unity gain.
(b) Show how the circuit can be used to implement sin-
gle-ended amplifiers with gains:

(i) -1 VIV

(i) +1 VIV

(>iii) +2 VIV

(iv) +1/2 VIV

Avoid leaving a terminal open-circuited, for such a terminal
may act as an “antenna,” picking up interference and noise

25k 25k
AO—MAN——MWAV—o0C

Bo—MWA——MWA—0D
25kQ 25 kQ

Figure P2.71
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through capacitive coupling. Rather, find a convenient node
to connect such a terminal in a redundant way. When more
than one circuit implementation is possible, comment on the
relative merits of each, taking into account such consider-
ations as dependence on component matching and input
resistance.

2.72 Consider the instrumentation amplifier of Fig. 2.20(b)
with a common-mode input voltage of +2 V (dc) and a dif-
ferential input signal of 80-mV peak sine wave. Let 2R, =
2kQ, R, =50k, R, =R, =10 kQ. Find the voltage at every
node in the circuit.

2.73 (a) Consider the instrumentation amplifier circuit of
Fig. 2.20(a). If the op amps are ideal except that their out-
puts saturate at £14 V, in the manner shown in Fig. 1.14,
find the maximum allowed input common-mode signal for
the case R, = 1 kQ and R, = 100 kQ.

(b) Repeat (a) for the circuit in Fig. 2.20(b), and comment
on the difference between the two circuits.

2.74 (a) Expressing v, and v, in terms of differential
and common-mode components, find vy, and v, in the
circuit in Fig. 2.20(a) and hence find their differential
component v,, — vy, and their common-mode component
%(vm + vp,). Now find the differential gain and the common-
mode gain of the first stage of this instrumentation ampli-
fier and hence the CMRR.

(b) Repeat for the circuit in Fig. 2.20(b), and comment on
the difference between the two circuits.

*2.75 For an instrumentation amplifier of the type shown
in Fig. 2.20(b), a designer proposes to make R, =R, =R, =
100 k€, and 2R, = 10 kQ. For ideal components, what
difference-mode gain, common-mode gain, and CMRR
result? Reevaluate the worst-case values for these for the sit-
uation in which all resistors are specified as +1% units.
Repeat the latter analysis for the case in which 2R, is
reduced to 1 kQ. What do you conclude about the effect of
the gain of the first stage on CMRR? (Hint: Eq. (2.19) can
be used to evaluate A, of the second stage.)

D 2.76 Design the instrumentation-amplifier circuit of
Fig. 2.20(b) to realize a differential gain, variable in the
range 1 to 100, utilizing a 100-kQ pot as variable resistor.
(Hint: Design the second stage for a gain of 0.5.)

| *2.77 The circuit shown in Fig. P2.77 is intended to
supply a voltage to floating loads (those for which both ter-
minals are ungrounded) while making greatest possible use
of the available power supply.

(a) Assuming ideal op amps, sketch the voltage wave-
forms at nodes B and C for a 1-V peak-to-peak sine wave
applied at A. Also sketch v,

(b) What is the voltage gain v5/ v,?

20 kQ)
0'2'2%
10 kQ
J_ AN i
- ——OB
10 kQ o
‘VAVAV +
Ao——e 30 kQ Vo
—+ WY
10 kQ
AN i
vy s
— o C
10 kQ
= T—W\r— +
Figure P2.77

(c) Assuming that the op amps operate from +£15-V power
supplies and that their output saturates at +14 V (in the man-
ner shown in Fig. 1.14), what is the largest sine-wave out-
put that can be accommodated? Specify both its peak-to-
peak and rms values.

*2.78 The two circuits in Fig. P2.78 are intended to
function as voltage-to-current converters; that is, they
supply the load impedance Z, with a current proportional
to v, and independent of the value of Z,. Show that this is
indeed the case, and find for each circuit i, as a function
of v. Comment on the differences between the two
circuits.

Section 2.5: Integrators and
Differentiators

2.79 A Miller integrator incorporates an ideal op amp, a
resistor R of 100 kQ, and a capacitor C of 1 nF. A sine-wave
signal is applied to its input.

(a) At what frequency (in Hz) are the input and output
signals equal in amplitude?

(b) At that frequency, how does the phase of the output
sine wave relate to that of the input?

(c) If the frequency is lowered by a factor of 10 from that
found in (a), by what factor does the output voltage
change, and in what direction (smaller or larger)?

(d) What is the phase relation between the input and out-
put in situation (c)?

D 2.80 Design a Miller integrator with a time constant of
0.1 s and an input resistance of 100 kQ. A dc voltage of -1
volt is applied at the input at time 0, at which moment v, =
—10 V. How long does it take the output to reach 0 VV? +10 VV?
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@

Figure P2.78

2.81 An op-amp-based inverting integrator is measured at
1 kHz to have a voltage gain of —100 V/V. At what fre-
quency is its gain reduced to —1 V/VV? What is the integrator
time constant?

D 2.82 Design a Miller integrator that has a unity-gain fre-
quency of 1 krad/s and an input resistance of 100 kQ. Sketch
the output you would expect for the situation in which, with
output initially at 0 V, a 2-V, 2-ms pulse is applied to the
input. Characterize the output that results when a sine wave
2 sin 1000t is applied to the input.

D 2.83 Design a Miller integrator whose input resistance is
20 kQ and unity-gain frequency is 10 kHz. What components
are needed? For long-term stability, a feedback resistor is
introduced across the capacitor, limits the dc gain to 40 dB.
What is its value? What is the associated lower 3-dB fre-
quency? Sketch and label the output that results with a
0.1-ms, 1-V positive-input pulse (initially at 0 V) with (a) no
dc stabilization (but with the output initially at 0 V) and
(b) the feedback resistor connected.

*2.84 A Miller integrator whose input and output voltages
are initially zero and whose time constant is 1 ms is driven
by the signal shown in Fig. P2.84. Sketch and label the out-
put waveform that results. Indicate what happens if the input
levels are £2 V, with the time constant the same (1 ms) and
with the time constant raised to 2 ms.

2.85 Consider a Miller integrator having a time constant of
1 ms and an output that is initially zero, when fed with a
string of pulses of 10-us duration and 1-V amplitude rising
from 0 V (see Fig. P2.85). Sketch and label the output wave

(b)

U (V)ﬂ\

+1

Figure P2.84

u (V) A

10 ps
—> l<—

Figure P2.85

form resulting. How many pulses are required for an output
voltage change of 1 VV?
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D 2.86 Figure P2.86 shows a circuit that performs a low-
pass STC function. Such a circuit is known as a first-order,
low-pass active filter. Derive the transfer function and
show that the dc gain is (-R,/R;) and the 3-dB frequency
w, = 1/CR,. Design the circuit to obtain an input resis-
tance of 10 kQ, a dc gain of 20 dB, and a 3-dB frequency of
10 kHz. At what frequency does the magnitude of the trans-
fer function reduce to unity?

R,
V; O—AM——

—0

Figure P2.86

2.87 Show that a Miller integrator implemented with an op
amp with open-loop gain A, has a low-pass STC transfer func-
tion. What is the pole frequency of the STC function? How
does this compare with the pole frequency of the ideal integra-
tor? If an ideal Miller integrator is fed with a —1-V pulse signal
with a width T = CR, what will the output voltage be att = T?
Assume that at t = 0, y, = 0. Repeat for an integrator with an op
amp having A, = 1000.

2.88 A differentiator utilizes an ideal op amp, a 10-kQ resis-
tor, and a 0.01-puF capacitor. What is the frequency f, (in Hz)
at which its input and output sine-wave signals have equal
magnitude? What is the output signal for a 1-V peak-to-peak
sine-wave input with frequency equal to 10f,?

2.89 An op-amp differentiator with 1-ms time constant is
driven by the rate-controlled step shown in Fig. P2.89. Assum-
ing , to be zero initially, sketch and label its waveform.

U

1V

~Y

0 0.5 ms

Figure P2.89

2.90 An op-amp differentiator, employing the circuit
shown in Fig. 2.27(a), has R =10 kQ and C = 0.1 uF. When
a triangle wave of £1-V peak amplitude at 1 kHz is applied
to the input, what form of output results? What is its fre-
quency? What is its peak amplitude? What is its average
value? What value of R is needed to cause the output to have
a 10-V peak amplitude?

2.91 Use an ideal op amp to design a differentiation circuit
for which the time constant is 10~ s using a 10-nF capacitor.
What are the gains and phase shifts found for this circuit at
one-tenth and 10 times the unity-gain frequency? A series
input resistor is added to limit the gain magnitude at high
frequencies to 100 V/V. What is the associated 3-dB fre-
quency? What gain and phase shift result at 10 times the
unity-gain frequency?

D 2.92 Figure P2.92 shows a circuit that performs the
high-pass, single-time-constant function. Such a circuit is
known as a first-order high-pass active filter. Derive the
transfer function and show that the high-frequency gain is
(-R,/Ry) and the 3-dB frequency @, = 1/CR;. Design the
circuit to obtain a high-frequency input resistance of 10 kQ2, a
high-frequency gain of 40 dB, and a 3-dB frequency of 500
Hz. At what frequency does the magnitude of the transfer
function reduce to unity?

Ry
MWV

—oO\/

Figure P2.92

D **2.93 Derive the transfer function of the circuit in
Fig. P2.93 (for an ideal op amp) and show that it can be
written in the form

V, -R,/R;

V, Tl (/i) + (o @)]

where @, = 1/C;R, and @, = 1/C,R,. Assuming that the
circuit is designed such that @, > @, find approximate
expressions for the transfer function in the following fre-
guency regions:

@) o< o,
b) o, < < w,
©) o> o,



——O \/

0

Figure P2.93

Use these approximations to sketch a Bode plot for the mag-
nitude response. Observe that the circuit performs as an
amplifier whose gain rolls off at the low-frequency end in
the manner of a high-pass STC network, and at the high-
frequency end in the manner of a low-pass STC network.
Design the circuit to provide a gain of 40 dB in the “middle
frequency range,” a low-frequency 3-dB point at 100 Hz, a
high-frequency 3-dB point at 100 kHz, and an input resis-
tance (at > @) of 1 kQ.

Section 2.6: DC Imperfections

2.94 An op amp wired in the inverting configuration with
the input grounded, having R, = 100 k2 and R, = 1 kQ, has
an output dc voltage of —0.4 V. If the input bias current is
known to be very small, find the input offset voltage.

2.95 A noninverting amplifier with a gain of 200 uses an
op amp having an input offset voltage of 2 mV. Find the
output when the input is 0.01 sin at, volts.

2.96 A noninverting amplifier with a closed-loop gain
of 1000 is designed using an op amp having an input off-
set voltage of 5 mV and output saturation levels of
+13 V. What is the maximum amplitude of the sine wave
that can be applied at the input without the output clip-
ping? If the amplifier is capacitively coupled in the man-
ner indicated in Fig. 2.36, what would the maximum
possible amplitude be?

2.97 An op amp connected in a closed-loop inverting con-
figuration having a gain of 1000 V/V and using relatively
small-valued resistors is measured with input grounded to
have a dc output voltage of —1.4 V. What is its input offset
voltage? Prepare an offset-voltage-source sketch resembling
that in Fig. 2.28. Be careful of polarities.

2.98 A particular inverting amplifier with nominal gain
of =100 V/V uses an imperfect op amp in conjunction with
100-kQ and 10-MQ resistors. The output voltage is found to
be +9.31 VV when measured with the input open and +9.09 VV
with the input grounded.

Problems 121

(a) What is the bias current of this amplifier? In what
direction does it flow?

(b) Estimate the value of the input offset voltage.

(c) A 10-MQ resistor is connected between the positive-
input terminal and ground. With the input left floating
(disconnected), the output dc voltage is measured to be
-0.8 V. Estimate the input offset current.

D *2.99 A noninverting amplifier with a gain of +10 V/V
using 100 kQ as the feedback resistor operates from a 5-kQ
source. For an amplifier offset voltage of 0 mV, but with a
bias current of 1 pA and an offset current of 0.1 pA, what
range of outputs would you expect? Indicate where you
would add an additional resistor to compensate for the bias
currents. What does the range of possible outputs then
become? A designer wishes to use this amplifier with a 15-
kQ source. In order to compensate for the bias current in this
case, what resistor would you use? And where?

D 2.100 The circuit of Fig. 2.36 is used to create an ac-
coupled noninverting amplifier with a gain of 200 V/V
using resistors no larger than 100 kQ. What values of R;, R,,
and R, should be used? For a break frequency due to C, at
100 Hz, and that due to C, at 10 Hz, what values of C, and
C, are needed?

*2.101 Consider the difference amplifier circuit in Fig. 2.16.
LetR, =R,=10kQ and R, =R, =1 MQ. If the op amp has
Vos=4mV, I, =0.5 pA, and 1,5 = 0.1 pA, find the worst-
case (largest) dc offset voltage at the output.

*2.102 The circuit shown in Fig. P2.102 uses an op amp
having a £4-mV offset. What is its output offset voltage?
What does the output offset become with the input ac cou-
pled through a capacitor C? If, instead, a large capacitor is
placed in series with 1-kQ resistor, what does the output
offset become?

1 MQ
o——MW

Figure P2.102

2.103 Using offset-nulling facilities provided for the op
amp, a closed-loop amplifier with gain of +1000 is adjusted
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at 25°C to produce zero output with the input grounded. If
the input offset-voltage drift of the op amp is specified to
be 10 pV/°C, what output would you expect at 0°C and at
75°C? While nothing can be said separately about the polar-
ity of the output offset at either 0 or 75°C, what would you
expect their relative polarities to be?

2.104 An op amp is connected in a closed loop with gain
of +100 utilizing a feedback resistor of 1 MQ.

(a) If the input bias current is 100 nA, what output volt-
age results with the input grounded?

(b) If the input offset voltage is £1 mV and the input bias
current as in (a), what is the largest possible output that
can be observed with the input grounded?

(c) If bias-current compensation is used, what is the value
of the required resistor? If the offset current is no more
than one-tenth the bias current, what is the resulting out-
put offset voltage (due to offset current alone)?

(d) With bias-current compensation as in (c) in place
what is the largest dc voltage at the output due to the com-
bined effect of offset voltage and offset current?

*2.105 An op amp intended for operation with a closed-
loop gain of —100 V/V uses resistors of 10 kQ and 1 MQ
with a bias-current-compensation resistor R,. What should
the value of R, be? With input grounded, the output offset
voltage is found to be +0.21 V. Estimate the input offset cur-
rent assuming zero input offset voltage. If the input offset
voltage can be as large as 1 mV of unknown polarity, what
range of offset current is possible?

2.106 A Miller integrator with R =10 kQ and C =10 nF is
implemented by using an op amp with Vog =3 mV, I, =
0.1 pA, and I,s =10 nA. To provide a finite dc gain, a 1-MQ
resistor is connected across the capacitor.

(a) To compensate for the effect of I;, a resistor is con-
nected in series with the positive-input terminal of the op
amp. What should its value be?

(b) With the resistor of (a) in place, find the worst-case dc
output voltage of the integrator when the input is
grounded.

Section 2.7: Effect of Finite Open-Loop Gain
and Bandwidth on Circuit Performance

2.107 The data in the following table apply to internally
compensated op amps. Fill in the blank entries.

A, f, (Hz) f, (Hz)
10° 102
108 108
10° 10°
10" 108
2 x10° 10

2.108 A measurement of the open-loop gain of an inter-
nally compensated op amp at very low frequencies shows it
to be 92 dB; at 100 kHz, this shows it is 40 dB. Estimate val-
ues for A, f,, and f..

2.109 Measurements of the open-loop gain of a compen-
sated op amp intended for high-frequency operation indicate
that the gain is 5.1 x 10° at 100 kHz and 8.3 x 10° at 10 kHz.
Estimate its 3-dB frequency, its unity-gain frequency, and its
dc gain.

2.110 Measurements made on the internally compensated
amplifiers listed below provide the dc gain and the fre-
quency at which the gain has dropped by 20 dB. For each,
what are the 3 dB and unity-gain frequencies?

(a) 3x10°V/V and 6 x 10 Hz
(b) 50 x 10° V/V and 10 Hz
(c) 1500 V/V and 0.1 MHz

(d) 100 V/V and 0.1 GHz

(e) 25 V/mV and 25 kHz

2111 An inverting amplifier with nominal gain of —20 V/V
employs an op amp having a dc gain of 10* and a unity-gain
frequency of 10° Hz. What is the 3-dB frequency f,, Of the
closed-loop amplifier? What is its gain at 0.1 f,,; and at 10
f3dB?

2.112 A particular op amp, characterized by a gain-band-
width product of 10 MHz, is operated with a closed-loop
gain of +100 V/V. What 3-dB bandwidth results? At what
frequency does the closed-loop amplifier exhibit a —6°
phase shift? A —84° phase shift?

2.113 Find the f, required for internally compensated op
amps to be used in the implementation of closed-loop
amplifiers with the following nominal dc gains and 3-dB
bandwidths:

(a) —100 V/V; 100 kHz
(b) +100 V/V; 100 kHz
(c) +2 VIV; 10 MHz
(d) -2 V/IV; 10 MHz
(e) —1000 V/V; 20 kHz
(f) +1V/V; 1 MHz

(9) -1 VIV;1MHz

2.114 A noninverting op-amp circuit with a gain of 96 V/V
is found to have a 3-dB frequency of 8 kHz. For a particular
system application, a bandwidth of 24 kHz is required. What
is the highest gain available under these conditions?

2.115 Consider a unity-gain follower utilizing an internally
compensated op amp with f,= 1 MHz. What is the 3-dB fre-
quency of the follower? At what frequency is the gain of the
follower 1% below its low-frequency magnitude? If the
input to the follower is a 1-V step, find the 10% to 90% rise
time of the output voltage. (Note: The step response of STC
low-pass networks is discussed in Appendix E.)



D *2.116 1t is required to design a noninverting amplifier
with a dc gain of 10. When a step voltage of 100 mV is
applied at the input, it is required that the output be within
1% of its final value of 1 V in at most 100 ns. What must the
f, of the op amp be? (Note: The step response of STC low-
pass networks is discussed in Appendix E.)

D *2.117 This problem illustrates the use of cascaded
closed-loop amplifiers to obtain an overall bandwidth
greater than can be achieved using a single-stage amplifier
with the same overall gain.

(a) Show that cascading two identical amplifier stages,
each having a low-pass STC frequency response with a 3-
dB frequency f,, results in an overall amplifier with a 3-
dB frequency given by

e = ﬁ_lfl

(b) It is required to design a noninverting amplifier with a
dc gain of 40 dB utilizing a single internally compensated
op amp with f,= 1 MHz. What is the 3-dB frequency
obtained?

(c) Redesign the amplifier of (b) by cascading two identical
noninverting amplifiers each with a dc gain of 20 dB. What
is the 3-dB frequency of the overall amplifier? Compare this
to the value obtained in (b) above.

D **2.118 A designer, wanting to achieve a stable gain of
100 V/V at 5 MHz, considers her choice of amplifier topolo-
gies. What unity-gain frequency would a single operational
amplifier require to satisfy her need? Unfortunately, the best
available amplifier has an f, of 40 MHz. How many such
amplifiers connected in a cascade of identical noninverting
stages would she need to achieve her goal? What is the 3-dB
frequency of each stage she can use? What is the overall 3-dB
frequency?

2.119 Consider the use of an op amp with a unity-gain fre-
quency f, in the realization of:

(@) An inverting amplifier with dc gain of magnitude K.
(b) A noninverting amplifier with a dc gain of K.

In each case find the 3-dB frequency and the gain-bandwidth
product (GBP = |Gain| x f, ;). Comment on the results.

*2.120 Consider an inverting summer with two inputs V,
and V, and with V, = —(V, + 2V,). Find the 3-dB frequency
of each of the gain functions \, /V,and V, /V, in terms of the
op amp f.. (Hint: In each case, the other input to the summer
can be set to zero—an application of superposition.)

Section 2.8: Large-Signal Operation
of Op Amps

2.121 A particular op amp using £15-V supplies operates
linearly for outputs in the range —12 V to +12 V. If used in

Problems 123

an inverting amplifier configuration of gain —100, what is
the rms value of the largest possible sine wave that can be
applied at the input without output clipping?

2.122 Consider an op amp connected in the inverting configu-
ration to realize a closed-loop gain of =100 V/V utilizing resis-
tors of 1 k€ and 100 kQ. A load resistance R, is connected
from the output to ground, and a low-frequency sine-wave sig-
nal of peak amplitude V, is applied to the input. Let the op amp
be ideal except that its output voltage saturates at £10 V and its
output current is limited to the range £20 mA.

(a) For R, =1 k&, what is the maximum possible value of
V, while an undistorted output sinusoid is obtained?

(b) Repeat (a) for R, =100 Q.

(c) If it is desired to obtain an output sinusoid of 10-V
peak amplitude, what minimum value of R, is allowed?

2.123 An op amp having a slew rate of 10 V/ps is to be
used in the unity-gain follower configuration, with input
pulses that rise from 0 to 5 V. What is the shortest pulse that
can be used while ensuring full-amplitude output? For such
a pulse, describe the output resulting.

2.124 For operation with 10-V output pulses with the require-
ment that the sum of the rise and fall times represent only 20%
of the pulse width (at half amplitude), what is the slew-rate
requirement for an op amp to handle pulses 2 pus wide?
(Note: The rise and fall times of a pulse signal are usually mea-
sured between the 10%- and 90%-height points.)

2.125 What is the highest frequency of a triangle wave of 20-
V peak-to-peak amplitude that can be reproduced by an op
amp whose slew rate is 10 V/us? For a sine wave of the
same frequency, what is the maximum amplitude of output
signal that remains undistorted?

2.126 For an amplifier having a slew rate of 60 V/us, what
is the highest frequency at which a 20-V peak-to-peak sine
wave can be produced at the output?

D *2.127 In designing with op amps one has to check the
limitations on the voltage and frequency ranges of operation
of the closed-loop amplifier, imposed by the op-amp finite
bandwidth (f,), slew rate (SR), and output saturation (V,,,)-
This problem illustrates the point by considering the use of
an op amp with f, =2 MHz, SR =1 V/ps, and V., =10 Vin

the design of a noninverting amplifier with a nominal gain
of 10. Assume a sine-wave input with peak amplitude V..

(a) IfV,=0.5V, what is the maximum frequency before
the output distorts?

(b) If f=20 kHz, what is the maximum value of V, before
the output distorts?

(c) If V, =50 mV, what is the useful frequency range of
operation?

(d) If f=5kHz, what is the useful input voltage range?
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IN THIS CHAPTER YOU WILL LEARN

1. The basic properties of semiconductors and in particular silicon, which
is the material used to make most of today’s electronic circuits.

2. How doping a pure silicon crystal dramatically changes its electrical con-
ductivity, which is the fundamental idea underlying the use of semicon-
ductors in the implementation of electronic devices.

3. The two mechanisms by which current flows in semiconductors: drift
and diffusion of charge carriers.

4. The structure and operation of the pnjunction; a basic semiconductor struc-
ture that implements the diode and plays a dominant role in transistors.

Introduction

Thus far we have dealt with electronic circuits, and notably amplifiers, as system building
blocks. For instance, in Chapter 2 we learned how to use op amps to design interesting and
useful circuits, taking advantage of the terminal characteristics of the op amp and without
any knowledge of what is inside the op amp package. Though interesting and motivating,
this approach has its limitations. Indeed, to achieve our goal of preparing the reader to
become a proficient circuit designer, we have to go beyond this black-box or system-level
abstraction and learn about the basic devices from which electronic circuits are assembled,
namely, diodes (Chapter 4) and transistors (Chapters 5 and 6). These solid-state devices are
made using semiconductor materials, predominantly silicon.

In this chapter, we briefly introduce the properties and physics of semiconductors. The
objective is to provide a basis for understanding the physical operation of diodes and transistors
in order to enable their effective use in the design of circuits. Although many of the concepts
studied in this chapter apply to semiconductor materials in general, our treatment is heavily
biased toward silicon, simply because it is the material used in the vast majority of microelec-
tronic circuits. To complement the material presented here, Appendix A provides a description of
the integrated-circuit fabrication process. As discussed in Appendix A, whether our circuit con-
sists of a single transistor or is an integrated circuit containing more than 2 billion transistors, it
is fabricated in a single silicon crystal, which gives rise to the name monolithic circuit. This
chapter therefore begins with a study of the crystal structure of semiconductors and introduces
the two types of charge carriers available for current conduction: electrons and holes. The most
significant property of semiconductors is that their conductivity can be varied over a very wide
range through the introduction of controlled amounts of impurity atoms into the semiconductor
crystal in a process called doping. Doped semiconductors are discussed in Section 3.2. This is
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followed by the study in Section 3.3 of the two mechanisms for current flow in semiconductors,
namely, carrier drift and carrier diffusion.

Armed with these basic semiconductor concepts, we spend the remainder of the chapter on the
study of an important semiconductor structure; the pn junction. In addition to being essentially a
diode, the pn junction is the basic element of the bipolar junction transistor (BJT, Chapter 6) and
plays an important role in the operation of field-effect transistors (FETs, Chapter 5).

3.1 Intrinsic Semiconductors

As their name implies, semiconductors are materials whose conductivity lies between that of
conductors, such as copper, and insulators, such as glass. There are two kinds of semicon-
ductors: single-element semiconductors, such as germanium and silicon, which are in group
IV in the periodic table; and compound semiconductors, such as gallium-arsenide, which are
formed by combining elements from groups Il and V or groups Il and V1. Compound semi-
conductors are useful in special electronic circuit applications as well as in applications that
involve light, such as light-emitting diodes (LEDs). Of the two elemental semiconductors,
germanium was used in the fabrication of very early transistors (late 1940s, early 1950s). It
was quickly supplanted, however, with silicon, on which today’s integrated-circuit technol-
ogy is almost entirely based. For this reason, we will deal mostly with silicon devices
throughout this book.*

A silicon atom has four valence electrons, and thus it requires another four to complete
its outermost shell. This is achieved by sharing one of its valence electrons with each of its
four neighboring atoms. Each pair of shared electrons forms a covalent bond. The result is
that a crystal of pure or intrinsic silicon has a regular lattice structure, where the atoms are
held in their position by the covalent bonds. Figure 3.1 shows a two-dimensional representa-
tion of such a structure.

At sufficiently low temperatures, approaching absolute zero (0 K), all the covalent
bonds are intact and no electrons are available to conduct electric current. Thus, at such low
temperatures, the intrinsic silicon crystal behaves as an insulator.

At room temperature, sufficient thermal energy exists to break some of the covalent bonds,
a process known as thermal generation. As shown in Fig. 3.2, when a covalent bond is broken,
an electron is freed. The free electron can wander away from its parent atom, and it becomes
available to conduct electric current if an electric field is applied to the crystal. As the electron
leaves its parent atom, it leaves behind a net positive charge, equal to the magnitude of the elec-
tron charge. Thus, an electron from a neighboring atom may be attracted to this positive charge,
and leaves its parent atom. This action fills up the “hole” that existed in the ionized atom but
creates a new hole in the other atom. This process may repeat itself, with the result that we
effectively have a positively charged carrier, or hole, moving through the silicon crystal struc-
ture and being available to conduct electric current. The charge of a hole is equal in magnitude
to the charge of an electron. We can thus see that as temperature increases, more covalent bonds
are broken and electron-hole pairs are generated. The increase in the numbers of free electrons
and holes results in an increase in the conductivity of silicon.

An exception is the subject of gallium arsenide (GaAs) circuits, which though not covered in this edi-
tion of the book, is studied in some detail in material provided on the text website and on the disc
accompanying the text.
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Valence Covalent
electrons bonds

Silicon atoms

Figure 3.1 Two-dimensional representation of the silicon crystal. The circles represent the inner core of
silicon atoms, with +4 indicating its positive charge of +4q, which is neutralized by the charge of the four
valence electrons. Observe how the covalent bonds are formed by sharing of the valence electrons. At 0 K,
all bonds are intact and no free electrons are available for current conduction.

Valence Free
electrons electron

Broken
covalent
bond

Hole

Covalent

Silicon atoms
bond

Figure 3.2 Atroom temperature, some of the covalent bonds are broken by thermal generation. Each bro-
ken bond gives rise to a free electron and a hole, both of which become available for current conduction.

Thermal generation results in free electrons and holes in equal numbers and hence equal
concentrations, where concentration refers to the number of charge carriers per unit volume
(cm?®). The free electrons and holes move randomly through the silicon crystal structure, and
in the process some electrons may fill some of the holes. This process, called recombination,
results in the disappearance of free electrons and holes. The recombination rate is
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proportional to the number of free electrons and holes, which in turn is determined by the
thermal generation rate. The latter is a strong function of temperature. In thermal equilib-
rium, the recombination rate is equal to the generation rate, and one can conclude that the
concentration of free electrons n is equal to the concentration of holes p,

n=p=n, (3.1)

where n; denotes the number of free electrons and holes in a unit volume (cm?) of intrinsic
silicon at a given temperature. Results from semiconductor physics gives n; as

n, = BT>/ % e (3.2)

where B is a material-dependent parameter that is 7.3 x 10°cm>K™>"2 for silicon; E,, a

parameter known as the bandgap energy, is 1.12 electron volt (eV) for silicon? and k is
Boltzmann’s constant (8.62 x 107 eV/K). It is interesting to know that the bandgap energy
E, is the minimum energy required to break a covalent bond and thus generate an electron-
hole pair.

Calculate the value of n; for silicon at room temperature (T = 300 K).

Solution

Substituting the values given above in Eq. (3.1) provides

3/24-112/(2x862 x 107° x 300)

n, = 7.3x10"(300)

1.5 x 10" carriers/cm®

Although this number seems large, to place it into context note that silicon has 5 x 10% atoms/cm®. Thus
at room temperature only one in about 5 x 10" atoms is ionized and contributing a free electron and a

hole!

Finally, it is useful for future purposes to express the product of the hole and free-electron
concentration as

pn = n; (3.3)

where for silicon at room temperature, n, = 1.5x 10'°/cm®. As will be seen shortly, this
relationship extends to extrinsic or doped silicon as well.

?Note that LeV = 1.6 x 107 J.
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3.1 Calculate the intrinsic carrier density n; for silicon at T =50 K and 350 K.
Ans. 9.6x10*/cm® 4.15 x 101 /cm’

3.2 Doped Semiconductors

The intrinsic silicon crystal described above has equal concentrations of free electrons and
holes, generated by thermal generation. These concentrations are far too small for silicon to
conduct appreciable current at room temperature. Also, the carrier concentrations and hence
the conductivity are strong functions of temperature, not a desirable property in an elec-
tronic device. Fortunately, a method was developed to change the carrier concentration in a
semiconductor crystal substantially and in a precisely controlled manner. This process is
known as doping, and the resulting silicon is referred to as doped silicon.

Doping involves introducing impurity atoms into the silicon crystal in sufficient num-
bers to substantially increase the concentration of either free electrons or holes but with little
or no change in the crystal properties of silicon. To increase the concentration of free elec-
trons, n, silicon is doped with an element with a valence of 5, such as phosphorus. The result-
ing doped silicon is then said to be of n type. To increase the concentration of holes, p, silicon
is doped with an element having a valence of 3, such as boron, and the resulting doped silicon
is said to be of p type.

Figure 3.3 shows a silicon crystal doped with phosphorus impurity. The dopant (phos-
phorus) atoms replace some of the silicon atoms in the crystal structure. Since the phosphorus
atom has five electrons in its outer shell, four of these electrons form covalent bonds with the

electrons bonds

Free electron donated
by impurity atom

Pentavalent impurity
atom (donor)

Silicon atoms

Figure 3.3 Asilicon crystal doped by a pentavalent element. Each dopant atom donates a free electron
and is thus called a donor. The doped semiconductor becomes n type.
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neighboring atoms, and the fifth electron becomes a free electron. Thus each phosphorus
atom donates a free electron to the silicon crystal, and the phosphorus impurity is called a
donor. It should be clear, though, that no holes are generated by this process. The positive
charge associated with the phosphorus atom is a bound charge that does not move through
the crystal.

If the concentration of donor atoms is N, where Np is usually much greater than n,, the
concentration of free electrons in the n-type silicon will be

(1 Ny = Np (3.4)

where the subscript n denotes n-type silicon. Thus n, is determined by the doping concen-
tration and not by temperature. This is not the case, however, for the hole concentration. All
the holes in the n-type silicon are those generated by thermal ionization. Their concentration
p, can be found by noting that the relationship in Eq. (3.3) applies equally well for doped
silicon, provided thermal equilibrium is achieved. Thus for n-type silicon

o PnNy = ni2
Substituting for n, from Eqg. (3.4), we obtain for p,

2
n:

(1) P = N; (3.5)

Thus p, will have the same dependence on temperature as that of niz. Finally, we note
that in n-type silicon the concentration of free electrons n, will be much larger than that of
holes. Hence electrons are said to be the majority charge carriers and holes the minority
charge carriers in n-type silicon.

To obtain p-type silicon in which holes are the majority charge carriers, a trivalent impu-
rity such as boron is used. Figure 3.4 shows a silicon crystal doped with boron. Note that the
boron atoms replace some of the silicon atoms in the silicon crystal structure. Since each

Covalent

Valence bonds

electrons

Silicon atom

Trivalent impurity
atom (acceptor)

Electron accepted from
this atom, thus creating
a hole

Figure 3.4 Asilicon crystal doped with a trivalent impurity. Each dopant atom gives rise to a hole, and
the semiconductor becomes p type.
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boron atom has three electrons in its outer shell, it accepts an electron from a neighboring
atom, thus forming covalent bonds. The result is a hole in the neighboring atom and a bound
negative charge at the acceptor (boron) atom. It follows that each acceptor atom provides a
hole. If the acceptor doping concentration is N,, where N, > n;; the hole concentration
becomes

Pp = Ny (3.6)

where the subscript p denotes p-type silicon. Thus, here the majority carriers are holes and
their concentration is determined by N,. The concentration of minority electrons can be
found by using the relationship

PpMp = ni2
and substituting for p, from Eq. (3.6),
2
n;
n,=— 3.7
p NA ( )
Thus, the concentration of the minority electrons will have the same temperature depen-
dence as that of n’.
It should be emphasized that a piece of n-type or p-type silicon is electrically neutral; the
charge of the majority free carriers (electrons in the n-type and holes in the p-type silicon) are
neutralized by the bound charges associated with the impurity atoms.
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Consider an n-type silicon for which the dopant concentration Ny = 10" /cm®. Find the electron and

hole concentrationsat T = 300 K.

Solution
The concentration of the majority electrons is
n,= Np= 10"/cm®

The concentration of the minority holes is

2
N

Pn = N—;
In Example 3.1 we found thatat T = 300 K, n; = 1.5 x 10'%em® Thus,

(15x10%°
n 17

10

2.25% 10°/cm®

Observe that n, > n; and that n,, is vastly higher than p,,.
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3.2

3.3

For the situation in Example 3.2, find the electron and hole concentrations at 350 K. You may use
the value of n; at T = 350 K found in Exercise 3.1.
Ans. n,= 10" /cm} p,= 172x 10°/cm®

For a silicon crystal doped with boron, what must N, be if at T = 300 K the electron concentration
drops below the intrinsic level by a factor of 10%
Ans. N, = 15x10"em®

3.3 Current Flow in Semiconductors

There are two distinctly different mechanisms for the movement of charge carriers and
hence for current flow in semiconductors: drift and diffusion.

3.3.1 Drift Current

When an electrical field E is established in a semiconductor crystal, holes are accelerated in
the direction of E, and free electrons are accelerated in the direction opposite to that of E.
This situation is illustrated in Fig. 3.5. The holes acquire a velocity v, , given by

(1] Vi = H4,E (3.8)

where 4, is a constant called the hole mobility: It represents the degree of ease by which
holes move through the silicon crystal in response to the electrical field E. Since velocity has
the units of centimeters per second and E has the units of volts per centimeter, we see from
Eqg. (3.8) that the mobility x, must have the units of centimeters squared per volt-second
(cm?/V/-s). For intrinsic silicon z,= 480 cm?/V -s.

The free electrons acquire a drift velocity v,_4i given by

(1] Vigin = —#y E (3.9)

where the result is negative because the electrons move in the direction opposite to E. Here
U, is the electron mobility, which for intrinsic silicon is about 1350 cm?/V.s. Note that z,
is about 2.5 times 4, signifying that electrons move with much greater ease through the sil-
icon crystal than do holes.

E
—

/4

+ ———Holes
— <—Flectrons

— X Figure 3.5 An electric field E established in a
bar of silicon causes the holes to drift in the direc-
tion of E and the free electrons to drift in the oppo-
site direction. Both the hole and electron drift
currents are in the direction of E.

< =
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Let’s now return to the single-crystal silicon bar shown in Fig. 3.5. Let the concentration
of holes be p and that of free electrons n. We wish to calculate the current component due to
the flow of holes. Consider a plane perpendicular to the x direction. In one second, the hole
charge that crosses that plane will be (Aqpv, ) coulombs, where A is the cross-sectional
area of the silicon bar and q is the magnitude of electron charge. This then must be the hole
component of the drift current flowing through the bar,

I, = APV, i (3.10)
Substituting for v, 4, from Eq. (3.9), we obtain
I, = Adpi,E

We are usually interested in the current density J,, which is the current per unit cross-
sectional area,

|
Jp = 3 = ApuE G1) O

The current component due to the drift of free electrons can be found in a similar manner.
Note, however, that electrons drifting from right to left result in a current component from left
to right. This is because of the convention of taking the direction of current flow as the direc-
tion of flow of positive charge and opposite to the direction of flow of negative charge. Thus,

In = _Aqnvn-drift
Substituting for v, 4, from Eq. (3.9), we obtain the current density J, = 1,/A as

Jp = any,E B2 ©

The total drift current density can now be found by summing J, and J, from Eqgs. (3.11)
and (3.12),

J = J,+J, = q(pp +nu,)E 1) O

This relationship can be written as

J = oE (3.14)
or
J=E/p (3.15)
where the conductivity ¢ is given by
G = APy + Nity) (3.16)
and the resistivity p is given by
P=5 = s 61) O

Observe that Eq. (3.15) is a form of Ohm’s law and can be written alternately as
o= % (3.18)

V/cm)

Thus the units of p are ohm.centimeters (Q -cm = 5
A/cm
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Find the resistivity of (a) intrinsic silicon and (b) p-type silicon with N, = 10°/cm®. Use
n, = 15x10"%m° and assume that for intrinsic silicon = 1350 cm®’/V-s and
t, = 480 cm’/V-s, and for the doped silicon x, = 1110 cm?/V s and u, = 400 cm®/V -s.
(Note that doping results in reduced carrier mobilities).

Solution
(a) For intrinsic silicon,
p=n=n =15x10"°/cm’
Thus,
-1
APy +Nidy)
1
1.6 x 10 °(1.5 x 10" x 480 + 1.5 x 10" x 1350)

= 228x10° Q.cm

(b) For the p-type silicon

10" /cm®

o
=}
|
z
>
It

: 10,2
ny =t = L5X107) _ 5955 10t /cm?

p NA 1016
Thus,
p=—1
A(Py + Nity)
_ 1
1.6 x 10 °(10™ x 400 + 2.25 x 10* x 1110)
~ L = 156 Q.cm
1.6 x 10 x 10" x 400

Observe that the resistivity of the p-type silicon is determined almost entirely by the doping concen-
tration. Also observe that doping the silicon reduces its resistivity by a factor of about 10° a truly
remarkable change.
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3.4 A unlform bar of n-type silicon of 2 um length has a voltage of 1 V applied across it. If
Np = 10"%/cm®and M, = 1350 cm %V s, find (a) the electron drift velocity, (b) the time it takes an
electron to cross the 2-um length, (c) the drlft-current density, and (d) the drift current in the case
the silicon bar has a cross sectional area of 0.25 um
Ans. 6.75x10° cm/s; 30 ps; 1.08 x 10°A/cm?; 27 UA

3.3.2 Diffusion Current

Carrier diffusion occurs when the density of charge carriers in a piece of semiconductor is
not uniform. For instance, if by some mechanism the concentration of, say, holes, is made
higher in one part of a piece of silicon than in another, then holes will diffuse from the
region of high concentration to the region of low concentration. Such a diffusion process is
like that observed if one drops a few ink drops in a water-filled tank. The diffusion of charge
carriers gives rise to a net flow of charge, or diffusion current.

As an example, consider the bar of silicon shown in Fig. 3.6(a): By some unspecified
process, we have arranged to inject holes into its left side. This continuous hole injection
gives rise to and maintains a hole concentration profile such as that shown in Fig. 3.6(b).
This profile in turn causes holes to diffuse from left to right along the silicon bar, resulting in
a hole current in the x direction. The magnitude of the current at any point is proportional to
the slope of the concentration profile, or the concentration gradient, at that point,

ap(x)
Jp = -aD,—5- 319 ©
+
Hole Lalote et
injection + ¥ T++44
W
@) —>X
A

o ——> Hole diffusion

= ——> Hole current

o

s

IS

8

c

8 Figure 3.6 A bar of silicon (a) into

% which holes are injected, thus creating the

T hole concentration profile along the x axis,
shown in (b). The holes diffuse in the posi-
tive direction of x and give rise to a hole-
diffusion current in the same direction.

<Y

Note that we are not showing the circuit to
(b) which the silicon bar is connected.
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where J, is the hole-current density (A/cm2 ), 4 is the magnitude of electron charge, D, is a
constant called the diffusion constant or diffusivity of holes; and p(x) is the hole
concentration at point x. Note that the gradient (dp/dx) is negative, resulting in a positive
current in the x direction, as should be expected.

In the case of electron diffusion resulting from an electron concentration gradient (see
Fig. 3.7), a similar relationship applies, giving the electron-current density,

0 3y = D, X (3.20)
where D,, is the diffusion constant or diffusivity of electrons. Observe that a negative (dn/dx)
gives rise to a negative current, a result of the convention that the positive direction of current
is taken to be that of the flow of positive charge (and opposite to that of the flow of negative
charge). For holes and electrons diffusing in intrinsic silicon, typical values for the diffusion
constants are D, = 12 cm®/s and D, = 35 cm?/s.

At this point the reader is probably wondering where the diffusion current in the silicon
bar in Fig. 3.6(a) goes. A good question as we are not showing how the right-side end of the
bar is connected to the rest of the circuit. We will address this and related questions in detail
in our discussion of the pn junction in later sections.

——> Electron diffusion
<——— Electron current

Electron concentration, n

Figure 3.7 If the electron-concentration profile
shown is established in a bar of silicon, electrons
diffuse in the x direction, giving rise to an electron-
diffusion current in the negative -x direction.

<Y

Example 3.4

Consider a bar of silicon in which a hole concentration profile described by
—X/Lp

pP(X) = po €

is established. Find the hole-current density at x = 0. Let p, = 10"°/cm® and L, = 1 um. If the
cross-sectional area of the bar is 100 um?, find the current |
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Solution
dp(x)
Jp = ~ADy g
d -x/Lp
= —qud—)'([Poe ]
Thus,
DP
‘]p(o) = qL_pO
p
= 16x10 Y% Lﬂ, x 10%
1x10
= 192 A/cm?
The current I, can be found from
Iy = J,xA

= 192x100x10°®
=192 pA
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3.5 The linear electron-concentration profile shown in Fig. E3.5 has been established in a piece of sili-
con. If ny = 10" /cm® and W = 1 um, find the electron-current density in micro amperes per
micron squared (uA/um?). If a diffusion current of 1 mA is required what must the cross-sectional
area (in a direction perpendicular to the page) be?

n() A

No

» Figure E3.5
0 W X

Ans. 56 uA/um?; 18 um?
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3.3.3 Relationship between D and u
A simple but powerful relationship ties the diffusion constant with the mobility,
D, _ Do

n 3
Uy My
where V; = kT/g. The parameter V; is known as the thermal voltage. At room tempera-
ture, T = 300 Kand V; =25.9 mV. We will encounter V; repeatedly throughout this book.
The relationship in Eq. (3.21) is known as the Einstein relationship.

-V, (3.21)

3.6 Use the Einstein relationship to find D, and D, for intrinsic silicon using x, = 1350 cm’/V:s
and y, = 480 cm®/V:s.
Ans. 35cm?/s; 12.4 cm®/s

3.4 The pn Junction with Open-Circuit Terminals
(Equilibrium)

Having learned important semiconductor concepts, we are now ready to consider our first
practical semiconductor structure—the pn junction. As mentioned previously, the pn junc-
tion implements the diode (Chapter 4) and plays the dominant role in the structure and oper-
ation of the bipolar junction transistor (BJT). As well, understanding pn junctions is very
important to the study of the MOSFET operation (Chapter 5).

3.4.1 Physical Structure

Figure 3.8 shows a simplified physical structure of the pn junction. It consists of p-type
semiconductor (e.g., silicon) brought into close contact with an n-type semiconductor mate-
rial (also silicon). In actual practice, both the p and n regions are part of the same silicon
crystal; that is, the pn junction is formed within a single silicon crystal by creating regions of
different dopings (p and n regions). Appendix A provides a description of the fabrication
process of integrated circuits including pn junctions. As indicated in Fig. 3.8, external wire
connections are made to the p and n regions through metal (aluminum) contacts. If the pn
junction is used as a diode, these constitute the diode terminals and are therefore labeled
“anode” and “cathode” in keeping with diode terminology.?

*This terminology in fact is a carryover from that used with vacuum-tube technology, which was the
technology for making diodes and other electronic devices until the invention of the transistor in 1947.
This event ushered in the era of solid-state electronics, which changed not only electronics, communi-
cations, and computers but indeed the world!



3.5 The pn Junction with an Applied Voltage 139

Metal contact Metal contact
p-type n-type
Anode silicon silicon Cathode

Figure 3.8 Simplified physical structure of the pn junction. (Actual geometries are given in Appendix A.)
As the pn junction implements the junction diode, its terminals are labeled anode and cathode.

3.4.2 Operation with Open-Circuit Terminals

Figure 3.9 shows a pn junction under open-circuit conditions—that is, the external termi-
nals are left open. The “+” signs in the p-type material denote the majority holes. The
charge of these holes is neutralized by an equal amount of bound negative charge associ-
ated with the acceptor atoms. For simplicity, these bound charges are not shown in the
diagram. Also not shown are the minority electrons generated in the p-type material by
thermal ionization.

In the n-type material the majority electrons are indicated by “~” signs. Here also, the
bound positive charge, which neutralizes the charge of the majority electrons, is not shown
in order to keep the diagram simple. The n-type material also contains minority holes gener-
ated by thermal ionization but not shown in the diagram.

The Diffusion Current /, Because the concentration of holes is high in the p region and
low in the n region, holes diffuse across the junction from the p side to the n side; similarly,
electrons diffuse across the junction from the n side to the p side. These two current compo-
nents add together to form the diffusion current 1, whose direction is from the p side to the
n side, as indicated in Fig. 3.9.

The Depletion Region The holes that diffuse across the junction into the n region
quickly recombine with some of the majority electrons present there and thus disappear from
the scene. This recombination process results also in the disappearance of some free electrons
from the n-type material. Thus some of the bound positive charge will no longer be neutral-
ized by free electrons, and this charge is said to have been uncovered. Since recombination
takes place close to the junction, there will be a region close to the junction that is depleted of
free electrons and contains uncovered bound positive charge, as indicated in Fig. 3.9.

The electrons that diffuse across the junction into the p region quickly recombine with
some of the majority holes there, and thus disappear from the scene. This results also in the
disappearance of some majority holes, causing some of the bound negative charge to be
uncovered (i.e., no longer neutralized by holes). Thus, in the p material close to the junction,
there will be a region depleted of holes and containing uncovered bound negative charge, as
indicated in Fig. 3.9.

From the above it follows that a carrier-depletion region will exist on both sides of the
junction, with the n side of this region positively charged and the p side negatively charged.
This carrier-depletion region—or, simply, depletion region—is also called the space-charge
region. The charges on both sides of the depletion region cause an electric field E to be
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Figure 3.9 (@) The pn junction with no applied voltage (open-circuited terminals). (b) The potential distri-
bution along an axis perpendicular to the junction.

established across the region in the direction indicated in Fig. 3.9. Hence a potential difference
results across the depletion region, with the n side at a positive voltage relative to the p side, as
shown in Fig. 3.9(b). Thus the resulting electric field opposes the diffusion of holes into the n
region and electrons into the p region. In fact, the voltage drop across the depletion region acts
as a barrier that has to be overcome for holes to diffuse into the n region and electrons to dif-
fuse into the p region. The larger the barrier voltage, the smaller the number of carriers that
will be able to overcome the barrier and hence the lower the magnitude of diffusion current.
Thus it is the appearance of the barrier voltage V, that limits the carrier diffusion process. It
follows that the diffusion current I, depends strongly on the voltage drop V, across the deple-
tion region.

The Drift Current /; and Equilibrium In addition to the current component 1, due to
majority-carrier diffusion, a component due to minority carrier drift exists across the junc-
tion. Specifically, some of the thermally generated holes in the n material move toward the
junction and reach the edge of the depletion region. There, they experience the electric field
in the depletion region, which sweeps them across that region into the p side. Similarly, some
of the minority thermally generated electrons in the p material move to the edge of the deple-
tion region and get swept by the electric field in the depletion region across that region into
the n side. These two current components—electrons moved by drift from p to n and holes
moved by drift from n to p—add together to form the drift current I, whose direction is from
the n side to the p side of the junction, as indicated in Fig. 3.9. Since the current I is carried
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by thermally generated minority carriers, its value is strongly dependent on temperature;
however, it is independent of the value of the depletion-layer voltage V,. This is due to the
fact that the drift current is determined by the number of minority carriers that make it to the
edge of the depletion region; any minority carriers that manage to get to the edge of the deple-
tion region will be swept across by E irrespective of the value of E or, correspondingly, of V,,.

Under open-circuit conditions (Fig. 3.9) no external current exists; thus the two opposite
currents across the junction must be equal in magnitude:

IDZIS

This equilibrium condition* is maintained by the barrier voltage V. Thus, if for some reason I,
exceeds I, then more bound charge will be uncovered on both sides of the junction, the deple-
tion layer will widen, and the voltage across it (V,) will increase. This in turn causes I, to
decrease until equilibrium is achieved with I, = I. On the other hand, if I exceeds I, then the
amount of uncovered charge will decrease, the depletion layer will narrow, and the voltage
across it (V,) will decrease. This causes I, to increase until equilibrium is achieved with I, =1

The Junction Built-In Voltage With no external voltage applied, the barrier voltage V,
across the pn junction can be shown to be given by®

NAND)

nf

Vo = VTIn( (3.22) (1)
where N, and N, are the doping concentrations of the p side and n side of the junction,
respectively. Thus V, depends both on doping concentrations and on temperature. It is
known as the junction built-in voltage. Typically, for silicon at room temperature, V, is in
the range of 0.6 Vt0 0.9 V.

When the pn junction terminals are left open-circuited, the voltage measured between
them will be zero. That is, the voltage V, across the depletion region does not appear between
the junction terminals. This is because of the contact voltages existing at the metal-
semiconductor junctions at the terminals, which counter and exactly balance the barrier volt-
age. If this were not the case, we would have been able to draw energy from the isolated pn
junction, which would clearly violate the principle of conservation of energy.

Width of and Charge Stored in the Depletion Region Figure 3.10 provides fur-
ther illustration of the situation that obtains in the pn junction when the junction is in equi-
librium. In Fig. 3.10(a) we show a junction in which N, > Ny, a typical situation in practice.
This is borne out by the carrier concentration on both sides of the junction, as shown in Fig
3.10(b). Note that we have denoted the minority carrier concentrations in both sides by n,,
and p,,, with the additional subscript “0” signifying equilibrium (i.e., before external volt-
ages are applied as will be seen in the next section). Observe that the depletion region
extends in both the p and n materials and that equal amounts of charge exist on both sides
(Q. and Q_ in Fig. 3.10c). However, since usually unequal dopings N, and Np are used, as
in the case illustrated in Fig. 3.10, the width of the depletion layer will not be the same on
the two sides. Rather, to uncover the same amount of charge, the depletion layer will extend
deeper into the more lightly doped material. Specifically, if we denote the width of the

*In fact, in equilibrum the equality of drift and diffusion currents applies not just to the total currents but
also to their individual components. That is, the hole drift current must equal the hole diffusion current
and, similarly, the electron drift current must equal the electron diffusion current.

*The derivation of this formula and of a number of others in this chapter can be found in textbooks deal-
ing with devices, such as that by Streetman and Bannerjee (see the reading list in Appendix G).
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depletion region in the p side by x, and in the n side by x,, we can express the magnitude of
the charge on the n side of the junction as

|Q+| = qAX,Np (323)
and that on the p side of the junction as
|Q_ | = aAX,N, (3.24)

where A is the cross-sectional area of the junction in the plane perpendicular to the page.
The charge equality condition can now be written as
AAXNp = qAX Ny

which can be rearranged to yield

x
=1

=
>

N 625 ©

>

In actual practice, it is usual for one side of the junction to be much more heavily doped than
the other, with the result that the depletion region exists almost entirely on one side (the
lightly doped side).

The width W of the depletion layer can be shown to be given by

2,/ 1 1
W= _of2E(1, 1)y 3.26
= Ve (326 O
where &, is the electrical permittivity of silicon = 11.7¢, = 11.7 x8.85x 10 " F/cm =
1.04 x 102 F/cm. Typically W is in the range 0.1 um to 1 um. Egs. (3.25) and (3.26) can be

used to obtain x, and x, in terms of W as

NA
X”_WNA+ND 327 ©
=W No 3.28
* = UNLF N, 622 O

The charge stored on either side of the depletion region can be expressed in terms of W by
utilizing Egs. (3.23) and (3.27) to obtain
Q= Q4 =1[Q]
_ NaNp
Q = Adfi i)W (329) ©
Finally, we can substitute for W from Eq. (3.26) to obtain

NN
Q = A f2e.a A )V (330) O

These expressions for Q, will prove useful in subsequent sections.
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Consider a pn junction in equilibrium at room temperature (T = 300 K) for which the doping concen-
trations are N, = 10'%cm® and N = 10*%/cm® and the cross-sectional area A = 10~ cm?. Calculate
Pps Moos My Pros Voo W, %o, X5, and Q. Use n; = 1.5x 10"%/cm®.

Solution
Pp=Np = 10" cm™
nf nf (15x10")? , 3
Mps = = = & = 2.25x 10" cm
p pp NA 1018

n,= Np = 10" cm™®

2 2 10.2
n; n;
Pro= o = ok = (X0 ) _ 505,964 o
n, Np 10
To find V, we use Eq. (3.22),
N,N
\p = Vo |n(%}
n;
where
V.= KT_ 862x 10~ x 300 (eV)
7 q q (e)
= 259x107° V
Thus,

18 16
V, = 25.9 10‘3In(uj

2.25 x 10%°
= 0814V

To determine W we use Eq. (3.26):

2x1.04x 10720 1 1
WzJ 16x10°% (F+Km)xo'814

= 3.27x10° cm= 0.327 pm

To determine x, and x, we use Eq. (3.27) and (3.28), respectively:

= WA
"7 U N,+Np

1018

0.327m3 = 0.324 um

Np
P N+ Np

10%
= 0.327 —7—— = 0.003 um
+10

10
Finally, to determine the charge stored on either side of the depletion region, we use Eq. (3.29)

10" x 10™°

4
— 16] x 0.327 x 10

10® + 10
= 518x10 % C=5.18pC

Q,=10"x16x 10‘19(
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3.7 Show that

_ 17a)( NaNo 2

Vo= Z(SSJ(NA+ ND)W

3.8 Show that for a pn junction in which the p side is much more heavily doped than the n side, (i.e.
N, > Np), referred toasa p'n diode, Egs. (3.26), (3.27), (3.28), (3.29), and (3.30) can be simpli-
fied as follows:

W= ;ﬁ; Vs (3.26)
X, =W (3.27)
X, = (W/(Np/Np)) (3.28")
Q; = AqNpW (3.29))
Q, = A,/2£.NpV, (3.30)

3.9 If in the fabrication of the pn junction in Example 3.5, it is required to increase the minority carrier
concentration in the n region by a factor of 2, what must be done?
Ans. Lower Np by a factor of 2.

3.5 The pn Junction with an Applied Voltage

Having studied the open-circuited pn junction in detail, we are now ready to apply a dc volt-
age between its two terminals to find its electrical conduction properties. If the voltage is
applied so that the p side is made more positive than the n side, it is referred to as a forward-
bias® voltage. Conversely, if our applied dc voltage is such that it makes the n side more pos-
itive than the p side, it is said to be a reverse-bias voltage. As will be seen, the pn junction
exhibits vastly different conduction properties in its forward and reverse directions.

Our plan is as follows. We begin by a simple qualitative description in Section 3.5.1
and then consider an analytical description of the i—v characteristic of the junction in
Section 3.5.2.

3.5.1 Qualitative Description of Junction Operation

Figure 3.11 shows the pn junction under three different conditions: (a) the open-circuit or
equilibrium condition studied in the previous section; (b) the reverse-bias condition, where a
dc voltage Vy is applied; and (c) the forward-bias condition where a dc voltage V¢ is applied.
Observe that in the open-circuit case, a barrier voltage V, develops, making n more positive
than p, and limiting the diffusion current I to a value exactly equal to the drift current I,

®For the time being, we take the term bias to refer simply to the application of a dc voltage. We will see
in later chapters that it has a deeper meaning in the design of electronic circuits.
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thus resulting in a zero current at the junction terminals, as should be the case since the ter-
minals are open circuited. Also, as mentioned previously, the barrier voltage V,, though it
establishes the current equilibrium across the junction, does not in fact appear between the
junction terminals.

Consider now the reverse-bias case in (b). The externally applied reverse-bias voltage
Vp is in the direction to add to the barrier voltage, and it does, thus increasing the effective
barrier voltage to (V,+ V) as shown. This reduces the number of holes that diffuse into the
n region and the number of electrons that diffuse into the p region. The end result is that the
diffusion current 1 is dramatically reduced. As will be seen shortly, a reverse-bias voltage of
a volt or so is sufficient to cause I, = 0, and the current across the junction and through the
external circuit will be equal to I . Recalling that I is the current due to the drift across the
depletion region of the thermally generated minority carriers, we expect I to be very small
and to be strongly dependent on temperature. We will show this to be the case very shortly.
We thus conclude that in the reverse direction, the pn junction conducts a very small and
almost-constant current equal to I .

Before leaving the reverse-bias case, observe that the increase in barrier voltage will be
accompanied by a corresponding increase in the stored uncovered charge on both sides of the
depletion region. This in turn means a wider depletion region, needed to uncover the additional
charge required to support the larger barrier voltage (V, + V). Analytically, these results can
be obtained easily by a simple extension of the results of the equilibrium case. Thus the width
of the depletion region can be obtained by replacing V, in Eqg. (3.26) by (V, + Vp),

2e (1 1
W = X, +X, = 7N NG (Vo +VR) (3.31) (1)

and the magnitude of the charge stored on either side of the depletion region can be deter-
mined by replacing V, in Eq. (3.30) by (V, + Vg),

NAN
Q= AJZESq(NAi ,\?Dj(vo +Vg) (3.32) (1)

We next consider the forward-bias case shown in Fig. 3.11(c). Here the applied voltage Vg is
in the direction that subtracts from the built-in voltage Vg, resulting in a reduced barrier volt-
age (Vp — V) across the depletion region. This reduced barrier voltage will be accompanied
by reduced depletion-region charge and correspondingly narrower depletion-region width
W. Most importantly, the lowering of the barrier voltage will enable more holes to diffuse
from p to n and more electrons to diffuse from n to p. Thus the diffusion current Iy
increases substantially and, as will be seen shortly, can become many orders of magnitude
larger than the drift current Ig. The current | in the external circuit is of course the difference
between Iy and I,

= lp-Ig

and it flows in the forward direction of the junction, from p to n. We thus conclude that the
pn junction can conduct a substantial current in the forward-bias region and that current is
mostly a diffusion current whose value is determined by the forward-bias voltage V.

3.5.2 The Current-Voltage Relationship of the Junction

We are now ready to find an analytical expression that describes the current-voltage rela-
tionship of the pn junction. In the following we consider a junction operating with a
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forward applied voltage V and derive an expression for the current | that flows in the for-
ward direction (from p to n). However, our derivation is general and will be seen to yield
the reverse current when the applied voltage V is made negative.

From the qualitative description above we know that a forward-bias voltage V subtracts
from the built-in voltage V,, thus resulting in a lower barrier voltage (V,- V). The lowered
barrier in turn makes it possible for a greater number of holes to overcome the barrier and dif-
fuse into the n region. A similar statement can be made about electrons from the n region dif-
fusing into the p region.

Let us now consider the holes injected into the n region. The concentration of holes in
the n region at the edge of the depletion region will increase considerably. In fact, an impor-
tant result from device physics shows that the steady-state concentration at the edge of the
depletion region will be

VAV,
pn(Xn) = Pno€ (333)

That is, the concentration of the minority holes increases from the equilibrium value of p,,
(see Fig. 3.10) to the much larger value determined by the value of V, given by Eq. (3.33).

We describe this situation as follows: The forward-bias voltage V results in an excess
concentration of minority holes at x = x,, given by

Vi

R v/
Excess concentration = p,ge ' —Ppo
V/V
= Pno(e T 1) (334)

The increase in minority carrier concentration in Egs. (3.33) and (3.34) occurs at the edge of

the depletion region (x = x,). As the injected holes diffuse into the n material, some will

recombine with the majority electrons and disappear. Thus, the excess hole concentration

will decay exponentially with distance. As a result, in the total hole concentration in the n
material will be given by

. —(x—=x,)/L

Pna(X) = ppo + (Excess concentration)e e

Substituting for the “Excess concentration” from Eq. (3.34) gives

e—(x - xn)/Lp

Pa(X) = Pro+Pro(e’ "~ 1) (3.35)
The exponential decay is characterized by the constant L, which is called the diffusion length of
holes in the n material. The smaller the value of L, the faster the injected holes will recombine
with the majority electrons, resulting in a steeper decay of minority carrier concentration.

Figure 3.12 shows the steady-state minority carrier concentration profiles on both sides of a pn
junction in which N, > N, . Let’s stay a little longer with the diffusion of holes into the n region.
Note that the shaded region under the exponential represents the excess minority carriers (holes).
From our study of diffusion in Section 3.3, we know that the establishment of a carrier concentra-
tion profile such as that in Fig. 3.12 is essential to support a steady-state diffusion current. In fact,
we can now find the value of the hole—diffusion current density by applying Eg. (3.19),

dp,(X)
Jp(x) = —qu#
Substituting for p,(x) from Eqg. (3.35) gives
D V/Vp —(x=%,)/Lp
3,00 = o ) po(e” T 1ye (3.36)
P
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Figure 3.12 Minority-carrier distribution in a forward-biased pn junction. It is assumed that the p region
is more heavily doped than the n region; N, > N,.

As expected, J,(x) is highestat x = x,,

30 = o2 prote” - 1) (337)
p
and decays exponentially for x > x,,, as the minority holes recombine with the majority elec-
trons. This recombination, however, means that the majority electrons will have to be replen-
ished by a current that injects electrons from the external circuit into the n region of the
junction. This latter current component has the same direction as the hole current (because
electrons moving from right to left give rise to current in the direction from left to right). It
follows that as J,(x) decreases, the electron current component increases by exactly the same
amount, making the total current in the n material constant at the value given by Eq. (3.37).
An exactly parallel development can be applied to the electrons that are injected from the n
to the p region, resulting in an electron diffusion current given by a simple adaptation of Eq.
(3.37),

V/Vy

D
Jn(=Xy) = q(-l_—:) nole '=1) (3.38)
Now, although the currents in Egs. (3.37) and (3.38) are found at the two edges of the deple-
tion region, their values do not change in the depletion region. Thus we can drop the location
descriptors (x,), (—x,), add the two current densities, and multiply by the junction area A to
obtain the total current | as

| = AW, +J,)

V/V;

D D,
I = AQ(EE Pro+ T ”Po)(e -1)
p n

149
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Substituting for p,, = n:/Np and for ne= n?/N, gives

D D VIV
_ 2l —~p_ n T
I = Aqni(LpND+ I_nNAj(e -1) (3.39)

From this equation we note that for a negative V (reverse bias) with a magnitude of a few
times V; (25.9 mV), the exponential term becomes essentially zero, and the current across
the junction becomes negative and constant. From our qualitative description in Section
3.5.1, we know that this current must be I. Thus,

0 = 15" -1) (3.40)
where
D D
| =An$—f’—+—”] 3.41
o S q [LpND LnNA ( )

Figure (3.13) shows the 1-V characteristic of the pn junction (Eqg. 3.40). Observe that in
the reverse direction the current saturates at a value equal to —I¢. For this reason, Ig is given
the name saturation current. From Eq. (3.41) we see that I is directly proportional to the
cross-sectional area A of the junction. Thus, another name for I, one we prefer to use in this
book, is the junction scale current. Typical values for I, for junctions of various areas, range
from 10 to 107 A.

Besides being proportional to the junction area A, the expression for I in Eq. (3.41)
indicates that 15 is proportional to ni2 which is a very strong function of temperature (see
Eg. 3.2).

o
<Y

Figure 3.13 The pn junction I-V characteristic.
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Example 3.6

For the pn junction con3|dered in Example 3.5 for which N, = 10"%em?, Np = 10* /cm
A= 10"*cm? n; = = 1.5x10"%cm?, letL,=5um, L, = 10 um, D, (mthenreglon) 10 cm?/V.-s,
and D, (in the p region) = 18 ¢cm 2/\.s. The pn junctlon is forward biased and conducting a current
I=0. 1 mA. Calculate: (a) I ; (b) the forward-bias voltage V; and (c) the component of the current |
due to hole injection and that due to electron injection across the junction.

Solution
(a) Using Eq. (3.41), we find Ig as

-19

lg = 10 x 1.6 x 10 % (1.5 % 10%%)° x

( 10 18 j
5x10*x10"® 10x10*x 10"

-15

=73x10 " A
(b) In the forward direction,
V/Vq
=15 '-1)
_ IseV/vT
Thus,
V=V, |n(|l$)
For1=0.1 mA,
-3
V= 259x10° .(M}
7.3x10

=0.605V
(c) The hole-injection component of | can be found using Eq. (3.37)

D VIV
I, = Aq[E Pro(e ' —1)
_ A p n V/Vq 1
Similarly I, can be found using Eq. (3.39),
2
n; V/V.
= Aqg=" e '-1)
n an N,

Thus,

| D
2= (2B
For our case,

| 18
b_10 10 10" _ 2 _
In_18><5><1016—1.11><10 =111
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Example 3.6 continued
Thus most of the current is conducted by holes injected into the n region.
Specifically,

111

|p = EXO.].: 0.0991 mA

1
I, = 112><O.1— 0.0009 mA

This stands to reason, since the p material has a doping concentration 100 times that of the n material.

3.10 Show that if N, > Ny,

D

2

l. =A —p
s TAANEN,

3.11 For the pn junction in Example 3.6, find the value of |5 and that of the current | at V = 0.605 V (same
voltage found in Example 3.6 at a current | = 0.1 mA) if N is reduced by a factor of 2.
Ans. 1.46x 10" A;02mA

3.12 For the pn junction considered in Examples 3.5 and 3.6, find the width of the depletion region W cor-
responding to the forward-bias voltage found in Example 3.6. (Hint: Use the formula in Eq. (3.31)
with Vg replaced with -V .)

Ans. 0.166 um

3.13 For the pn junction considered in Examples 3.5 and 3.6, find the width of the depletion region W and
the charge stored in the depletion region Q; when a 2-V reverse bias is applied. Also find the value
of the reverse current I.

Ans. 0.608 um; 9.63 pC; 7.3x 10> A

3.5.3 Reverse Breakdown

The description of the operation of the pn junction in the reverse direction, and the 1 -V
relationship of the junction in Eq. (3.40), indicate that at a reverse-bias voltage -V, with
V > V., the reverse current that flows across the junction is approximately equal to Iy and
thus is very small. However, as the magnitude of the reverse-bias voltage V is increased, a
value is reached at which a very large reverse current flows as shown in Fig. 3.14. Observe that
as V reaches the value V,, the dramatic increase in reverse current is accompanied by a very
small increase in the reverse voltage; that is, the reverse voltage across the junction remains
very close to the value V,. The phenomenon that occurs at vV = V, is known as junction
breakdown. It is not a destructive phenomenon. That is, the pn junction can be repeatedly
operated in the breakdown region without a permanent effect on its characteristics. This, how-
ever, is predicated on the assumption that the magnitude of the reverse-breakdown current is
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o
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Figure 3.14 The |-V characteristic of the pn junction showing the rapid increase in reverse current in the
breakdown region.

limited by the external circuit to a “safe” value. The “safe” value is one that results in the limi-
tation of the power dissipated in the junction to a safe, allowable level.

There are two possible mechanisms for pn junction breakdown: the zener effect” and the
avalanche effect. If a pn junction breaks down with a breakdown voltage V, <5 V, the break-
down mechanism is usually the zener effect. Avalanche breakdown occurs when V, is greater
than approximately 7 V. For junctions that break down between 5 V and 7 V, the breakdown
mechanism can be either the zener or the avalanche effect or a combination of the two.

Zener breakdown occurs when the electric field in the depletion layer increases to the
point of breaking covalent bonds and generating electron-hole pairs. The electrons generated
in this way will be swept by the electric field into the n side and the holes into the p side. Thus
these electrons and holes constitute a reverse current across the junction. Once the zener
effect starts, a large number of carriers can be generated, with a negligible increase in the
junction voltage. Thus the reverse current in the breakdown region will be large and its value
must be determined by the external circuit, while the reverse voltage appearing between the
diode terminals will remain close to the specified breakdown voltage V,.

The other breakdown mechanism, avalanche breakdown, which occurs when the
minority carriers that cross the depletion region under the influence of the electric field gain
sufficient Kinetic energy to be able to break covalent bonds in atoms with which they collide.
The carriers liberated by this process may have sufficiently high energy to be able to cause
other carriers to be liberated in another ionizing collision. This process keeps repeating in the
fashion of an avalanche, with the result that many carriers are created that are able to support
any value of reverse current, as determined by the external circuit, with a negligible change in
the voltage drop across the junction.

"Named after an early worker in the area. Note that the subscript Z in V, denotes zener. We will use V,
to denote the breakdown voltage whether the breakdown mechanism is the zener effect or the avalanche
effect.
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As will be seen in Chapter 4, some pn junction diodes are fabricated to operate specifi-
cally in the breakdown region, where use is made of the nearly constant voltage V..

3.6 Capacitive Effects in the pn Junction

There are two charge storage mechanisms in the pn junction. One is associated with the charge
stored in the depletion region, and the other associated with the minority carrier charge
stored in the n and p materials as a result of the concentration profiles established by car-
rier injection. While the first is easier to see when the pn junction is reverse biased, the sec-
ond is in effect only when the junction is forward biased.

3.6.1 Depletion or Junction Capacitance

When a pn junction is reverse biased with a voltage V;, the charge stored on either side of
the depletion region is given by Eq. (3.32),

=A2 NANo Vo +V
Q; = SSqNA+ND( 0ot Vr)

Thus, for a given pn junction,

Q = 0. Vo +V, (342)

N,N
oa=A /Zssqm (3.43)

where o is given by

-
Lo

Slope = C;

Bias point

Charge stored in depletion layer, Q,

Reverse voltage, Vg

o
S

Figure 3.15 The charge stored on either side of the depletion layer as a function of the reverse
voltage V.
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Thus Q; is nonlinearly related to V, as shown in Fig. (3.15). This nonlinear relationship
makes it difficult to define a capacitance that accounts for the need to change Q,; whenever
Vy is changed. We can, however, assume that the junction is operating at a point such as Q,
as indicated in Fig. 3.15, and define a capacitance C; that relates the change in the charge
Q, to a change in the voltage Vg,

_do,

(3.44)
aVel, .,

j
This incremental-capacitance approach turns out to be quite useful in electronic circuit
design, as we shall see throughout this book.
Using Eq. (3.44) together with Eq. (3.42) yields

Cj= —2— (3.45)
2.5+ Vs
The value of C; at zero reverse-bias can be obtained from Eqg. (3.45) as
Cp = N (3.46)
which enables us to express C; as
C = —0 B47) ©

]
1+\ﬁ
Vo

where C;, is given by Eqg. (3.46) or alternatively if we substitute for o from Eg. (3.43) by

Co J( 2q)(NjﬁNND X_) (348) ©

Before leaving the subject of depletion-region or junction capacitance we point out that in
the pn junction we have been studying, the doping concentration is made to change abruptly
at the junction boundary. Such a junction is known as an abrupt junction. There is another
type of pn junction in which the carrier concentration is made to change gradually from one
side of the junction to the other. To allow for such a graded junction, the formula for the
junction capacitance (Eq. 3.47) can be written in the more general form

= i 349 ©

where m is a constant called the grading coefficient, whose value ranges from 1/3 to 1/2
depending on the manner in which the concentration changes from the p to the n side.

3.12 For the pn junction considered in Examples 3.5 and 3.6, find C; and C; at Vg = 2 V. Recall that
V, = 0.814 V, N, = 10"%cm®, N = 10*%cm®and A = 10 *cm®.
Ans. 3.2 pF; 1.7 pF




156 Chapter 3 Semiconductors

3.6.2 Diffusion Capacitance

Consider a forward-biased pn junction. In steady-state, minority carrier distributions in
the p and n materials are established, as shown in Fig. 3.12. Thus a certain amount of excess
minority carrier charge is stored in each of the p and n bulk regions (outside the depletion
region). If the terminal voltage V changes, this charge will have to change before a new
steady state is achieved. This charge-storage phenomenon gives rise to another capacitive
effect, distinctly different from that due to charge storage in the depletion region.

To calculate the excess minority carrier charge, refer to Fig. 3.12. The excess hole charge
stored in the n region can be found from the shaded area under the exponential as follows:®

Q, = Aq xshaded area under the p,(x) curve

= Aq[pn(xn) - pnO]Lp
substituting for p,(x,) from Eqg. (3.33) and using Eq. (3.37) enables us to express Q, as
Q== 1, (3.50)

Dn

The factor (Lf)/Dp) that relates Q,, to I, is a useful device parameter that has the dimension
of time (s) and is denoted t,

2
= ﬁ (3.51)
o Tp - Dp '
Thus,
(1) Q= Tplp (3.52)

The time constant 1, is known as the excess minority carrier (hole) lifetime. It is the
average time it takes for a hole injected into the n region to recombine with a majority elec-
tron. This definition of 1, implies that the entire charge Q,, disappears and has to be replen-
ished every 1, seconds. The current that accomplishes the replenishing is I, = Q,/z,. This is
an alternate derivation for Eq. (3.52).

A relationship similar to that in Eq. (3.52) can be developed for the electron charge stored in
the p region,

(1) Q= Tl, (3.53)

where 1, is the electron lifetime in the p region. The total excess minority carrier charge can
be obtained by adding together Q, and Q,,

(1) Q= 1l + 1., (3.54)
This charge can be expressed in terms of the diode current | = 1, +1, as
(1) Q= 14l (3.55)

where 1, is called the mean transit time of the junction. Obviously, T, is related to t, and
t,,. Furthermore, for most practical devices, one side of the junction is much more heavily
doped than the other. For instance, if N, > Ny, one can show that I,>1,, I =1,,

Qp>Qn,Q:Qp,andthUSTT :Tp'

®Recall that the area under an exponential curve Ae™® is equal to AB.
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For small changes around a bias point, we can define an incremental diffusion
capacitance C, as

C, = ‘;—8 (3.56)
and can show that
T
C, = <V_D' 357 O

where | is the forward-bias current. Note that C, is directly proportional to the forward cur-
rent | and thus is negligibly small when the diode is reverse biased. Also note that to keep
C4 small, the transit time t; must be made small, an important requirement for a pn junc-
tion intended for high-speed or high-frequency operation.

3.15 Use the definition of C in Eq. (3.56) to derive the expression in Eq. (3.57) by means of Egs. (3.55)
and (3.40).

3.16  For the pn junction considered in Examples 3.5 and 3.6 for which D, = 10 cm®/V-s, and L, =5
um, find 7, and C4 at a forward-bias current of 0.1 mA. Recall that for this junction, I, = 1.

Ans. 25ns; 96.5 pF
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Summary

Today’s microelectronics technology is almost entirely
based on the semiconductor material silicon. If a circuit is
to be fabricated as a monolithic integrated circuit (IC) it is
made using a single silicon crystal, no matter how large
the circuit is [a recent chip (2009) contains 2.3 billion
transistors].

In a crystal of intrinsic or pure silicon, the atoms are held
in position by covalent bonds. At very low temperatures,
all the bonds are intact, and no charge carriers are avail-
able to conduct electrical current. Thus, at such low tem-
peratures, silicon behaves as an insulator.

At room temperature, thermal energy causes some of the
covalent bonds to break, thus generating free electrons
and holes that become available for current conduction.

Current in semiconductors is carried by free electrons and
holes. Their numbers are equal and relatively small in
intrinsic silicon.

The conductivity of silicon can be increased dramatically
by introducing small amounts of appropriate impurity
materials into the silicon crystal in a process called doping.

There are two kinds of doped semiconductor: n-type, in
which electrons are abundant, and p-type, in which holes
are abundant.

There are two mechanisms for the transport of charge car-
riers in semiconductor: drift and diffusion.

Carrier drift results when an electric field E is applied
across a piece of silicon. The electric field accelerate the
holes in the direction of E and the electrons in the direc-
tion opposite to E. These two current components add
together to produce a drift current in the direction of E.

Carrier diffusion occurs when the concentration of charge
carriers is made higher in one part of the silicon crystal
than in other parts. To establish a steady-state diffusion
current, a carrier concentration gradient must be main-
tained in the silicon crystal.

A basic semiconductor structure is the pn junction. It is
fabricated in a silicon crystal by creating a p region in
close proximity to an n region. The pn junction is a diode
and plays a dominant role in the structure and operation of
transistors.

When the terminals of the pn junction are left open, no
current flows externally. However, two equal and

opposite currents, I and g, flow across the junction,
and equilibrium is maintained by a built-in voltage V|,
that develops across the junction, with the n side positive
relative to the p side. Note, however, that the voltage
across an open junction is 0 V, since V, is cancelled by
potentials appearing at the metal-to-semiconductor con-
nection interfaces.

The voltage V, appears across the depletion region, which
extends on both sides of the junction.

The diffusion current Iy is carried by holes diffusing
from p to n and electrons diffusing from n to p. 15 flows
from p to n, which is the forward direction of the junction.
Its value depends on V,,

The drift current I is carried by thermally generated
minority electrons in the p material that are swept
across the depletion layer into the n side, and by ther-
mally generated minority holes in the n side that are
swept across the depletion region into the p side. Ig
flows from n to p, in the reverse direction of the junc-
tion, and its value is a strong function of temperature
but independent of V,,.

Forward biasing the pn junction, that is, applying an exter-
nal voltage V that makes p more positive than n, reduces
the barrier voltage to V;— V and results in an exponential
increase in Iy while I remains unchanged. The net result
is a substantial current | = |5 — I that flows across the
junction and through the external circuit.

Applying a negative V reverse-biases the junction and
increases the barrier voltage, with the result that I is
reduced to almost zero and the net current across the junc-
tion becomes the very small reverse current I.

If the reverse voltage is increased in magnitude to a value
V, specific to the particular junction, the junction breaks
down, and a large reverse current flows. The value of the
reverse current must be limited by the external circuit.

Whenever the voltage across a pn junction is changed,
some time has to pass before steady state is reached. This
is due to the charge-storage effects in the junction, which
are modeled by two capacitances: the junction capacitance
C; and the diffusion capacitance Cj.

For future reference, we present in Table 3.1 a summary
of pertinent relationships and the values of physical
constants.
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Table 3.1 Summary of Important Equations

Values of Constants and Parameters

Quantity Relationship (for Intrinsic Si at T = 300 K)
Carrier concentration in - BTg/ze—Eg/ZkT B = 7.3x10%cm k"2
intrinsic silicon (cm™) i Eg: 1.12 eV
k = 8.62x 10 °eV/K
n; = 15x 10"/cm®
Diffusion current _.ndp _ 19
density (A/cm?) qudx q = 1.60 ><210 coulomb
d D, = 12cm’/s
J,=qD an 2
" "dx D, = 34 cm‘/s

Drift current density
(Alcm?)

Jarit = A(PL, +nitn)E

H, = 480 cm’ /V-s
1, = 1350 cm’ /s

Resistivity (€-cm)

P = 1/[Q(pﬂp+nﬂn)]

4, and g, decrease with the increase
in doping concentration

Relationship between & Dy _v V: = kT/q =258 mV
mobility and diffusivity iy “, T
Carrier concentration in N = Np
n-type silicon (cm-2) 2
Pro = Ni/Np
Carrier concentration in Ppo = Na
- ili -3
p-type silicon (cm-3) oo = ”iZ/NA
Junction built-in NaNp
voltage (V) Vo = VTIn( n )
i
Width of depletion Xy _ Né
region (cm) X, - Np 117
gS = . 80
W = x,+Xx
"P & = 8.854 x 107 Flem
= /\/283(1 +—)(V +Vg)
q NA 0 R
Charge stored in depletion _NaNp
layer (coulomb) Q = qNA + NDAW
Forward current (A) I =1,+1,
Dp v/
I, = Aq n’ (e -1
P ILpND
D V/V.
= Agn’i—2( -1
A )

Saturation current (A)

- nqn] 2 Do
s i L,Np " LNy

1-V Relationship

= 15"V 1)
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Table 3.1 continued
Values of Constants and Parameters
Quantity Relationship (for Intrinsic Si at T = 300 K)
Minority-carrier r = L%/D r =L%/D Ly Ly =1 umto100 um
lifetime (s) P PR nooonen
% Ty = 1nsto 10* ns
Minority-carrier Qp = 5l Qn=1l,
charge storage
(coulomby) Q=Q+Qy= 7l

Depletion capacitance (F)

3

Il
Wik

—

o
NI~

Diffusion
capacitance (F)

Problems are marked with asterisks to describe their degree
of difficulty. Difficult problems are marked with an asterisk
(*); more difficult problems with two asterisks (**); and
very challenging and/or time-consuming problems with
three asterisks (***). Also, if in the following problems the
need arises for the values of particular parameters or
physical constants that are not stated, please consult
Table 3.1.

Section 3.1: Intrinsic Semiconductors

3.1 Find values of the intrinsic carrier concentration n;
for silicon at —70°C, 0°C, 20°C, 100°C, and 125°C. At
each temperature, what fraction of the atoms is |on|zed’>
Recall that a silicon crystal has approximately 5 x 10%
atoms/cm?®.

3.2 Calculate the value of n; for gallium arsenlde
(GaAs) at T = 300 K. The constant B = 3.56x 10
(cm- ke ) and the bandgap voltage E, = 1.42 eV.

Section 3.2: Doped Semiconductors

3.3 For ap-type silicon in which the dopant concentration
N, = 10'8/cm? find the hole and electron concentrations
at T =300 K.

3.4 For a silicon crystal doped with phosphorus, what
must Ny be if at T = 300 K the hole concentratlon drops
below the intrinsic level by a factor of 10?2

35 Ina phosphorus doped silicon layer with impurity
concentration of 10 /cm find the hole and electron con-
centrations at 27°C and 125 C.

Section 3.3: Current Flow in Semiconductors

3.6 A young designer, aiming to develop intuition con-
cerning conducting paths within an integrated circuit, exam-
ines the end-to-end resistance of a connecting bar 10 um
long, 3 um wide, and 1 um thick, made of various materials.
The designer considers:



(a) intrinsic silicon
(b) n-doped silicon with Ny = 10*%cm?®
D
¢) n-doped silicon with Ny = 10'%/cm®
(c) p D
(d) p-doped silicon with N, = 10*%/cm®
A
e) aluminum with resistivity of 2.8 uQ -cm
y [

Find the resistance in each case. For intrinsic silicon, use the
data in Table 3.1 . For doped silicon, assume
M= 254, = 1200 cm”/V's. (Recall that R= pL/A)

3.7 Contrast the electron and hole drift velocities through
a 10-um layer of intrinsic silicon across which a voltage of
5V is imposed. Let g, = 1350 cm®/V:s  and
U, = 480 cm%/Vss.

3.8 Find the current that flows in a silicon bar of 10-um
length having a 5-um x4-um cross section and having
free electron and hole densities of 105/ cm® and 10*%cm?,
respectively, when a 1 V is applied end-to-end. Use
M, = 1200 cm*%V:-s and i, = 500 cm%/ Vss.

3.9 In a 10-um long bar of donor-doped silicon, what
donor concentration is needed to realize a current density of
1 mA/um2 in response to an applied voltage of 1 V. (Note:
Although the carrier mobilities change with doping concen-
tration, as a first approximation you may assume g, to be
constant and use the wvalue for intrinsic silicon,
1350 cm%/V/s).

3.10 Holes are being steadily injected into a region of n-
type silicon (connected to other devices, the details of which
are not important for this question). In the steady state, the
excess-hole concentration profile shown in Fig. P3.10 is
established in the n-type silicon region. Here “excess”
means over and above the thermal-equilibrium concentra-
tion (in the absence of hole injection), denoted p,q. If
Np = 10%%cm® n, = 1.5x10%cm®, D, =12 cm¥s,
and W = 0.1 um, find the density of the current that will flow
in the x direction.
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A p,(X
10° p.g Pn(X) _
n region

pnO ———————

=Y

0 W
Figure P3.10

3.11 Both the carrier mobility and diffusivity decrease as
the doping concentration of silicon is increased. The table
below provides a few data points for 4, and £, versus dop-
ing concentration. Use the Einstein relationship to obtain the
corresponding values for D, and D,

Section 3.4: The pn Junction with Open-Circuit
Terminals (Equilibrium)

3.12 Calculate the built-in voltage of a junction in which
the p and n regions are doped equally with 10" atoms/em?.
Assume n; = 1.5x 10*%%cm3. With the terminals left open,
what is the width of the depletion region, and how far does it
extend into the p and n regions? If the cross-sectional area of
the junction is 100 um?, find the magnitude of the charge
stored on either side of the junction.

3.13 |If, for a particular junction, the acceptor concentra-
tion is 10'%cm? and the donor concentration is 10*%cm?,
find the junction built-in voltage. Assume n;,=
1.5 x 10" %m® Also, find the width of the depletion
region (W) and its extent in each of the p and n regions
when the junction terminals are left open. Calculate the
magnitude of the charge stored on either side of the junc-
tion. Assume that the junction area is 400 um?,

Doping Concentration
(carriers/cm?) w, (cm?/V-s) , (cm?/V°s) D, (cm?¥/s) D, (cm?/s)
Intrinsic 1350 480
10%° 1100 400
{0 700 260
108 360 150

Table P3.11
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3.14 Estimate the total charge stored in a 0.1-um depletion
layer on one side of a 10-um x 10-pum junction.116'he dgop-
ing concentration on that side of the junction is 10~/cm”.

3.15 In a pn junction for which Ny > Ny, and the deple-
tion layer exists mostly on the shallowly doped side with W =
0.3 um, find V, if Np = 10'%cm®. Also calculate Q;.

3.16 By how much does V, change if N, or Np is
increased by a factor of 10?

Section 3.5: The pn Junction with an Applied
Voltage

3.7 If a 5-V reverse-bias voltage is applied across the
junction specified in Problem 3.13, find W and Q; .

3.18 Show that for a pn junction reverse-biased with a
voltage Vg, the depletion-layer width W and the charge
stored on either side of the junction, Q;, can be expressed as

W= W, 148
Vo

\%

= 1+ 8
Qy= Quo | v,

where W, and Q, are the values in equilibrium.

3.19 In a forward-biased pn junction show that the ratio of
the current component due to hole injection across the junc-
tion to the component due to electron injection is given by

Evaluate this ratio for the case N, = 10" /cm?,

= feny U = S Wy o=
10 cm?/s, and D, = 20 cm?/s, and hence find 1, and
I, for the case in which the pn junction is conducting a for-
ward current | = 1 mA.

3.20 Calculate |5 and the current I for V =700 mV for apn

junction for which N, = 10 /cm , Np = 10"%em?® A=

ZOOum n; = 1.5x 10" /cm Lo=5um L, = 10um,
= 10 cm 7 and D, 18 cm g

3.21 Assuming that the temperature dependence of Ig
arises mostly because lg is proportional to n,z, use the
expressmn for n; in Eq. (3.2) to determine the factor by
which n changes as T changes from 300 K to 305 K. This

will be approximately the same factor by which Ig changes
for a 5°C rise in temperature. What is the factor?

3.22 A p+n junction is one in which the doping concentra-
tion in the p region is much greater than that in the n region.
In such a junction, the forward current is mostly due to hole
injection across the junction. Show that

R D V/Vq 1
qnl L ND(e T )
For the specmc case in which Ny = 10 /cm
= 10 cm®/s, L, = 10 um, and A = 10* pm?, flnd
I s and the voltage V obtained when | = 0 5 mA Assume
operation at 300 K where n; = 1.5 x 10"%cm®,

3.23 A pn junction for which the breakdown voltage is 12 V
has a rated (i.e., maximum allowable) power dissipation of
0.25 W. What continuous current in the breakdown region
will raise the dissipation to half the rated value? If break-
down occurs for only 10 ms in every 20 ms, what average
breakdown current is allowed?

Section 3.6: Capacitive Effects in the pn
Junction

3.24 For the pn junction specified in Problem 3.13, find

3.25 For a particular junction for which C;, = 0.6 pF,
= 0.75V, and m = 1/3, find C; at reverse-bias voltages
of1Vand 10 V.

3.26 The junction capacitance C; can be thought of as that
of a parallel-plate capacitor and thus given by

Show that this approach leads to a formula identical to that
obtained by combining Egs. (3.43) and (3.45) [or equiva-
lently, by combining Egs. (3.47) and (3.48)].

3.27 A pn junction operating in the forward-bias region
with a current | of 1 mA is found to have a diffusion capaci-
tance of 10 pF. What diffusion capacitance do you expect
this junction to have at | = 0.1 mA? What is the mean transit
time for this junction?

3.28 For the p*n junction specified in Problem 3.22, find
T, and calculate the excess minority carrier charge and the
value of the diffusion capacitance at | = 0.2 mA.



3.29 A short-base diode is one where the widths of the p
and n regions are much smaller than L, and L, respec-
tively. As a result, the excess minority carrier distribution in
each region is a straight line rather than the exponentials
shown in Fig. 3.12.

(a) For the short-base diode, sketch a figure corresponding
to Fig. 3.12 and assume as in Fig. 3.12 that N, > N .

(b) Following a derivation similar to that given in Section
3.5.2, show that if the widths of the p and n regions are
denoted W, and W, then

2 D, D, V/V;
5= Aqni[ + }(e -1)
(Wh=Xx)Np (W, =xp)Np

and
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2
_ AWn %) I
QP 2 D p
P
2
1W
- ED_:I”’ for W, > x,
(c) Also, assuming Q = Q,, | = 1, show that
s
Coe =l
47V,
where
i i
T

(d) If a designer wishes to limit C; to 8 pF at | = 1 mA,
what should W, be? Assume D, = 10 cm%s.
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IN THIS CHAPTER YOU WILL LEARN

1. The characteristics of the ideal diode and how to analyze and design cir-
cuits containing multiple ideal diodes together with resistors and dc
sources to realize useful and interesting nonlinear functions.

2. The details of the i—v characteristic of the junction diode (which was de-
rived in Chapter 3) and how to use it to analyze diode circuits operating
in the various bias regions: forward, reverse, and breakdown.

3. A simple but effective model of the diode i-v characteristic in the for-
ward direction; the constant-voltage-drop model.

4. A powerful technique for the application and modeling of the diode (and
in later chapters, transistors): dc-biasing the diode and modeling its op-
eration for small signals around the dc operating point by means of the
small-signal model.

5. The use of a string of forward-biased diodes and of diodes operating in
the breakdown region (zener diodes), to provide constant dc voltages
(voltage regulators).

6. Application of the diode in the design of rectifier circuits, which convert
ac voltages to dc as needed for powering electronic equipment.

7. A number of other practical and important applications of diodes.

Introduction

In Chapters 1 and 2 we dealt almost entirely with linear circuits; any nonlinearity, such as
that introduced by amplifier output saturation, was treated as a problem to be solved by the
circuit designer. However, there are many other signal-processing functions that can be
implemented only by nonlinear circuits. Examples include the generation of dc voltages
from the ac power supply, and the generation of signals of various waveforms (e.g.,
sinusoids, square waves, pulses). Also, digital logic and memory circuits constitute a special
class of nonlinear circuits.

The simplest and most fundamental nonlinear circuit element is the diode. Just like a
resistor, the diode has two terminals; but unlike the resistor, which has a linear (straight-line)
relationship between the current flowing through it and the voltage appearing across it, the
diode has a nonlinear i—v characteristic.

165
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This chapter is concerned with the study of diodes. In order to understand the essence of
the diode function, we begin with a fictitious element, the ideal diode. We then introduce the
silicon junction diode, explain its terminal characteristics, and provide techniques for the
analysis of diode circuits. The latter task involves the important subject of device modeling.
Our study of modeling the diode characteristics will lay the foundation for our study of mod-
eling transistor operation in the next two chapters.

Of the many applications of diodes, their use in the design of rectifiers (which convert ac
to dc) is the most common. Therefore we shall study rectifier circuits in some detail and
briefly look at a number of other diode applications. Further nonlinear circuits that utilize
diodes and other devices will be found throughout the book, but particularly in Chapter 17.

The junction diode is nothing more than the pn junction we studied in Chapter 3, and
most of this chapter is concerned with the study of silicon pn-junction diodes. In the last sec-
tion, however, we briefly consider some specialized diode types, including the photodiode
and the light-emitting diode.

4.1 The Ideal Diode

4.1.1 Current-Voltage Characteristic

The ideal diode may be considered to be the most fundamental nonlinear circuit element. It
is a two-terminal device having the circuit symbol of Fig. 4.1(a) and the i—v characteristic
shown in Fig. 4.1(b). The terminal characteristic of the ideal diode can be interpreted as fol-
lows: If a negative voltage (relative to the reference direction indicated in Fig. 4.1a) is
applied to the diode, no current flows and the diode behaves as an open circuit (Fig. 4.1c).
Diodes operated in this mode are said to be reverse biased, or operated in the reverse direc-
tion. An ideal diode has zero current when operated in the reverse direction and is said to be
cut off, or simply off.

On the other hand, if a positive current (relative to the reference direction indicated in Fig.
4.1a) is applied to the ideal diode, zero voltage drop appears across the diode. In other words,
the ideal diode behaves as a short circuit in the forward direction (Fig. 4.1d); it passes any cur-
rent with zero voltage drop. A forward-biased diode is said to be turned on, or simply on.

From the above description it should be noted that the external circuit must be designed to
limit the forward current through a conducting diode, and the reverse voltage across a cutoff
diode, to predetermined values. Figure 4.2 shows two diode circuits that illustrate this point. In
the circuit of Fig. 4.2(a) the diode is obviously conducting. Thus its voltage drop will be zero, and
the current through it will be determined by the +10-V supply and the 1-kQ resistor as 10 mA.
The diode in the circuit of Fig. 4.2(b) is obviously cut off, and thus its current will be zero, which
in turn means that the entire 10-V supply will appear as reverse bias across the diode.

The positive terminal of the diode is called the anode and the negative terminal the
cathode, a carryover from the days of vacuum-tube diodes. The i—v characteristic of the
ideal diode (conducting in one direction and not in the other) should explain the choice of its
arrow like circuit symbol.

As should be evident from the preceding description, the i—v characteristic of the ideal
diode is highly nonlinear; although it consists of two straight-line segments, they are at 90° to
one another. A nonlinear curve that consists of straight-line segments is said to be piecewise
linear. If a device having a piecewise-linear characteristic is used in a particular application
in such a way that the signal across its terminals swings along only one of the linear
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Figure 4.1 The ideal diode: (a) diode circuit symbol; (b) i—v characteristic; (c) equivalent circuit in the
reverse direction; (d) equivalent circuit in the forward direction.

+10 V +10V
1 kO 1 kQ
+ +
ov v
= = Figure 4.2 The two modes of operation of ideal diodes
and the use of an external circuit to limit (a) the forward
() (b) current and (b) the reverse voltage.

segments, then the device can be considered a linear circuit element as far as that particular
circuit application is concerned. On the other hand, if signals swing past one or more of the
break points in the characteristic, linear analysis is no longer possible.

4.1.2 A Simple Application: The Rectifier

A fundamental application of the diode, one that makes use of its severely nonlinear i—v curve, is
the rectifier circuit shown in Fig. 4.3(a). The circuit consists of the series connection of a diode D
and a resistor R. Let the input voltage v, be the sinusoid shown in Fig. 4.3(b), and assume the
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diode to be ideal. During the positive half-cycles of the input sinusoid, the positive », will cause
current to flow through the diode in its forward direction. It follows that the diode voltage
vp Will be very small—ideally zero. Thus the circuit will have the equivalent shown in
Fig. 4.3(c), and the output voltage v, will be equal to the input voltage v,. On the other
hand, during the negative half-cycles of v, the diode will not conduct. Thus the circuit
will have the equivalent shown in Fig. 4.3(d), and v, will be zero. Thus the output voltage
will have the waveform shown in Fig. 4.3(e). Note that while v, alternates in polarity and
has a zero average value, v, is unidirectional and has a finite average value or a dc compo-
nent. Thus the circuit of Fig. 4.3(a) rectifies the signal and hence is called a rectifier. It
can be used to generate dc from ac. We will study rectifier circuits in Section 4.5.

ur A

‘/p__._.
+ U -
—0

- ¥ >
i D <> 0 t
1% D R :: Vo
o
(a) (b)
+up=0- + v -
o +—0
-—> * —_ +
Y D R Vo = Y u ip=10 R Vo =
0o o
v, =0 ;=0
() (d)
Yo A
A — /\
0 '

(e)

Figure 4.3 (a) Rectifier circuit. (b) Input waveform. (c) Equivalent circuit when v, > 0. (d) Equivalent
circuit when v, < 0. (e) Output waveform.
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EXERCISES

4.1 For the circuit in Fig. 4.3(a), sketch the transfer characteristic v, versus v,
Ans. See Fig. E4.1.

Uo A

Figure E4.1
4.2 For the circuit in Fig. 4.3(a), sketch the waveform of v,
Ans. v, = v, — vy, resulting in the waveform in Fig. E4.2

Up A

\
~Y

_‘/p _______________

Figure E4.2

4.3 In the circuit of Fig. 4.3(a), let v, have a peak value of 10 V and R = 1 kQ. Find the peak value of i,
and the dc component of v,

Ans. 10 mA; 3.18V

Example 4.1

Figure 4.4(a) shows a circuit for charging a 12-V battery. If v is a sinusoid with 24-V peak ampli-
tude, find the fraction of each cycle during which the diode conducts. Also, find the peak value of
the diode current and the maximum reverse-bias voltage that appears across the diode.
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Example 4.1 continued

wa s /\——-m-__N

Ug - 12V
|<— 26 >|

@) (b)

Figure 4.4 Circuit and waveforms for Example 4.1.

Solution

The diode conducts when v, exceeds 12 V, as shown in Fig. 4.4(b). The conduction angle is 26,
where @is given by

24 cos@ = 12

Thus 6= 60° and the conduction angle is 120°, or one-third of a cycle.
The peak value of the diode current is given by

24-12
=——=012A
47 100
The maximum reverse voltage across the diode occurs when v is at its negative peak and is equal to

24+12=36V.

4.1.3 Another Application: Diode Logic Gates

Diodes together with resistors can be used to implement digital logic functions. Figure 4.5
shows two diode logic gates. To see how these circuits function, consider a positive-logic
system in which voltage values close to 0 V correspond to logic O (or low) and voltage values
close to +5 V correspond to logic 1 (or high). The circuit in Fig. 4.5(a) has three inputs, v,,
g, and v,.. It is easy to see that diodes connected to +5-V inputs will conduct, thus clamping
the output v, to a value equal to +5 V. This positive voltage at the output will keep the
diodes whose inputs are low (around 0 V) cut off. Thus the output will be high if one or
more of the inputs are high. The circuit therefore implements the logic OR function, which
in Boolean notation is expressed as

Y=A+B+C

Similarly, the reader is encouraged to show that using the same logic system mentioned
above, the circuit of Fig. 4.5(b) implements the logic AND function,

Y=A-B-C
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» N +5V
o b o "3
! %5 o——f———
= e o——H——
@ (b)

Figure 4.5 Diode logic gates: (a) OR gate; (b) AND gate (in a positive-logic system).

Example 4.2

Assuming the diodes to be ideal, find the values of | and V in the circuits of Fig. 4.6.

+10 V +10V

-10V -10V

@ (b)
Figure 4.6 Circuits for Example 4.2.

Solution

In these circuits it might not be obvious at first sight whether none, one, or both diodes are conducting.
In such a case, we make a plausible assumption, proceed with the analysis, and then check whether we
end up with a consistent solution. For the circuit in Fig. 4.6(a), we shall assume that both diodes are
conducting. It follows that V; = 0 and V = 0. The current through D, can now be determined from
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Example 4.2 continued

10-0

lp, = —— = 1mA
D2 10
Writing a node equation at B,
1+1 = Ojgﬂ)
results in I =1 mA. Thus D, is conducting as originally assumed, and the final result is | =1

mAandV=0V.
For the circuit in Fig. 4.6(b), if we assume that both diodes are conducting, then

Vg, =0and V =0. The current in D, is obtained from
lop = 105—‘0 - 2mA

The node equation at B is

1+2 = 920

which yields | = -1 mA. Since this is not possible, our original assumption is not correct. We
start again, assuming that D, is off and D, is on. The current I, is given by

Iy, = 2 ‘15‘10 - 133 mA

and the voltage at node B is
Vg = -10+10%x1.33 = +3.3V

Thus D, is reverse biased as assumed, and the final resultis I =0and V=3.3 V.

4.4 Find the values of | and V in the circuits shown in Fig. E4.4.
+5V +5V = =
+
V
2.5k 2.5 kQ
[i‘ - [¢ —
1¢ 1¢
+
2.5kQ 2.5kQ
vV
= ] -5V -5V
(@) (b) (©) (d)
Figure E4.4
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+5V
+3 v o—Pb— A
F2Vo—P—e— ,
+ 10
+1 VO—DF—V 'w
, v +3 Vo—K——¢—0
1k *
3 2Vo—K—+4 V¥
- Hye—K— =
(e) Q)]

Figure E4.4 (Continued)

Ans. (@)2mA,0V; (b)) 0mA,5V; (c)0mA,5V; (d)2mA,0V; (e) 3mA,+3V; (f)4 mA, +1V

4.5 Figure E4.5 shows a circuit for an ac voltmeter. It utilizes a moving-coil meter that gives a full-scale read-
ing when the average current flowing through it is 1 mA. The moving-coil meter has a 50-C resistance.

R
Yy & . .
Moving-coil
meter
Figure E4.5

Find the value of R that results in the meter indicating a full-scale reading when the input sine-wave
voltage v, is 20 V peak-to-peak. (Hint: The average value of half-sine waves is V,/7.)

Ans. 3.133kQ

4.2 Terminal Characteristics of Junction Diodes

The most common implementation of the diode utilizes a pn junction. We have studied the
physics of the pn junction and derived its i—v characteristic in Chapter 3. That the pn junc-
tion is used to implement the diode function should come as no surprise: the pn junction can
conduct substantial current in the forward direction and almost no current in the reverse
direction. In this section we study the i—v characteristic of the pn junction diode in detail in
order to prepare ourselves for diode circuit applications.

Figure 4.7 shows the i—v characteristic of a silicon junction diode. The same characteris-
tic is shown in Fig. 4.8 with some scales expanded and others compressed to reveal details.
Note that the scale changes have resulted in the apparent discontinuity at the origin.
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Figure 4.7 The i—v characteristic of a silicon junction diode.

ik

|
Forward |
|
Compressed |
—~Vak scale | .
‘ 0 : 0.7V v
| 05V
|
Breakdown | | Reverse
|
I

Expanded scale

Figure 4.8 The diode i-v relationship with some scales expanded and others compressed in order to
reveal details.
As indicated, the characteristic curve consists of three distinct regions:

1. The forward-bias region, determined by v> 0
2. The reverse-bias region, determined by v <0
3. The breakdown region, determined by v < -V,

These three regions of operation are described in the following sections.
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4.2.1 The Forward-Bias Region

The forward-bias—or simply forward—region of operation is entered when the terminal
voltage v is positive. In the forward region the i—v relationship is closely approximated by

UV

i= 1" T-1) 41) ©

In this equation® I is a constant for a given diode at a given temperature. A formula for I in
terms of the diode’s physical parameters and temperature was given in Eq.(3.41). The cur-
rent I is usually called the saturation current (for reasons that will become apparent
shortly). Another name for I, and one that we will occasionally use, is the scale current.
This name arises from the fact that I is directly proportional to the cross-sectional area of
the diode. Thus doubling of the junction area results in a diode with double the value of I
and, as the diode equation indicates, double the value of current i for a given forward voltage
v. For “small-signal” diodes, which are small-size diodes intended for low-power applica-
tions, I is on the order of 107 A. The value of I is, however, a very strong function of tem-
perature. As a rule of thumb, I doubles in value for every 5°C rise in temperature.
The voltage V; in Eqg. (4.1) is a constant called the thermal voltage and is given by

_ K

Vi 9

4.2) (1)
where

k = Boltzmann’s constant = 8.62 x 107 eV/K = 1.38 x 10 joules/kelvin

T = the absolute temperature in kelvins = 273 + temperature in °C

q = the magnitude of electronic charge = 1.60 x 10 coulomb

Substituting k = 8.62 x 107° eV/K into Eq. (4.2) gives
V; = 0.0862T, mV (4.2a)

Thus, at room temperature (20°C) the value of V; is 25.3 mV. In rapid approximate circuit
analysis we shall use V, = 25 mV at room temperature.?

For appreciable current i in the forward direction, specifically for i > I, Eq. (4.1) can be
approximated by the exponential relationship

i=1.e"V 43 O
This relationship can be expressed alternatively in the logarithmic form
v=Vrint 44 ©

Is
where In denotes the natural (base €) logarithm.

'Equation (4.1), the diode equation, is sometimes written to include a constant n in the exponential,
. vinkt
i=lg(e” 1)
with n having a value between 1 and 2, depending on the material and the physical structure of the diode.
Diodes using the standard integrated-circuit fabrication process exhibit n = 1 when operated under nor-
mal conditions. For simplicity, we shall use n = 1 throughout this book, unless otherwise specified.
2A slightly higher ambient temperature (25°C or so) is usually assumed for electronic equipment oper-
ating inside a cabinet. At this temperature, V; = 25.8 mV. Nevertheless, for the sake of simplicity and
to promote rapid circuit analysis, we shall use the more arithmetically convenient value of V; = 25 mV
throughout this book.



176 Chapter 4 Diodes

The exponential relationship of the current i to the voltage v holds over many decades of
current (a span of as many as seven decades—i.e., a factor of 10’—can be found). This is
quite a remarkable property of junction diodes, one that is also found in bipolar junction tran-
sistors and that has been exploited in many interesting applications.

Let us consider the forward i—v relationship in Eq. (4.3) and evaluate the current I,
corresponding to a diode voltage V,:

V,/Vp

I, = Ig
Similarly, if the voltage is V,, the diode current I, will be

L, = lie "
These two equations can be combined to produce

_ e(Vz*VD/VT

N

-

which can be rewritten as
|
VZ - Vl = VT In —2
Iy
or, in terms of base-10 logarithms,
|
(1) V,-V, = 2.3V, log |—2 (4.5)
1

This equation simply states that for a decade (factor of 10) change in current, the diode volt-
age drop changes by 2.3V, which is approximately 60 mV. This also suggests that the diode
i—v relationship is most conveniently plotted on semilog paper. Using the vertical, linear
axis for v and the horizontal, log axis for i, one obtains a straight line with a slope of 60 mV
per decade of current.

A glance at the i—v characteristic in the forward region (Fig. 4.8) reveals that the current
is negligibly small for » smaller than about 0.5 V. This value is usually referred to as the cut-
in voltage. It should be emphasized, however, that this apparent threshold in the characteris-
tic is simply a consequence of the exponential relationship. Another consequence of this rela-
tionship is the rapid increase of i. Thus, for a “fully conducting” diode, the voltage drop lies
in a narrow range, approximately 0.6 V to 0.8 V. This gives rise to a simple “model” for the
diode where it is assumed that a conducting diode has approximately a 0.7-V drop across it.
Diodes with different current ratings (i.e., different areas and correspondingly different 1)
will exhibit the 0.7-V drop at different currents. For instance, a small-signal diode may be
considered to have a 0.7-V drop at i = 1 mA, while a higher-power diode may have a 0.7-V
drop at i =1 A. We will study the topics of diode-circuit analysis and diode models in the
next section.

Example 4.3

A silicon diode said to be a 1-mA device displays a forward voltage of 0.7 V at a current of 1 mA.
Evaluate the junction scaling constant I;. What scaling constants would apply for a 1-A diode of the
same manufacture that conducts 1 A at 0.7 \V?
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Solution
Since

- Isev/vT
then

I = ie T

For the 1-mA diode:
;=107 "% =69x 10" A

The diode conducting 1 A at 0.7 V corresponds to one-thousand 1-mA diodes in parallel with a total
junction area 1000 times greater. Thus I is also 1000 times greater,

lo= 6.9x 102 A

Since both I and V; are functions of temperature, the forward i—v characteristic varies with tem-
perature, as illustrated in Fig. 4.9. At a given constant diode current, the voltage drop across the diode
decreases by approximately 2 mV for every 1°C increase in temperature. The change in diode volt-
age with temperature has been exploited in the design of electronic thermometers.

Iy

Figure 4.9 Temperature dependence of the
diode forward characteristic. At a constant
current, the voltage drop decreases by approxi-
mately 2 mV for every 1°C increase in tempera-
ture.

4.6 Find the change in diode voltage if the current changes from 0.1 mA to 10 mA.
Ans. 120 mV

4.7 Asilicon junction diode has v= 0.7 V at i = 1 mA. Find the voltage drop at i = 0.1 mA and
i =10 mA.
Ans. 0.64V;0.76 V
4.8 Using the fact that a silicon diode has I;= 10" A at 25°C and that I, increases by 15% per °C rise in

temperature, find the value of I at 125°C.
Ans. 1.17x10° A
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4.2.2 The Reverse-Bias Region

The reverse-bias region of operation is entered when the diode voltage v is made negative. Equa-
tion (4.1) predicts that if v is negative and a few times larger than V; (25 mV) in magnitude, the
exponential term becomes negligibly small compared to unity, and the diode current becomes

S

That is, the current in the reverse direction is constant and equal to I. This constancy is the
reason behind the term saturation current.

Real diodes exhibit reverse currents that, though quite small, are much larger than 1. For
instance, a small-signal diode whose I is on the order of 10™ A to 10" A could show a
reverse current on the order of 1 nA. The reverse current also increases somewhat with the
increase in magnitude of the reverse voltage. Note that because of the very small magnitude
of the current, these details are not clearly evident on the diode i—v characteristic of Fig. 4.8.

A large part of the reverse current is due to leakage effects. These leakage currents are
proportional to the junction area, just as I is. Their dependence on temperature, however, is
different from that of 5. Thus, whereas I doubles for every 5°C rise in temperature, the corre-
sponding rule of thumb for the temperature dependence of the reverse current is that it dou-
bles for every 10°C rise in temperature.

4.9 The diode in the circuit of Fig. E4.9 is a large high-current device whose reverse leakage is reasonably
independent of voltage. If V=1V at 20°C, find the value of V at 40°C and at 0°C.

+9V

+

1 MO

Figure E4.9

Ans. 4V; 025V

4.2.3 The Breakdown Region

The third distinct region of diode operation is the breakdown region, which can be easily
identified on the diode i—v characteristic in Fig. 4.8. The breakdown region is entered when the
magnitude of the reverse voltage exceeds a threshold value that is specific to the particular diode,
called the breakdown voltage. This is the voltage at the “knee” of the i—v curve in Fig. 4.8 and is
denoted V,,., where the subscript Z stands for zener (see Section 3.5.3) and K denotes knee.
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As can be seen from Fig. 4.8, in the breakdown region the reverse current increases rap-
idly, with the associated increase in voltage drop being very small. Diode breakdown is nor-
mally not destructive, provided the power dissipated in the diode is limited by external
circuitry to a “safe” level. This safe value is normally specified on the device data sheets. It
therefore is necessary to limit the reverse current in the breakdown region to a value consis-
tent with the permissible power dissipation.

The fact that the diode i—v characteristic in breakdown is almost a vertical line enables it
to be used in voltage regulation. This subject will be studied in Section 4.5.

4.3 Modeling the Diode Forward Characteristic

Having studied the diode terminal characteristics we are now ready to consider the analysis of
circuits employing forward-conducting diodes. Figure 4.10 shows such a circuit. It consists of a
dc source Vp, a resistor R, and a diode. We wish to analyze this circuit to determine the diode
voltage V, and current 1,. Toward that end we consider developing a variety of models for the
operation of the diode. We already know of two such models: the ideal-diode model, and the
exponential model. In the following discussion we shall assess the suitability of these two mod-
els in various analysis situations. Also, we shall develop and comment on other models. This
material, besides being useful in the analysis and design of diode circuits, establishes a founda-
tion for the modeling of transistor operation that we will study in the next two chapters.

4.3.1 The Exponential Model

The most accurate description of the diode operation in the forward region is provided by
the exponential model. Unfortunately, however, its severely nonlinear nature makes this
model the most difficult to use. To illustrate, let’s analyze the circuit in Fig. 4.10 using the
exponential diode model.

Assuming that V, is greater than 0.5 V or so, the diode current will be much greater than
I, and we can represent the diode i—v characteristic by the exponential relationship, resulting in

Vp/Vy (4.6)

The other equation that governs circuit operation is obtained by writing a Kirchhoff loop
equation, resulting in

b =1l

VDD _ VD
h = ——— 4.7
o = (4.7
Assuming that the diode parameter I  is known, Egs. (4.6) and (4.7) are two equations in the
two unknown quantities I, and V. Two alternative ways for obtaining the solution are

graphical analysis and iterative analysis.

Vop =" V . - . .
bp P Figure 4.10 A simple circuit used to illustrate the analysis of

circuits in which the diode is forward conducting.
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4.3.2 Graphical Analysis Using the Exponential Model

Graphical analysis is performed by plotting the relationships of Egs. (4.6) and (4.7) on the
i—v plane. The solution can then be obtained as the coordinates of the point of intersection of
the two graphs. A sketch of the graphical construction is shown in Fig. 4.11. The curve rep-
resents the exponential diode equation (Eg. 4.6), and the straight line represents Eq. (4.7).
Such a straight line is known as the load line, a name that will become more meaningful
in later chapters. The load line intersects the diode curve at point Q, which represents the
operating point of the circuit. Its coordinates give the values of I, and V,,.

Graphical analysis aids in the visualization of circuit operation. However, the effort
involved in performing such an analysis, particularly for complex circuits, is too great to be justi-
fied in practice.

Diode characteristic

Q

(operating point)

Load line

|
| Stope = L
| ope =~
|
|

<Y

VD VDD

Figure 4.11 Graphical analysis of the circuit in Fig. 4.10 using the exponential diode model.

4.3.3 Iterative Analysis Using the Exponential Model

Equations (4.6) and (4.7) can be solved using a simple iterative procedure, as illustrated in
the following example.

Example 4.4

Determine the current I, and the diode voltage V,, for the circuit in Fig. 4.10 with V,, =5V and
R =1 kQ. Assume that the diode has a current of 1 mA at a voltage of 0.7 V.

Solution

To begin the iteration, we assume that V, = 0.7 V and use Eq. (4.7) to determine the current,

lp = —22—2
0
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We then use the diode equation to obtain a better estimate for V. This can be done by employing
Eg. (4.5), namely,

|
V,-V, = 23V, Iog|—2
1
Subsituting 2.3V, = 60 mV, we have
|
V, =V, +0.06 Iog|—2
1

Substituting V, =0.7 V, I, =1 mA, and I, = 4.3 mA results in V, = 0.738 V. Thus the results of the first iter-
ation are I, =4.3 mA and V, = 0.738 V. The second iteration proceeds in a similar manner:

I = =328 — 4262 mA
V, = 0.738 + 0.06 log [‘%}

0.738 V

Thus the second iteration yields I, = 4.262 mA and V, = 0.738 V. Since these values are very close
to the values obtained after the first iteration, no further iterations are necessary, and the solution is
I,=4.262 mA and V,=0.738 V.

4.3.4 The Need for Rapid Analysis

The iterative analysis procedure utilized in the example above is simple and yields accurate
results after two or three iterations. Nevertheless, there are situations in which the effort and
time required are still greater than can be justified. Specifically, if one is doing a pencil-and-
paper design of a relatively complex circuit, rapid circuit analysis is a necessity. Through
quick analysis, the designer is able to evaluate various possibilities before deciding on a
suitable circuit design. To speed up the analysis process one must be content with less precise
results. This, however, is seldom a problem, because the more accurate analysis can be post-
poned until a final or almost-final design is obtained. Accurate analysis of the almost-final
design can be performed with the aid of a computer circuit-analysis program such as SPICE
(see Appendix B and the disc). The results of such an analysis can then be used to further
refine or “fine-tune” the design.

To speed up the analysis process, we must find a simpler model for the diode forward
characteristic.

4.3.5 The Constant-Voltage-Drop Model

The simplest and most widely used diode model is the constant-voltage-drop model. This
model is based on the observation that a forward-conducting diode has a voltage drop that
varies in a relatively narrow range, say 0.6 to 0.8 V. The model assumes this voltage to be
constant at a value, say, 0.7 V. This development is illustrated in Fig. 4.12.
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Figure 4.12 Development of the diode constant-voltage-drop model: (a) the exponential character-
stic; (b) approximating the exponential characteristic by a constant voltage, usually about 0.7 V,;
(c) the resulting model of the foward—conducting diodes.

The constant-voltage-drop model is the one most frequently employed in the initial phases
of analysis and design. This is especially true if at these stages one does not have detailed
information about the diode characteristics, which is often the case.

Finally, note that if we employ the constant-voltage-drop model to solve the problem in
Example 4.4, we obtain

Vp =07V
and
- Vpp — 0.7
b R
_5=07 _ 43

which are not very different from the values obtained before with the more elaborate expo-
nential model.



4.3 Modeling the Diode Forward Characteristic 183

4.3.6 The Ideal-Diode Model

In applications that involve voltages much greater than the diode voltage drop (0.6 V-0.8 V),
we may neglect the diode voltage drop altogether while calculating the diode current. The result
is the ideal-diode model, which we studied in Section 4.1. For the circuit in Examples 4.4
(i.e., Fig. 4.10 with V,; =5V and R = 1 k<), utilization of the ideal-diode model leads to

Vp =0V
Ip = % = 5mA
which for a very quick analysis would not be bad as a gross estimate. However, with almost
no additional work, the 0.7-V-drop model yields much more realistic results. We note, how-
ever, that the greatest utility of the ideal-diode model is in determining which diodes are on
and which are off in a multidiode circuit, such as those considered in Section 4.1.

4.10 For the circuit in Fig. 4.10, find I, and V, for the case V,, =5V and R = 10 kQ. Assume that the
diode has a voltage of 0.7 V at 1-mA current. Use (a) iteration and (b) the constant-voltage-drop
model with V, =0.7 V.

Ans. (a) 0.43mA, 0.68V; (b) 0.43mA, 0.7V

D4.11 Design the circuit in Fig. E4.11 to provide an output voltage of 2.4 V. Assume that the diodes available
have 0.7-V drop at 1 mA.

+10V

Figure E4.1M

Ans. R=139Q

4.12 Repeat Exercise 4.4 using the 0.7-V-drop model to obtain better estimates of | and V than those found
in Exercise 4.4 (using the ideal-diode model).
Ans. (8) 1.72mA, 0.7 V; (b) 0mA,5V; (c) 0mA, 5V; (d) 1.72 mA, 0.7 V; (e) 2.3 mA, +2.3 V;
(f) 3.3mA, +1.7V
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4.3.7 The Small-Signal Model

There are applications in which a diode is biased to operate at a point on the forward i-v
characteristic and a small ac signal is superimposed on the dc quantities. For this situation,
we first have to determine the dc operating point (V, and I,) of the diode using one of
the models discussed above. Most frequently, the 0.7-V-drop model is utilized. Then, for
small-signal operation around the dc bias point, the diode is modeled by a resistance equal to
the inverse of the slope of the tangent to the exponential i—v characteristic at the bias point.
The technique of biasing a nonlinear device and restricting signal excursion to a short,
almost-linear segment of its characteristic around the bias point is central to designing linear
amplifiers using transistors, as will be seen in the next two chapters. In this section, we
develop such a small-signal model for the junction diode and illustrate its application.
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Figure 4.13 Development of the diode small-signal model.
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Consider the conceptual circuit in Fig. 4.13(a) and the corresponding graphical represen-
tation in Fig. 4.13(b). A dc voltage V,,, represented by a battery, is applied to the diode, and a
time-varying signal v,(t), assumed (arbitrarily) to have a triangular waveform, is
superimposed on the dc voltage V. In the absence of the signal v,(t), the diode voltage is
equal to V,, and correspondingly, the diode will conduct a dc current I, given by
Vp/Vy

When the signal v,(t) is applied, the total instantaneous diode voltage v, (t) will be given by
up(t) = Vp+ vy (1) (4.9
Correspondingly, the total instantaneous diode current i (t) will be
io(t) = Ige " (4.10)
Substituting for v, from Eq. (4.9) gives
in(t) = 1ge" " (4.11)
which can be rewritten
io(1) = IsevD/vT evd/VT
Using Eq. (4.8) we obtain
in(t) = 1pe™" (4.12)
Now if the amplitude of the signal ,(t) is kept sufficiently small such that
Yq
—<1 4.1
v (4.13)

T

then we may expand the exponential of Eq. (4.12) in a series and truncate the series after the
first two terms to obtain the approximate expression

io(t) = |D(1+\”7‘D (4.14)

This is the small-signal approximation. It is valid for signals whose amplitudes are smaller
than about 5 mV (see Eq. 4.13, and recall that V, = 25 mV).?
From Eq. (4.14) we have

) I
ip(t) = Ip+ 2, (4.15)
Ve

Thus, superimposed on the dc current I, we have a signal current component directly pro-
portional to the signal voltage v,. That is,

where |
D
iy = \TTUd 4.17)

*For v,=5mV, vy/V; = 0.2. Thus the next term in the series expansion of the exponential will be ; X
0.22=0.02, a factor of 10 lower than the linear term we kept.
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Example 4.5

The quantity relating the signal current i, to the signal voltage v, has the dimensions of con-
ductance, mhos (¢5), and is called the diode small-signal conductance. The inverse of this
parameter is the diode small-signal resistance, or incremental resistance, r,

rg = Vi (4.18)
o
Note that the value of r is inversely proportional to the bias current 1.
Let us return to the graphical representation in Fig. 4.13(b). It is easy to see that using the
small-signal approximation is equivalent to assuming that the signal amplitude is sufficiently
small such that the excursion along the i—v curve is limited to a short almost-linear segment.
The slope of this segment, which is equal to the slope of the tangent to the i—v curve at the
operating point Q, is equal to the small-signal conductance. The reader is encouraged to
prove that the slope of the i—v curve ati = I is equal to 15/Vy, whichis 1/rg; that is,

ry=1/ [%Jibzlb (4.19)

From the preceding we conclude that superimposed on the quantities V, and I, that define
the dc bias point, or quiescent point, of the diode will be the small-signal quantities v,(t) and
i;(t), which are related by the diode small-signal resistance r, evaluated at the bias point (Eq.
4.18). Thus the small-signal analysis can be performed separately from the dc bias analysis, a
great convenience that results from the linearization of the diode characteristics inherent in the
small-signal approximation. Specifically, after the dc analysis is performed, the small-signal
equivalent circuit is obtained by eliminating all dc sources (i.e., short-circuiting dc voltage
sources and open-circuiting dc current sources) and replacing the diode by its small-signal resis-
tance. The following example should illustrate the application of the small-signal model.

Consider the circuit shown in Fig. 4.14(a) for the case in which R = 10 kQ. The power supply V* has a dc
value of 10 V on which is superimposed a 60-Hz sinusoid of 1-V peak amplitude. (This “signal” compo-
nent of the power-supply voltage is an imperfection in the power-supply design. It is known as the
power-supply ripple. More on this later.) Calculate both the dc voltage of the diode and the amplitude of
the sine-wave signal appearing across it. Assume the diode to have a 0.7-V drop at 1-mA current.

V+

R

@)

10V

|D¢ .

(b) (©

Figure 4.4 (a) Circuit for Example 4.5. (b) Circuit for calculating the dc operating point. (c) Small-signal
equivalent circuit.
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Solution

Considering dc quantities only, we assume V, = 0.7 V and calculate the diode dc current
Ip = 10-0.7
10
Since this value is very close to 1 mA, the diode voltage will be very close to the assumed value of
0.7 V. At this operating point, the diode incremental resistance r, is

= 0.93mA

The signal voltage across the diode can be found from the small-signal equivalent circuit in
Fig. 4.14(c). Here v, denotes the 60-Hz 1-V peak sinusoidal component of V*, and v, is the cor-
responding signal across the diode. Using the voltage-divider rule provides the peak amplitude of v,

as follows:
k) = U =4
vy (peak) = R,
0.0269
10+0.0260 = 298MV
Finally we note that since this value is quite small, our use of the small-signal model of the diode is
justified.

Finally, we note that while r, models the small-signal operation of the diode at low frequen-
cies, its dynamic operation is modeled by the capacitances C; and C,, which we studied in Sec-
tion 3.6 and which also are small-signal parameters. A complete model of the diode includes C;
and C, in parallel with r,.

4.3.8 Use of the Diode Forward Drop in Voltage Regulation

A further application of the diode small-signal model is found in a popular diode application,
namely, the use of diodes to create a regulated voltage. A voltage regulator is a circuit whose
purpose is to provide a constant dc voltage between its output terminals. The output voltage is
required to remain as constant as possible in spite of (a) changes in the load current drawn
from the regulator output terminal and (b) changes in the dc power-supply voltage that feeds
the regulator circuit. Since the forward-voltage drop of the diode remains almost constant at
approximately 0.7 V while the current through it varies by relatively large amounts, a forward-
biased diode can make a simple voltage regulator. For instance, we have seen in Example 4.5
that while the 10-V dc supply voltage had a ripple of 2 V peak-to-peak (a +10% variation), the
corresponding ripple in the diode voltage was only about £2.7 mV (a £0.4% variation). Regu-
lated voltages greater than 0.7 V can be obtained by connecting a number of diodes in series.
For example, the use of three forward-biased diodes in series provides a voltage of about 2 V.
One such circuit is investigated in the following example, which utilizes the diode small-signal
model to quantify the efficacy of the voltage regulator that is realized.
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Example 4.6

Consider the circuit shown in Fig. 4.15. A string of three diodes is used to provide a constant voltage
of about 2.1 V. We want to calculate the percentage change in this regulated voltage caused by (a) a
+10% change in the power-supply voltage and (b) connection of a 1-kQ load resistance.

101V

R=1kQ

RL:].kQ

= —_— Figure 4.15 Circuit for Example 4.6.

Solution

With no load, the nominal value of the current in the diode string is given by

=021 79m
Thus each diode will have an incremental resistance of
Vi
Thus,
_ 2 _
rg=2g=32Q

The three diodes in series will have a total incremental resistance of
r=23ry=96Q

This resistance, along with the resistance R, forms a voltage divider whose ratio can be used to cal-
culate the change in output voltage due to a £10% (i.e., £1-V) change in supply voltage. Thus the
peak-to-peak change in output voltage will be

Ay = 21 = 20.86%%93 - = 19 mV peak-to-peak
That is, corresponding to the £1-V (£10%) change in supply voltage, the output voltage will change
by £9.5 mV or £0.5%. Since this implies a change of about £3.2 mV per diode, our use of the small-
signal model is justified.
When a load resistance of 1 kQ is connected across the diode string, it draws a current of
approximately 2.1 mA. Thus the current in the diodes decreases by 2.1 mA, resulting in a decrease
in voltage across the diode string given by

Avg = -21xr = -21x9.6 = -20 mV
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Since this implies that the voltage across each diode decreases by about 6.7 mV, our use of the
small-signal model is not entirely justified. Nevertheless, a detailed calculation of the voltage
change using the exponential model results in  Avg =-23 mV, which is not too different from the
approximate value obtained using the incremental model.

4.13 Find the value of the diode small-signal resistance r, at bias currents of 0.1 mA, 1 mA, and 10 mA.
Ans. 250Q;25Q;25Q

4.14 Consider a diode biased at 1 mA. Find the change in current as a result of changing the voltage
by (@) —10 mV, (b) -5 mV, (c) +5 mV, and (d) +10 mV. In each case, do the calculations (i) using
the small-signal model and (ii) using the exponential model.

Ans. (a)-0.40, -0.33 mA; (b) —0.20, —0.18 mA; (c) +0.20, +0.22 mA; (d) +0.40, +0.49 mA

D4.15 Design the circuit of Fig. E4.15 so that V, =3 V when I =0, and V, changes by 20 mV per 1 mA
of load current.

(a) Use the small-signal model of the diode to find the value of R.
(b) Specify the value of I of each of the diodes.

(c) For this design, use the diode exponential model to determine the actual change in V, when a
current I, =1 mA is drawn from the regulator.

+15V

Figure E4.15

Ans. () R=2.4kQ; (b) I;=4.7 X 10 A; (c) —22.3 mV

4.4 Operation in the Reverse Breakdown
Region—Zener Diodes
The very steep i—v curve that the diode exhibits in the breakdown region (Fig. 4.8) and the

almost-constant voltage drop that this indicates, suggest that diodes operating in the breakdown
region can be used in the design of voltage regulators. From the previous section, the reader
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will recall that voltage regulators are circuits that provide a constant dc output voltage in the
face of changes in their load current and in the system power-supply voltage. This in fact turns
out to be an important application of diodes operating in the reverse-breakdown region, and
special diodes are manufactured to operate specifically in the breakdown region. Such diodes
are called breakdown diodes or, more commonly, as noted earlier, zener diodes.

Figure 4.16 shows the circuit symbol of the zener diode. In normal applications of zener
diodes, current flows into the cathode, and the cathode is positive with respect to the anode.
Thus 1, and V, in Fig. 4.16 have positive values.

|Zl 4
Vz

— Figure 4.16 Circuit symbol for a
zener diode.

4.4.1 Specifying and Modeling the Zener Diode

Figure 4.17 shows details of the diode i—v characteristic in the breakdown region. We
observe that for currents greater than the knee current 1, (specified on the data sheet of
the zener diode), the i—v characteristic is almost a straight line. The manufacturer usually
specifies the voltage across the zener diode V, at a specified test current, 1. We have indi-
cated these parameters in Fig. 4.17 as the coordinates of the point labeled Q. Thus a 6.8-V

Ai

<Y

- IZK

1
r
z | Q
———————————— —lz7 (test current)

AV = Alr,

Figure 4.17 The diode i-v characteristic with the breakdown region shown in some detail.
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zener diode will exhibit a 6.8-V drop at a specified test current of, say, 10 mA. As the cur-
rent through the zener deviates from I, the voltage across it will change, though only
slightly. Figure 4.17 shows that corresponding to current change Al the zener voltage changes
by AV, which is related to Al by

AV = r,Al

where r, is the inverse of the slope of the almost-linear i—v curve at point Q. Resistance r, is
the incremental resistance of the zener diode at operating point Q. It is also known as the
dynamic resistance of the zener, and its value is specified on the device data sheet. Typi-
cally, r, is in the range of a few ohms to a few tens of ohms. Obviously, the lower the value
of r, is, the more constant the zener voltage remains as its current varies, and thus the more
ideal its performance becomes in the design of voltage regulators. In this regard, we observe
from Fig. 4.17 that while r, remains low and almost constant over a wide range of current, its
value increases considerably in the vicinity of the knee. Therefore, asa general design
guideline, one should avoid operating the zener in this low-current region.

Zener diodes are fabricated with voltages V, in the range of a few volts to a few hundred
volts. In addition to specifying V, (at a particular current 1,;), r,, and I,,, the manufacturer
also specifies the maximum power that the device can safely dissipate. Thus a 0.5-W, 6.8-V
zener diode can operate safely at currents up to a maximum of about 70 mA.

The almost-linear i—v characteristic of the zener diode suggests that the device can be
modeled as indicated in Fig. 4.18. Here V,, denotes the point at which the straight line of
slope 1/, intersects the voltage axis (refer to Fig. 4.17). Although V,, is shown in Fig. 4.17
to be slightly different from the knee voltage V,,, in practice their values are almost equal.
The equivalent circuit model of Fig. 4.18 can be analytically described by

VZ = VZO + rZIZ (4.20)

and it applies for I, > I, and, obviously, V, > V,,.

1l

V2o

Figure 4.18 Model for the zener diode.

4.4.2 Use of the Zener as a Shunt Regulator

We now illustrate, by way of an example, the use of zener diodes in the design of shunt reg-
ulators, so named because the regulator circuit appears in parallel (shunt) with the load.
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Example 4.7

The 6.8-V zener diode in the circuit of Fig. 4.19(a) is specified to have V, = 6.8 V at |, = 5 mA,
r,=20Q, and I, = 0.2 mA. The supply voltage V* is nominally 10 V but can vary by 1 V.

V' (10 £1V) v

R = 05kQ

|
. + I
6.8-V > <
V, V R
zener o 3 Ry 0 3 L
rZ
(3 (b)

Figure 4.19 (a) Circuit for Example 4.7. (b) The circuit with the zener diode replaced with its equivalent circuit
model.

(@) Find V,with no load and with V* at its nominal value.

(b) Find the change in V, resulting from the +1-V change in V*. Note that (AVy/AV"), usually
expressed in mV/V, is known as line regulation.

(c) Find the change in V, resulting from connecting a load resistance R, that draws a current |, =
1 mA, and hence find the load regulation (AVy/Al) in mV/mA.

(d) Find the change in V, when R, =2 k€.

(e) Find the value of V,when R = 0.5 kQ.

(f) What is the minimum value of R, for which the diode still operates in the breakdown region?

Solution

First we must determine the value of the parameter V,, of the zener diode model. Substituting V, =
6.8V, l,=5mA, and r, =20 Q in Eq. (4.20) yields V,, = 6.7 V. Figure 4.19(b) shows the circuit
with the zener diode replaced with its model.

(a) With no load connected, the current through the zener is given by

V-V

T R+,

_10-6.7
~ 0.5+0.02

I, =

= 6.35 mA
Thus,

<
o
|

= Vgt 11,

6.7+6.35x0.02 = 6.83V
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(b) Fora*1-V change in V*, the change in output voltage can be found from
+ rZ
R+r,

< 20
500 + 20

AVg = AV

=1

= +38.5 mV

Thus,
Line regulation = 38.5 mV/V

(c) When a load resistance R, that draws a load current I, = 1 mA is connected, the zener current
will decrease by 1 mA. The corresponding change in zener voltage can be found from

AVg = 1,Al,
= 20x-1 = -20 mV

Thus the load regulation is
AV,
Load regulation = A -20 mV/mA
L

(d) When a load resistance of 2 kQ is connected, the load current will be approximately
6.8 V/2 kQ = 3.4 mA. Thus the change in zener current will be Al, = -3.4 mA, and the correspond-
ing change in zener voltage (output voltage) will thus be

AVqy = 1Al

20x-3.4 = -68 mV

This calculation, however, is approximate, because it neglects the change in the current I. A more
accurate estimate of AV, can be obtained by analyzing the circuit in Fig. 4.19(b). The result of such
an analysis is AV, =-70 mV.

(e) An R, of 0.5 kQ would draw a load current of 6.8/0.5=13.6 mA. This is not possible, because
the current I supplied through R is only 6.4 mA (for V* =10 V). Therefore, the zener must be cut off.
If this is indeed the case, then V, is determined by the voltage divider formed by R, and R (Fig. 4.19a),

R
V. = Vi—E—
°© R+R,

0.5
=10 0.5+05

=5V

Since this voltage is lower than the breakdown voltage of the zener, the diode is indeed no longer
operating in the breakdown region.

(f) For the zener to be at the edge of the breakdown region, I, =1,, =02 mAandV, = V,, = 6.7 V.
At this point the lowest (worst-case) current supplied through R is (9 -6.7)/0.5 = 4.6 mA, and thus
the load current is 4.6 — 0.2 = 4.4 mA. The corresponding value of R, is

6.7
Ru=7=15kQ
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4.4.3 Temperature Effects

The dependence of the zener voltage V, on temperature is specified in terms of its tempera-
ture coefficient TC, or temco as it is commonly known, which is usually expressed in
mV/°C. The value of TC depends on the zener voltage, and for a given diode the TC varies
with the operating current. Zener diodes whose V, are lower than about 5 V exhibit a nega-
tive TC. On the other hand, zeners with higher voltages exhibit a positive TC. The TC of a
zener diode with a V, of about 5 V can be made zero by operating the diode at a specified
current. Another commonly used technique for obtaining a reference voltage with low tem-
perature coefficient is to connect a zener diode with a positive temperature coefficient of
about 2 mV/°C in series with a forward-conducting diode. Since the forward-conducting
diode has a voltage drop of =0.7 V and a TC of about —2 mV/°C, the series combination
will provide a voltage of (V, + 0.7) with a TC of about zero.

4.7

4.8

4.16 A zener diode whose nominal voltage is 10 V at 10 mA has an incremental resistance of 50 Q2. What

voltage do you expect if the diode current is halved? Doubled? What is the value of V,, in the zener
model?
Ans. 9.75V;105V; 95V

A zener diode exhibits a constant voltage of 5.6 V for currents greater than five times the knee cur-
rent. I, is specified to be 1 mA. The zener is to be used in the design of a shunt regulator fed from
a 15-V supply. The load current varies over the range of 0 mA to 15 mA. Find a suitable value for the
resistor R. What is the maximum power dissipation of the zener diode?

Ans. 470 Q; 112 mW

A shunt regulator utilizes a zener diode whose voltage is 5.1 V at a current of 50 mA and whose
incremental resistance is 7 Q. The diode is fed from a supply of 15-V nominal voltage through a 200-
Q resistor. What is the output voltage at no load? Find the line regulation and the load regulation.
Ans. 5.1V; 33.8 mV/V; -7 mV/mA

4.4.4 A Final Remark

Though simple and useful, zener diodes have lost a great deal of their popularity in recent
years. They have been virtually replaced in voltage-regulator design by specially designed
integrated circuits (ICs) that perform the voltage regulation function much more effectively
and with greater flexibility than zener diodes.

4.5 Rectifier Circuits

One of the most important applications of diodes is in the design of rectifier circuits. A
diode rectifier forms an essential building block of the dc power supplies required to power
electronic equipment. A block diagram of such a power supply is shown in Fig. 4.20. As
indicated, the power supply is fed from the 120-V (rms) 60-Hz ac line, and it delivers a dc
voltage V, (usually in the range of 5 V to 20 V) to an electronic circuit represented by the
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Power
transformer £>
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120 V (rms) LDates 9 Filter Voliage ) |, Load
rectifier regulator _
_ 60 Hz o o o
P~~~ R
A A AAAT s s
U Ui : : t

Figure 4.20 Block diagram of a dc power supply.

load block. The dc voltage V, is required to be as constant as possible in spite of variations
in the ac line voltage and in the current drawn by the load.

The first block in a dc power supply is the power transformer. It consists of two separate
coils wound around an iron core that magnetically couples the two windings. The primary
winding, having N, turns, is connected to the 120-V ac supply, and the secondary winding,
having N, turns, is connected to the circuit of the dc power supply. Thus an ac voltage v
of 120(N,/N;) V (rms) develops between the two terminals of the secondary winding. By
selecting an appropriate turns ratio (N,/N,) for the transformer, the designer can step the
line voltage down to the value required to yield the particular dc voltage output of the supply.
For instance, a secondary voltage of 8-V rms may be appropriate for a dc output of 5 V. This
can be achieved with a 15:1 turns ratio.

In addition to providing the appropriate sinusoidal amplitude for the dc power supply,
the power transformer provides electrical isolation between the electronic equipment and the
power-line circuit. This isolation minimizes the risk of electric shock to the equipment user.

The diode rectifier converts the input sinusoid v to a unipolar output, which can have
the pulsating waveform indicated in Fig. 4.20. Although this waveform has a nonzero aver-
age or a dc component, its pulsating nature makes it unsuitable as a dc source for electronic
circuits, hence the need for a filter. The variations in the magnitude of the rectifier output are
considerably reduced by the filter block in Fig. 4.20. In the following sections we shall study
a number of rectifier circuits and a simple implementation of the output filter.

The output of the rectifier filter, though much more constant than without the filter,
still contains a time-dependent component, known as ripple. To reduce the ripple and to
stabilize the magnitude of the dc output voltage of the supply against variations caused
by changes in load current, a voltage regulator is employed. Such a regulator can be imple-
mented using the zener shunt regulator configuration studied in Section 4.4. Alternatively,
and much more commonly at present, an integrated-circuit regulator can be used.

4.5.1 The Half-Wave Rectifier

The half-wave rectifier utilizes alternate half-cycles of the input sinusoid. Figure 4.21(a)
shows the circuit of a half-wave rectifier. This circuit was analyzed in Section 4.1 (see
Fig. 4.3) assuming an ideal diode. Using the more realistic constant-voltage-drop diode
model, we obtain

5= 0, v < Vs (4.21a)

Vo = V5=V, v =V, (4.21b)
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Figure 4.21 (a) Half-wave rectifier. (b) Transfer characteristic of the rectifier circuit. (c) Input and output
waveforms.

The transfer characteristic represented by these equations is sketched in Fig. 4.21(b), where
Vp,=0.7 V or 0.8 V. Figure 4.21(c) shows the output voltage obtained when the input v is a
sinusoid.

In selecting diodes for rectifier design, two important parameters must be specified: the
current-handling capability required of the diode, determined by the largest current the diode
is expected to conduct, and the peak inverse voltage (PIV) that the diode must be able to
withstand without breakdown, determined by the largest reverse voltage that is expected
to appear across the diode. In the rectifier circuit of Fig. 4.21(a), we observe that when v is
negative the diode will be cut off and v, will be zero. It follows that the PIV is equal to the
peak of v,

PIV =V, (4.22)

It is usually prudent, however, to select a diode that has a reverse breakdown voltage at least
50% greater than the expected PIV.
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Before leaving the half-wave rectifier, the reader should note two points. First, it is pos-
sible to use the diode exponential characteristic to determine the exact transfer characteristic
of the rectifier (see Problem 4.65). However, the amount of work involved is usually too
great to be justified in practice. Of course, such an analysis can be easily done using a com-
puter circuit-analysis program such as SPICE.

Second, whether we analyze the circuit accurately or not, it should be obvious that this
circuit does not function properly when the input signal is small. For instance, this circuit
cannot be used to rectify an input sinusoid of 100-mV amplitude. For such an application one
resorts to a so-called precision rectifier, a circuit utilizing diodes in conjunction with op
amps. One such circuit is presented in Section 4.5.5.

4.19 For the half-wave rectifier circuit in Fig. 4.21(a), show the following: (a) For the half-cycles during
which the diode conducts, conduction begins at an angle &=sin™ (V/V,) and terminates at (z— 6),
for a total conduction angle of (z — 26). (b) The average value (dc component) of v, is
Vo = (1/7)V,—Vp/2. (c) The peak diode current is (V- Vp)/R).

Find numerical values for these quantities for the case of 12-V (rms) sinusoidal input, V, = 0.7 V,
and R =100 Q. Also, give the value for PIV.
Ans. (a) 8= 2.4°, conduction angle = 175°; (b) 5.05 V; (c) 163 mA; 17 V

4.5.2 The Full-Wave Rectifier

The full-wave rectifier utilizes both halves of the input sinusoid. To provide a unipolar out-
put, it inverts the negative halves of the sine wave. One possible implementation is shown in
Fig. 4.22(a). Here the transformer secondary winding is center-tapped to provide two equal
voltages v across the two halves of the secondary winding with the polarities indicated.
Note that when the input line voltage (feeding the primary) is positive, both of the signals
labeled vs will be positive. In this case D, will conduct and D, will be reverse biased. The
current through D, will flow through R and back to the center tap of the secondary. The cir-
cuit then behaves like a half-wave rectifier, and the output during the positive half-cycles
when D, conducts will be identical to that produced by the half-wave rectifier.

Now, during the negative half-cycle of the ac line voltage, both of the voltages labeled v
will be negative. Thus D, will be cut off while D, will conduct. The current conducted by D,
will flow through R and back to the center tap. It follows that during the negative half-cycles
while D, conducts, the circuit behaves again as a half-wave rectifier. The important point,
however, is that the current through R always flows in the same direction, and thus v, will
be unipolar, as indicated in Fig. 4.22(c). The output waveform shown is obtained by assum-
ing that a conducting diode has a constant voltage drop V. Thus the transfer characteristic
of the full-wave rectifier takes the shape shown in Fig. 4.22(b).

The full-wave rectifier obviously produces a more “energetic” waveform than that pro-
vided by the half-wave rectifier. In almost all rectifier applications, one opts for a full-wave
type of some kind.
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Figure 4.22 Full-wave rectifier utilizing a transformer with a center-tapped secondary winding:
(a) circuit; (b) transfer characteristic assuming a constant-voltage-drop model for the diodes; (c) input
and output waveforms.

To find the PIV of the diodes in the full-wave rectifier circuit, consider the situation dur-
ing the positive half-cycles. Diode D, is conducting, and D, is cut off. The voltage at the cath-
ode of D, is v, and that at its anode is —v,. Thus the reverse voltage across D, will be
(v + us), which will reach its maximum when v, is at its peak value of (V, —V;), and v is at
its peak value of V; thus,

PIV=2V,-V,

which is approximately twice that for the case of the half-wave rectifier.

4.20 For the full-wave rectifier circuit in Fig. 4.22(a), show the following: (a) The output is zero for an an-
gle of 2 sin™ (Vp/V,) centered around the zero-crossing points of the sine-wave input. (b) The
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average value (dc component) of v, is Vo = (2/ )V — V. (C) The peak current through each di-
ode is (V,—Vp)/R . Find the fraction (percentage) of each cycle during which v, > 0, the value of
V,, the peak diode current, and the value of PIV, all for the case in which v is a 12-V (rms) sinusoid,
Vp = 0.7V, and R =100 Q.

Ans. 97.4%; 10.1V; 163 mA; 33.2 V

4.5.3 The Bridge Rectifier

An alternative implementation of the full-wave rectifier is shown in Fig. 4.23(a). This cir-
cuit, known as the bridge rectifier because of the similarity of its configuration to that of the
Wheatstone bridge, does not require a center-tapped transformer, a distinct advantage over
the full-wave rectifier circuit of Fig. 4.22. The bridge rectifier, however, requires four
diodes as compared to two in the previous circuit. This is not much of a disadvantage,
because diodes are inexpensive and one can buy a diode bridge in one package.

The bridge rectifier circuit operates as follows: During the positive half-cycles of the
input voltage, v is positive, and thus current is conducted through diode D,, resistor R, and
diode D,. Meanwhile, diodes D, and D, will be reverse biased. Observe that there are two
diodes in series in the conduction path, and thus v, will be lower than v by two diode drops
(compared to one drop in the circuit previously discussed). This is somewhat of a disadvan-
tage of the bridge rectifier.

O
+ +
ac
line Us
voltage
o

(b)

Figure 4.23 The bridge rectifier: (a) circuit; (b) input and output waveforms.
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Next, consider the situation during the negative half-cycles of the input voltage. The sec-
ondary voltage v will be negative, and thus —v will be positive, forcing current through D,,
R, and D,. Meanwhile, diodes D, and D, will be reverse biased. The important point to note,
though, is that during both half-cycles, current flows through R in the same direction (from
right to left), and thus v, will always be positive, as indicated in Fig. 4.23(b).

To determine the peak inverse voltage (PIV) of each diode, consider the circuit during
the positive half-cycles. The reverse voltage across D, can be determined from the loop
formed by D,, R, and D, as

ups (Feverse) = v+ vp, (forward)
Thus the maximum value of v, occurs at the peak of v, and is given by
PIV = V,-2Vp+Vp = V-V,

Observe that here the PIV is about half the value for the full-wave rectifier with a center-
tapped transformer. This is another advantage of the bridge rectifier.

Yet one more advantage of the bridge rectifier circuit over that utilizing a center-tapped
transformer is that only about half as many turns are required for the secondary winding of the
transformer. Another way of looking at this point can be obtained by observing that each half of
the secondary winding of the center-tapped transformer is utilized for only half the time. These
advantages have made the bridge rectifier the most popular rectifier circuit configuration.

4.21 For the bridge rectifier circuit of Fig. 4.23(a), use the constant-voltage-drop diode model to show that (a)
the average (or dc component) of the output voltage is Vo = (2/7)V,— 2V and (b) the peak
diode current is (V- 2Vp)/R). Find numerical values for the quantities in (a) and (b) and the PIV
for the case in which v is a 12-V (rms) sinusoid, V, = 0.7 V, and R = 100 Q.

Ans. 9.4V; 156 mA; 16.3 V

4.5.4 The Rectifier with a Filter Capacitor—The Peak Rectifier

The pulsating nature of the output voltage produced by the rectifier circuits discussed above
makes it unsuitable as a dc supply for electronic circuits. A simple way to reduce the varia-
tion of the output voltage is to place a capacitor across the load resistor. It will be shown that
this filter capacitor serves to reduce substantially the variations in the rectifier output voltage.

To see how the rectifier circuit with a filter capacitor works, consider first the simple cir-
cuit shown in Fig. 4.24. Let the input v, be a sinusoid with a peak value V,, and assume the
diode to be ideal. As v, goes positive, the diode conducts and the capacitor is charged so that
U = v, This situation continues until v, reaches its peak value V,. Beyond the peak, as v,
decreases the diode becomes reverse biased and the output voltage remains constant at the
value V.. In fact, theoretically speaking, the capacitor will retain its charge and hence its volt-
age indefinitely, because there is no way for the capacitor to discharge. Thus the circuit pro-
vides a dc voltage output equal to the peak of the input sine wave. This is a very encouraging
result in view of our desire to produce a dc output.
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Figure 4.24 (a) A simple circuit used to illustrate the effect of a filter capacitor. (b) Input and output
waveforms assuming an ideal diode. Note that the circuit provides a dc voltage equal to the peak of the input
sine wave. The circuit is therefore known as a peak rectifier or a peak detector.

Next, we consider the more practical situation where a load resistance R is connected
across the capacitor C, as depicted in Fig. 4.25(a). However, we will continue to assume
the diode to be ideal. As before, for a sinusoidal input, the capacitor charges to the peak of
the input V. Then the diode cuts off, and the capacitor discharges through the load resistance
R. The capacitor discharge will continue for almost the entire cycle, until the time at which v,
exceeds the capacitor voltage. Then the diode turns on again and charges the capacitor up to
the peak of v,, and the process repeats itself. Observe that to keep the output voltage from
decreasing too much during capacitor discharge, one selects a value for C so that the time
constant CR is much greater than the discharge interval.

We are now ready to analyze the circuit in detail. Figure 4.25(b) shows the steady-state
input and output voltage waveforms under the assumption that CR > T, where T is the period
of the input sinusoid. The waveforms of the load current

i, = vo/R (4.23)
and of the diode current (when it is conducting)
iD = ic+ i|_ (4.24)

- c%yg, (4.25)
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Figure 4.25 \oltage and current waveforms in the peak rectifier circuit with CR > T. The diode is

assumed ideal.

are shown in Fig. 4.25(c). The following observations are in order:

1. The diode conducts for a brief interval, At, near the peak of the input sinusoid and
supplies the capacitor with charge equal to that lost during the much longer dis-

charge interval. The latter is approximately equal to the period T.

2. Assuming an ideal diode, the diode conduction begins at time t,, at which the input v,
equals the exponentially decaying output v,. Conduction stops at t, shortly after the
peak of v,; the exact value of t, can be determined by setting i, = 0 in Eq. (4.25).
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3. During the diode-off interval, the capacitor C discharges through R, and thus v,
decays exponentially with a time constant CR. The discharge interval begins just
past the peak of . At the end of the discharge interval, which lasts for almost the
entire period T, v, = V, — V,, where V, is the peak-to-peak ripple voltage. When
CR > T, the value of V, is small.

4. When V, is small, v, is almost constant and equal to the peak value of . Thus the dc
output voltage is approximately equal to V,. Similarly, the current i _is almost con-
stant, and its dc component I,_is given by

I = = (4.26)

If desired, a more accurate expression for the output dc voltage can be obtained by
taking the average of the extreme values of v,

Vo = Vp—%Vr (4.27)
With these observations in hand, we now derive expressions for V, and for the average

and peak values of the diode current. During the diode-off interval, v, can be expressed as

-t/CR
U = Vpe

At the end of the discharge interval we have
Vp _V, = Vpe—T/CR

Now, since CR > T, we can use the approximation e "/“*~ 1 -T/CR to obtain

V, = Vpgﬁ (4.28)
We observe that to keep V, small we must select a capacitance C so that CR > T. The ripple
voltage V, in Eq. (4.28) can be expressed in terms of the frequency f = 1/T as
VP
V, = cR (42%) ©

Using Eq. (4.26) we can express V, by the alternate expression
I
V, = C (4.29h)

Note that an alternative interpretation of the approximation made above is that the capacitor
discharges by means of a constant current I, = V,/R. This approximation is valid as long
asV, <V,

Assuming that diode conduction ceases almost at the peak of v,, we can determine the
conduction interval At from

V, cos (wAt) = V, -V,

where w = 2af = 2x/T is the angular frequency of Y- Since (wAt) is a small angle, we
can employ the approximation cos (wAt) =1 — %(a)At) to obtain

wAt = [2V,./V, (4.30)

We note that when V, <V, the conduction angle @ At will be small, as assumed.



204 Chapter 4 Diodes

Example 4.8

To determine the average diode current during conduction, i, we equate the charge
that the diode supplies to the capacitor,
qupplied = iCav At
where from Eq. (4.24),

Icav = Ipav — I

to the charge that the capacitor loses during the discharge interval,

Qlost = CVr
to obtain, using Egs. (4.30) and (4.29a),
ipay = 1L (1 + 72V, /V,) (4.31)

Observe that when V, <V, the average diode current during conduction is much greater
than the dc load current. This is not surprising, since the diode conducts for a very short
interval and must replenish the charge lost by the capacitor during the much longer interval
in which it is discharged by I,.

The peak value of the diode current, iy, can be determined by evaluating the expres-
sion in Eq. (4.25) at the onset of diode conduction—that is, at t =t, = —At (where t = 0 is at the
peak). Assuming that i, is almost constant at the value given by Eq. (4.26), we obtain

ipmac = 1L(1+272/2V,/V,) (4.32)

From Egs. (4.31) and (4.32), we see that for V, <V, i, = 2ip,,, Which correlates with the
fact that the waveform of i, is almost a right-angle triangle (see Fig. 4.25c).

Consider a peak rectifier fed by a 60-Hz sinusoid having a peak value V, = 100 V. Let the load resis-
tance R = 10 kQ. Find the value of the capacitance C that will result in a peak-to-peak ripple of 2 V.
Also, calculate the fraction of the cycle during which the diode is conducting and the average and
peak values of the diode current.

Solution

From Eg. (4.29a) we obtain the value of C as

co Vb 100

ViR 2% 60x10%10°

= 833 uF

The conduction angle @ At is found from Eq. (4.30) as

oAt = J2x2/100 = 0.2 rad

Thus the diode conducts for (0.2/27x) x 100 = 3.18% of the cycle. The average diode current is
obtained from Eq. (4.31), where 1, = 100/10 = 10 mA, as

iy = 10(1+ 742x 100/2) = 324 mA

The peak diode current is found using Eqg. (4.32),

ipmax = 10(1+27,/2%100/2) = 638 mA




4.5 Rectifier Circuits 205

o~

~Y

Figure 4.26 Waveforms in the full-wave peak rectifier.

The circuit of Fig. 4.25(a) is known as a half-wave peak rectifier. The full-wave recti-
fier circuits of Figs. 4.22(a) and 4.23(a) can be converted to peak rectifiers by including a
capacitor across the load resistor. As in the half-wave case, the output dc voltage will be
almost equal to the peak value of the input sine wave (Fig. 4.26). The ripple frequency, how-
ever, will be twice that of the input. The peak-to-peak ripple voltage, for this case, can be
derived using a procedure identical to that above but with the discharge period T replaced by
T/2, resulting in

VP
V, = >TCR (4.33) (1)

While the diode conduction interval, At, will still be given by Eq. (4.30), the average and
peak currents in each of the diodes will be given by

i = 1L (1+ 2V, /2V)) 438 ©
ipmec = 1L(1+ 272V, /2V,) 435 ©

Comparing these expressions with the corresponding ones for the half-wave case, we note
that for the same values of V, f, R, and V, (and thus the same 1 ), we need a capacitor half the
size of that required in the half-wave rectifier. Also, the current in each diode in the full-
wave rectifier is approximately half that which flows in the diode of the half-wave circuit.

The analysis above assumed ideal diodes. The accuracy of the results can be improved by
taking the diode voltage drop into account. This can be easily done by replacing the peak voltage
V, to which the capacitor charges with (V, — V;,) for the half-wave circuit and the full-wave cir-
cuit using a center-tapped transformer and with (V, — 2V,,) for the bridge-rectifier case.

We conclude this section by noting that peak-rectifier circuits find application in signal-
processing systems where it is required to detect the peak of an input signal. In such a case,
the circuit is referred to as a peak detector. A particularly popular application of the peak
detector is in the design of a demodulator for amplitude-modulated (AM) signals. We shall
not discuss this application further here.

4.22 Derive the expressions in Egs. (4.33), (4.34), and (4.35).

4.23 Consider a bridge-rectifier circuit with a filter capacitor C placed across the load resistor R for the case
in which the transformer secondary delivers a sinusoid of 12 V (rms) having a 60-Hz frequency and
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assuming V, = 0.8 V and a load resistance R = 100 Q. Find the value of C that results in a ripple
voltage no larger than 1 V peak-to-peak. What is the dc voltage at the output? Find the load current.
Find the diodes’ conduction angle. Provide the average and peak diode currents What is the peak
reverse voltage across each diode? Specify the diode in terms of its peak current and its PIV.
Ans. 1281 uF; 15.4 V or (a better estimate) 14.9 V; 0.15 A; 0.36 rad (20.7°); 1.45 A; 2.74 A;
16.2 V. Thus select a diode with 3.5-A to 4-A peak current and a 20-V PIV rating.

4.5.5 Precision Half-Wave Rectifier—The Superdiode*

The rectifier circuits studied thus far suffer from having one or two diode drops in the signal
paths. Thus these circuits work well only when the signal to be rectified is much larger than
the voltage drop of a conducting diode (0.7 V or so0). In such a case, the details of the diode
forward characteristics or the exact value of the diode voltage do not play a prominent role
in determining circuit performance. This is indeed the case in the application of rectifier cir-
cuits in power-supply design. There are other applications, however, where the signal to be
rectified is small (e.g., on the order of 100 mV or so) and thus clearly insufficient to turn on
a diode. Also, in instrumentation applications, the need arises for rectifier circuits with very
precise and predictable transfer characteristics. For these applications, a class of circuits has
been developed utilizing op amps (Chapter 2) together with diodes to provide precision rec-
tification. In the following discussion, we study one such circuit, leaving a more comprehen-
sive study of op amp-diode circuits to Chapter 17.

Figure 4.27(a) shows a precision half-wave rectifier circuit consisting of a diode placed
in the negative-feedback path of an op amp, with R being the rectifier load resistance. The op
amp, of course, needs power supplies for its operation. For simplicity, these are not shown in
the circuit diagram. The circuit works as follows: If v, goes positive, the output voltage v, of
the op amp will go positive and the diode will conduct, thus establishing a closed feedback
path between the op amp’s output terminal and the negative input terminal. This negative-
feedback path will cause a virtual short circuit to appear between the two input terminals of

“Superdiode” vo A
B o ]
by |
i Z/Al 1
| | |
L T It © vy -
R 0 vy
(@) (b)

Figure 4.27 The “superdiode” precision half-wave rectifier and its almost-ideal transfer characteristic.
Note that when v, > 0 and the diode conducts, the op amp supplies the load current, and the source is conve-
niently buffered, an added advantage. Not shown are the op-amp power supplies.

“This section requires knowledge of operational amplifiers (Chapter 2).
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the op amp. Thus the voltage at the negative input terminal, which is also the output voltage
vy, Will equal (to within a few millivolts) that at the positive input terminal, which is the
input voltage v,

Vg = Y v 20

Note that the offset voltage (=0.7 V) exhibited in the simple half-wave rectifier circuit of
Fig. 4.21 is no longer present. For the op-amp circuit to start operation, v, has to exceed only
a negligibly small voltage equal to the diode drop divided by the op amp’s open-loop gain.
In other words, the straight-line transfer characteristic v,—v, almost passes through the ori-
gin. This makes this circuit suitable for applications involving very small signals.

Consider now the case when v, goes negative. The op amp’s output voltage v, will tend
to follow and go negative. This will reverse-bias the diode, and no current will flow through
resistance R, causing v, to remain equal to 0 V. Thus, for v, < 0, v, = 0. Since in this case the
diode is off, the op amp will be operating in an open-loop fashion, and its output will be at its
negative saturation level.

The transfer characteristic of this circuit will be that shown in Fig. 4.27(b), which is
almost identical to the ideal characteristic of a half-wave rectifier. The nonideal diode charac-
teristics have been almost completely masked by placing the diode in the negative-feedback
path of an op amp. This is another dramatic application of negative feedback, a subject we
will study formally in Chapter 10. The combination of diode and op amp, shown in the dotted
box in Fig. 4.27(a), is appropriately referred to as a “superdiode.”

4.24 Consider the operational rectifier or superdiode circuit of Fig. 4.27(a), with R=1 kQ. For v, =10 mV,
1V, and -1V, what are the voltages that result at the rectifier output and at the output of the op amp?
Assume that the op amp is ideal and that its output saturates at £12 V. The diode has a 0.7-V drop at
1-mA current.

Ans. 10mV,059V;1V,1.7V;0V,-12V

4.25 If the diode in the circuit of Fig. 4.27(a) is reversed, find the transfer characteristic v, as a function of v,.
Ans. yg = 0forv,20; vy = v, forvy, <0

4.6 Limiting and Clamping Circuits

In this section, we shall present additional nonlinear circuit applications of diodes.

4.6.1 Limiter Circuits

Figure 4.28 shows the general transfer characteristic of a limiter circuit. As indicated, for
inputs in a certain range, L_/K < v, <L_,./K, the limiter acts as a linear circuit, providing an
output proportional to the input, v, = Kv,. Although in general K can be greater than 1, the cir-
cuits discussed in this section have K < 1 and are known as passive limiters. (Examples of
active limiters will be presented in Chapter 17.) If v, exceeds the upper threshold (L,/K), the
output voltage is limited or clamped to the upper limiting level L,. On the other hand, if v, is
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L+ _____

= 4

Figure 4.28 General transfer characteristic
for a limiter circuit.

VA A

Figure 4.29 Applying a sine wave to a limiter can result in clipping off its two peaks.

reduced below the lower limiting threshold (L_/K), the output voltage v, is limited to the
lower limiting level L_.

The general transfer characteristic of Fig. 4.28 describes a double limiter—that is, a
limiter that works on both the positive and negative peaks of an input waveform. Single lim-
iters, of course, exist. Finally, note that if an input waveform such as that shown in Fig. 4.29
is fed to a double limiter, its two peaks will be clipped off. Limiters therefore are sometimes
referred to as clippers.

The limiter whose characteristics are depicted in Fig. 4.28 is described as a hard limiter.
Soft limiting is characterized by smoother transitions between the linear region and the sat-
uration regions and a slope greater than zero in the saturation regions, as illustrated in Fig.
4.30. Depending on the application, either hard or soft limiting may be preferred.

Limiters find application in a variety of signal-processing systems. One of their simplest
applications is in limiting the voltage between the two input terminals of an op amp to a value
lower than the breakdown voltage of the transistors that make up the input stage of the op-amp
circuit. We will have more to say on this and other limiter applications at later points in this book.

Diodes can be combined with resistors to provide simple realizations of the limiter
function. A number of examples are depicted in Fig. 4.31. In each part of the figure both the
circuit and its transfer characteristic are given. The transfer characteristics are obtained using
the constant-voltage-drop (V, = 0.7 V) diode model but assuming a smooth transition
between the linear and saturation regions of the transfer characteristic.
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Figure 4.31 A variety of basic limiting circuits.

The circuit in Fig. 4.31(a) is that of the half-wave rectifier except that here the output is
taken across the diode. For u, < 0.5 V, the diode is cut off, no current flows, and the voltage
drop across R is zero; thus v, = v,. As v, exceeds 0.5 V, the diode turns on, eventually limiting

209



210 Chapter 4 Diodes

v, 10 one diode drop (0.7 V). The circuit of Fig. 4.31(b) is similar to that in Fig. 4.31(a)
except that the diode is reversed.

Double limiting can be implemented by placing two diodes of opposite polarity in paral-
lel, as shown in Fig. 4.31(c). Here the linear region of the characteristic is obtained for
-0.5V < v, £0.5 V. For this range of v,, both diodes are off and v, = v,. As v, exceeds 0.5V,
D, turns on and eventually limits v, to +0.7 V. Similarly, as v, goes more negative than —0.5 V,
D, turns on and eventually limits v, to —0.7 V.

The thresholds and saturation levels of diode limiters can be controlled by using strings
of diodes and/or by connecting a dc voltage in series with the diode(s). The latter idea is illus-
trated in Fig. 4.31(d). Finally, rather than strings of diodes, we may use two zener diodes in
series, as shown in Fig. 4.31(e). In this circuit, limiting occurs in the positive direction at a
voltage of V,, + 0.7, where 0.7 V represents the voltage drop across zener diode Z, when
conducting in the forward direction. For negative inputs, Z, acts as a zener, while Z, conducts
in the forward direction. It should be mentioned that pairs of zener diodes connected in series
are available commercially for applications of this type under the name double-anode zener.

More flexible limiter circuits are possible if op amps are combined with diodes and
resistors. Examples of such circuits are discussed in Chapter 17.

4.26 Assuming the diodes to be ideal, describe the transfer characteristic of the circuit shown in Fig. E4.26.
10 k(O

TE %,

v 5 V— =5V 75

10 m%— %10 kQ

o - i o Figure E4.26
Ans. vg = v, for -5<vy,<+5

vo = uy-25  fory <-5
Vo = 3y +25 for v; > +5

4.6.2 The Clamped Capacitor or DC Restorer

If in the basic peak-rectifier circuit, the output is taken across the diode rather than across
the capacitor, an interesting circuit with important applications results. The circuit, called a
dc restorer, is shown in Fig. 4.32 fed with a square wave. Because of the polarity in which
the diode is connected, the capacitor will charge to a voltage v, with the polarity indicated in
Fig. 4.32 and equal to the magnitude of the most negative peak of the input signal. Subse-
quently, the diode turns off and the capacitor retains its voltage indefinitely. If, for instance,
the input square wave has the arbitrary levels —6 V and +4 V, then v will be equal to 6 V.
Now, since the output voltage v, is given by

Vg = v+ vuc

it follows that the output waveform will be identical to that of the input, except that it is
shifted upward by v, volts. In our example the output will thus be a square wave with levels
of 0V and +10 V.
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Figure 4.32 The clamped capacitor or dc restorer with a square-wave input and no load.

Another way of visualizing the operation of the circuit in Fig. 4.32 is to note that
because the diode is connected across the output with the polarity shown, it prevents the
output voltage from going below 0 V (by conducting and charging up the capacitor, thus
causing the output to rise to 0 V), but this connection will not constrain the positive
excursion of v,. The output waveform will therefore have its lowest peak clamped to
0 V, which is why the circuit is called a clamped capacitor. It should be obvious that
reversing the diode polarity will provide an output waveform whose highest peak is
clamped to 0 V. In either case, the output waveform will have a finite average value or
dc component. This dc component is entire