











EUROPEAN REGIONAL DEVELOPMENT FUND

#### Spatial analyzing in QGIS

Rene Maas, 2022

EUROPEAN UNION



### Vector analysis- todays main topic

- It shows spatial relationships.
- One example- are two areas overlapping, difference etc.
- Statistics is also included- how many points are in a particular area, join attributes by location.



#### In teams

- Try to think about the last lecture and about the 4 steps traffic forecasting model.
- What are the steps?
- How to implement the Huff Gravity Model in a project?

## Lets implement 4 step model



- First step is to have input data
  - Population for given area, school points
- Extract then useful areas
  - By maximum radius the students are willing to take by bicycle

## QGIS problem solving steps

To solve big problem, you have to slice it into the smaller subproblems

- 1. State the Problem
- 2. Get the Data
- 3. Analyze the Problem
- 4. Present the Results



## Example- problem statement

- Our problem is to know how many students live inside the school's buffer area
  - Buffer 3000 meters from schools.



### Task- add data

- We will use OpenStreetMap as the basemap
- Add basemap as you have learned before
- Save project to the new folder
- Zoom to Pärnu city





## Task- add school points layer

- You will find a layer with school points from the QGIS data folder at Google Drive
- Add this layer to the project
- Export layer and save everything to the work folder
- School points are found in "Pärnu\_schools" layer



## Task- add population data

- Add zones population data as 1km x 1km cells and every cell holding inhabitants number
- You will find this information from the QGIS data folder
- Students nr by area are in the "Males\_and\_females\_10\_14" folder

### School points and population layer together





### Where we are now?

- We have a schools point layer added
- We have a student number per area
- What we want to know next?

## Lets implement 4 step model

We try to solve 4. step traffic forecasting model inside QGIS

• First step is to have input data

Population for given area, school points

• Extract then useful areas



• By maximum radius of students are willing to take by bicycle



# Task- spatial analyzing- a buffer tool

| Q Buffer                                   |            |   |    |
|--------------------------------------------|------------|---|----|
| Parameters Log                             |            |   | I  |
| Input layer                                |            |   |    |
| ° Schools [EPSG:32635]                     | - 47       | 2 |    |
| Selected features only                     |            | - |    |
| Distance                                   |            |   |    |
| 3000.000000                                | 🖾 💲 meters | • | e, |
| Segments                                   |            |   |    |
| 5                                          |            |   | -  |
| End cap style                              |            |   |    |
| Round                                      |            |   | -  |
| Join style                                 |            |   |    |
| Round                                      |            |   | -  |
| Miter limit                                |            |   |    |
| 2.00000                                    |            |   | \$ |
| ✓ Dissolve result                          |            |   |    |
| Buffered                                   |            |   |    |
| [Create temporary layer]                   |            |   |    |
| ✓ Open output file after running algorithm |            |   |    |
|                                            |            |   |    |
|                                            |            |   |    |
|                                            |            |   |    |

Add a buffer to the schools layer, so it will reflects the area where students are willing to go to school by bicycle

### Task- spatial analyzing- a clipping tool

| Q Clip                                                                                                                                     | 19123 | 14  | <4   | 199  | 430  | <4   |              |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|------|------|------|--------------|
| Parameters     Log       Input layer     Input layer       Input layer     Input layer                                                     | 42    | 196 | 200  | 1888 | 2404 | 642  | 349          |
| <ul> <li>Selected features only</li> <li>Overlay layer</li> <li>✓ Buffered [EPSG:32635]</li> <li>✓ Selected features only</li> </ul>       | 24    | 226 | 2560 | 2426 | 1220 | 1597 | 1148         |
| Clipped [Create temporary layer] ✓ Open output file after running algorithm                                                                |       | 14  | 359  | 1318 | 6062 | 3516 | 1242         |
| Here we will extract<br>useful areas out of<br>the map by<br>comparing the<br>population of<br>students layer with<br>schools buffer layer |       |     |      | 85   | 1974 | 1337 | 4437<br>1865 |



Now add streets network from QGIS data folder. Name: "Pärnu\_non\_motorized\_streets" D

5

It will represent all the streets for Estonia



### Temporary layers- caution

• Every layer you want to save for afterward, should be saved as, otherwise it is a temporary layer and will get lost



Those are temporary layers

Right click on layer and export feature as. Find just the right folder, coordinate system and type



### Conclusion

- We started by outlining QGIS working steps
- First step is to state a problem
- We extracted areas that are really important to us
- Important to us are the areas of 3000 m from schools
  - In this range students are willing to use bicycles to go to school





# Thank you for your attention!

Interreg Central Baltic Project: INTELTRANS – Intelligent Transport and Traffic Management study module.







