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Abstract

Studies of driving behaviour are of great help for different tasks in transportation engineering. These include data collection
both for statistical analysis and for identification of driving models and estimation of modelling parameters (calibration). The
data and models may be applied to different areas: i) road safety analysis; ii) microscopic models for traffic simulation,
forecast and control; iii) control logics aimed at ADAS (Advanced Driving Assistance Systems). In this paper we present a
large survey based on the naturalistic (on-the-road) observation of driving behaviour with a view to obtaining microscopic
data for single vehicles on long road segments and for long time periods. Data are collected by means of an instrumented
vehicle (IV), equipped with GPS, radar, cameras and other sensors. The behaviour of more than 100 drivers was observed by
using the IV in active mode, that is by observing the kinematics imposed on the vehicle by the driver, as well as the
kinematics with respect to neighbouring vehicles. Sensors were also mounted backwards on the 1V, allowing the behaviour of
the driver behind to be observed in passive mode. As the vehicle behind changes, the next is observed and within a short
period of time the behaviour of several drivers can be examined, without the observed driver being aware. The paper presents
the experiment by describing the road context, aims and experimental procedure. Statistics and initial insights are also
presented based on the large amount of data collected (more than 8000 km of observed trajectories and 120 hours of driving in
active mode). As an example of how to use the data directly, apart from calibration of driving behaviour models, indexes
based on aggregate measures of safety are computed, presented and discussed.
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1. Introduction

Identification of driving behaviour represents a fundamental requirement for traffic studies and generates
benefits especially in three main fields: road safety analysis; microscopic traffic simulation; intelligent
transportation systems (ITS).

Road safety analysis aims to understand the causes of accidents and take measures to prevent them from
occurring. Safety can be determined according to different approaches. One is based on statistical considerations
and concerns identification of so-called hotspots (Montella, 2010). Another approach uses accident scenarios and
is based on statistical inference (Fleury and Brenac, 2001); recurrent conditions are investigated in observed
accidents in order to identify prototype unsafe scenarios related to various aspects, such as the road geometry,
road section, vehicle characteristics, the pavement and the weather. A third approach, adopted in this paper, is
based on the analysis of driving behaviour, computing the so-called surrogate safety measures (Tarko, 2009). All
approaches require a non-negligible amount of data, often related to car-following conditions, rear-endings being
one of the most frequent causes of injuries (excluding accidents that involve vulnerable road users).

Identification of driving behaviour is also a key task for microscopic traffic models, developed to improve the
detail of traffic flow studies by explicitly representing the interaction between the single components of a traffic
stream. The choices of each vehicle, in terms of spacing with respect to the vehicle(s) ahead, lane changing, gap
acceptance, etc., are identified by analytical models. A review of some of these models can be found in Toledo
(2007). A major task for microscopic traffic models is their calibration, given that a large number of parameters
have to be estimated for each of the modelling components, including car-following.

ITS are advanced applications that embody decision-making and/or operational intelligence in order to provide
innovative services. These applications allow both safer and more efficient use of the road by travellers and
enhanced traffic management. In the field of ITS, Advanced Driver Assistance Systems (ADAS) represent a real
opportunity to both improve road safety and support efficient transportation systems. Not only do ADAS directly
influence the interaction among vehicles and thus affect traffic flows and characteristics., but they also control the
driving task directly, reducing drivers’ errors and shortening reaction times. The development of such systems is
not straightforward and many issues have to be addressed, not only from a technological point of view. For
instance, it is crucial to be sure that any proposed system considers driver expectation and behaviour and ensures
there is a minimal mismatch between the system behaviour and the driver’s normal behaviour, thus increasing
driver acceptance (Simonelli et al., 2009; Bifulco et al., 2013a). Indeed, an ideal ADAS needs to be based on a
good understanding of driver behaviour, particularly in car-following which still represents one of the main fields
of application for solutions like ACC (Adaptive Cruise Control) and AEB (Advanced Emergency Braking).

This paper presents the data-collection activities carried out within the Italian research project DRIVEIN
(DRIVEr monitoring: technologies, methodologies, and IN-vehicle INnovative systems). The project involves
eight partners and focuses on defining methodologies, technologies and solutions to capture driving behaviours,
with special emphasis on road-safety solutions. The DRIVE IN” project (Bifulco et al., 2012a) falls within the
field of ADAS and, among others, aims to implement a Driver-In-the-Loop (DIL) laboratory based on a
multidisciplinary approach which involves knowledge of automotive solutions, transportation engineering and
traffic psychology. The project relies on driving data collected by means of both an instrumented vehicle (IV)
used for naturalistic (on-the-road) observations and a driving simulator (DS). How the IV is equipped and how it
is employed in our experimental framework is described in Bifulco et al. (2012b). The reciprocal validation of DS
and IV is an on-going task, with first results recently submitted (Bifulco et al., 2013b).

In this paper, after a review of current advances in microscopic data collection (section 2), the experiment is
described in detail (section 3). An application of the collected data to road safety analysis is presented in section
4. Finally, the results are discussed and conclusions are drawn.
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2. State of the art in microscopic traffic data collection

Several tools are available to observe driving behaviour, some of which operate road-side and others on-board.
In the case of road-side sensors, an unaware driver is monitored while driving on an instrumented site; various
technologies can be used for this purpose, with the most popular today being video cameras, that allow to track
the trajectories of vehicles via image processing. This method was recently employed in the Next Generation
SIMulation program (NGSIM), a public-private project between the Federal Highway Administration of USA and
several commercial micro-simulation software developers. Data are public and available for all scientists from the
project website (www.ngsim.thwa.dot.gov). An alternative approach is to obtain motorway individual vehicle
data (IVD) as proposed in Wilson (2008). It is based on the use of data collected with inductive loop detectors (in
a double loop configuration). Accurate estimates of speed and vehicle length can be recorded together with the
time at which they are detected. Such data are generally oriented to aggregate measures of the characteristics of
the traffic stream, typically referred to time-lengths of over one minute. However, Wilson suggests recording
single detections. Using the speed detected at an upstream double-loop detector, the arrival time of the vehicle at
the downstream one can be predicted. Compatibly with the predicted arrival time at downstream the best-
matching record is searched, using the detected vehicle’s length to help matching. Thus the vehicle is traced
across two consecutive (double) loops. The reliability of data is strictly related to the distance between detectors.
The method has been applied in the Motorway Incident Detection and Automatic Signalling (MIDAS) project,
which consists of a network of traffic sensors installed on several (highly congested) UK motorways. A major
advantage of both the NGSIM and MIDAS approaches concerns the amount of data that can be collected. The
major disadvantage is that drivers can be observed only for a few seconds, on a limited portion of the
instrumented site. Moreover, it is not possible to have information on the driver’s characteristics and only
combined drive-and-vehicle behaviour can be observed.

On-board sensors, installed on IVs, allow longer observations under more flexible experimental conditions,
with the possibility of observing in a controlled way some manoeuvres of particular interest. An instrumented
vehicle can be represented as a standard car whose kinematics is recorded in order to be analysed (Bifulco et al.
2012b). Several research projects have been based on IVs, aimed at analysing and modelling driving behaviour or
the interaction between vehicles in terms of car-following and/or lane-changing (Boyce and Geller, 2001).The
dispersion of driving styles with respect to different personal characteristics, such as age, gender and driving
experience, represents the target of an increasing number of IV-based studies, such as that of Ranjitkar et al.
(2004). Moreover, I'Vs have been used for psychophysical analysis of the state of drivers, especially their fatigue
or mental workload (Harms and Patten, 2003). Other studies have employed IVs to analyse drivers’ responses to
route guidance systems. IVs also allow analysis of drivers’ behaviour in the absence of interaction with other
vehicles but with respect to different geometric features of roads (Perez Zuriaga et al., 2000).

From a broader perspective, Bishop (2000) provides an overview of the possible applications of instrumented
vehicles in ITS, with particular reference to Intelligent Speed Adaptation. Of course, IVs are mainly used in order
to gain insights into normal driving behaviour. Critical behaviour and/or unsafe situations may also be observed
(hopefully rarely; McLaughlin et al., 2008); however, these cannot be deliberately induced in road experiments,
because of evident ethical reasons. As a result, only surrogate measures of safety can be produced in most safety-
related cases (Yan et al., 2008). That said, the ability to collect and record data about the relative kinematics of
the IV with respect to vehicles ahead and/or behind represents a prerequisite for studies involving the observation
of car-following conditions. Observation can be carried out (Brackstone et al., 2009) both in active mode (the
driver observed is in the instrumented vehicle and the car-following process is defined with respect to the vehicle
ahead) and in passive mode (the leader is the instrumented vehicle and the observed driver is the one in the
vehicle behind. Of course, it is also crucial in this framework the ability to use such techniques as filtering and
fusion (Bifulco et al., 2011) to handle the large number of both data and sources of data.
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3. The on-road survey
3.1. Definition and recruitment of the sample

A sample of 100 participants was selected for experimental purposes, drawn in order to match the population
of Italian drivers. The following levels were considered in the stratification of the population:
1. Gender: male and female;
2. Age, 4 classes:
e class 1, from 20 to 24 years old;
e class 2, from 25 to 40 years old;
e class 3, from 41 to 64 years old;
e class 4, over 65 years old;
3. Educational level attained, considered low (until high school diploma) or high (after graduation).
The admissible combination of the previous features allows the sample to be split over 14 layers (Table 1 below).

Table 1. The sample

Layer Age Gender  Educational Level  Relative incidence Layer Cardinality
(over a sample of 100)
1 M 0.2%0.429*1 9
2 20-24 F L 0.2%0.571*1 11
3 M L 0.3%0.483*0.5 7
4 2540 H 0.3*0.483*0.5 7
5 F L 0.3*%0.517*0.5 8
6 H 0.3*%0.517*0.5 8
7 M L 0.3%0.491*0.5 7
8 41-64 H 0.3%0.491*0.5 7
9 F L 0.3*0.509*0.5 8
10 F H 0.3*%0.509*0.5 8
11 M L 0.2*#0.674*0.5 7
12 =65 H 0.2*#0.674*0.5 7
13 - M L 0.2*#0.326*0.5 3
14 H 0.2*#0.326*0.5 3

The cardinality of each layer depends on the relative incidence on the population given by official data, such as
those provided by the ISTAT (Istituto [Nazionale] di STATistica — Italian National Statistics Institute), as updated
to the latest available year. In order to fill in missing information, we also used data from the DATIS project,
carried out by the ISS (Istituto Superiore della Sanita — TItalian National Health Institute,
http://www.iss.it/chis/?lang=2) to define the distribution of gender in each single layer.

Having defined the desired cardinality of each layer, we recruited individuals among those responding to an
advertisement requesting volunteers for a study on driving behaviour. Selection was carried out in three steps:

a) Contact, 100 drivers were needed; however, we decided on a preliminary basis to select 150 drivers,
distributed according to the desired stratification. Thus a preliminary sample was considered by
increasing each of the sample layers by 50%;

b) Administration of the pre-selection questionnaire to those showing interest in participating in the
experiment. This questionnaire consisted of four distinct parts: Personal Data; Traffic Locus Of Control
Questionnaire (T-LOC); Marlowe Crowne Social Desirability (MCSD); Dangerous Driving (DDDI).

T-LOC, MCSD and DDDI, were administered in random order to respondents, to avoid distortion
phenomena, as most people tend to provide the last answers hastily due to the annoyance.
Analysis of the questionnaire responses achieved three purposes:
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e it confirmed that the respondents belonged to the layer he/she had been contacted for. If the layer

was not confirmed, the respondent was switched to the appropriate layer. If, after verification of all

respondents a layer was under-represented with respect to the desired classification, the sample was

supplemented with new respondents;

it classified the respondents by employment status: student (if appropriate for the considered layer,

depending on age), employed vs. unemployed, retired (if appropriate for the layer);

it divided individuals into clusters. Three categories were created according to responses given to the

T-LOC, MCSD and DDDI tests by using two-step cluster analysis (TSC, SPSS Inc. 2001):

aggressive drivers; non-aggressive drivers and fatalists; non-aggressive and non-fatalistic drivers;

c) Final selection of the sample: from 150 contacts 100 respondents were selected. For each layer,
respondents were selected, obtaining a good balance with respect to employment status and clusters.

3.2. The experiment

The experiment lasted from September to the end of October 2012. It was organised into daily experimental
sessions, each consisting of several driving sessions. In order to schedule the driving tests, the drivers made their
own reservations for one of the experiment day through a web application. Driving sessions were sequenced
every two hours, accommodating driving time and the time required to answer two questionnaires (pre and post-
driving). Each daily session involved at most five driving sessions (from 8:30 a.m. to 6:30 p.m.). Since the sun
sets before 6 p.m. only in last days of October, similar sunlight conditions were established for each session.
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Fig. 1. The experimental path

The following steps were carried out:
e observation of the 100-driver sample;
each driver drove on the same tour (see Fig. 1) by using an instrumented vehicle (for a detailed description of
the IV refer to Bifulco et al., 2012b), detecting the behaviour of the driver with respect to the vehicle ahead
and the behaviour of the driver of the vehicle above with respect to the instrumented vehicle;
the tour is 78 km long, each driving session lasting about one hour; the route consists in a single loop, mainly
evolving over three roads near Naples for a total length of 60 km:
- National Highway A1 (from B to D in Fig. 1, about 14 km), consisting of a dual carriageway and three
lanes for each traffic direction, with a designated speed range of 80-120km/h (speed limit 100 km/h). Here
the driver is immersed in a traffic stream that moves at about 100 km/h. Thus natural car-following data are
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obtained, in the sense that the driver is not asked to perform special tasks;

- National Highway A30 (from D to H in Fig. 1, about 30 km), with the same characteristics as National
Highway Al, apart from the speed limit (130 km/h). Here the driver interacts with a vehicle taking part to
the experiment (corporate vehicle) which carries out several standard manoeuvres. In particular, the driver
is asked to perform three approaching manoeuvres with the leader at a constant speed of 80, 100 and 120
km/h;

- The "Vesuvius" State Highway SS 268 (from I to K in Fig. 1, about 16 km), consisting of a single
carriageway with one lane per traffic direction, at-grade intersections and design speed interval of 60-100
km/h (speed limit 90 km/h). Here the corporate vehicle is not present; however car-following data are
obtained.

For part of each of the three main sections a workload experiment was carried out on the drivers, aimed at
estimating their mental workload. This refers to the portion of the driver’s information processing capacity (or
resources) that is actually required to meet requirements in the driving task (Eggemeier et al., 1991). The starting
point for driving sessions was Via Gianturco, a major urban road in the eastern part of Naples, due to the
availability of public transport services, thanks to the Gianturco underground station, and quick access to the Al
Highway. Having been met at the beginning of the test-driving route, selected drivers were given a pre-driving
questionnaire, comprising the DCQ (Driver Coping Questionnaire) and the DSI-Pre (Driver Stress Inventory-Pre)
as described in Matthews et al. (1996), as well as the Italian version of the PANAS (Terracciano et al., 2003). The
tests aimed to investigate the driver’s mood prior to driving and to interpreter his/her driving behaviour in light of
it. Before point B, a period of acclimatization (from L to B in Fig. 1) was introduced, where the driver
familiarized him/herself with the instrumented vehicle, to prevent the driving behaviour being biased by lack of
familiarity. A final section was introduced (from K to L) allowing the driver to come back to the starting point.
Finally, a post-driving questionnaire was posed to drivers in order to ascertain in what way the driver’s mood was
influenced by the experiment. The questionnaire comprised the DSI-Post and the NASA-TLX tests adapted for
workload (Hart & Staveland, 1988; Bracco & Chiorri, 2006). Workload was used, amongst others, to validate an
associated experiment carried out using a driving simulator, as presented in Bifulco et al. (2013b).

4. Using collected data for road-safety analysis
4.1. Data reduction

Using the IV, we thus recorded the trajectories of each driver (and of the surrounding vehicles) also supported
by video. In this way we analysed the car following phenomena in active and passive modes (Brackstone et al.,
2009). In particular, in active mode, on-board sensors are used to obtain measures relative to the vehicle ahead,
and the instrumented vehicle acts as the follower and its driver is the (aware) subject of a behavioural experiment.
In passive mode, the sensors measure the relative kinematics with respect to a vehicle behind and the (most
probably unaware) subject of the experiment is the driver of this vehicle. While active mode enables recording of
long sessions for the same subject (possibly involving several leading vehicles), the passive mode allows the
recording of shorter sessions but of many different subjects (with respect to the same leader).

Data presented in this section concern the third section of the experiment (Vesuvius State Highway SS 268),
where unsafe driving conditions are often reported and accidents more frequently occur.

In order to analyse this phenomenon, we divided each car-following trajectory into clips. For each clip it was
imposed that: the vehicle behind or ahead of the IV (respectively for passive and active mode) is the same; the
length of the clip is at least 20 sec; the spacing is less than or equal to 150 metres. Analyses identified 123 clips in
active mode and 94 clips in passive mode; for a total of 476.870 km (more than 7 hours) in car-following. The
characteristics of the resulting dataset, relative to clip extension in space and time, are summarised in Table 2.
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Table 2. Synoptic characteristics of dataset clips

Mode Clip length (km) Clip Duration (s)

Mean STD Max Min Mean STD Max Min
Active 2.305 1.218 6.145 0.360 130.02 65.93 320.11 21.16
Passive 2.056 1.102 5.645 0.335 114.06 58.93 343.16 21.66

4.2. Surrogate measures of safety

Having selected the clips, we carried out dispersion analysis of the behaviour observed, taking several traffic
variables into account. Our analysis especially concerned the safety of the flow conditions and was disaggregated
by active and passive mode, based on the concept of surrogate safety measures. A general definition for these
measures is somewhat vague, but basically, in accordance with Tarko (2009), the concept is that a surrogate
measure should be based on an observable non-crash event, related predictably and reliably to crashes, which may
in practice correspond to crash frequency or severity.

Measures typically considered are vehicle speed, the adopted headway (H) and the time-to-collision (TTC).
Headway measures the time required, under unchanged conditions, for the vehicle behind to reach the position
occupied by the leading one. TTC (when relative speed, measured as leader’s speed minus the follower’s, is lower
than zero, and the follower approaches the leader) represents the time after which a collision between the two
vehicles will occur if the collision course and the speed difference are maintained (see e.g. Hyden, 1996). The two
parameters can be computed for each instant 7 using respectively with H=Ax/V; and TTC= Ax/ Av.

Where Ax, Av and Vi are, respectively, the spacing (measured bumper to bumper), the relative speed and the
follower’s speed; all required measures were collected by the IV in both the active and passive mode.

4.3. Results
The distributions of the average follower’s speed observed in each clip are reported in the box and whisker

plot depicted for both the active and passive modes (Figure 2 left-hand side). Similarly, a box and whisker plot is
also produced for the distribution of the average headways adopted (Figure 2 right-hand side).
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Fig. 2. The box and whisker plot of the average speed and headways
The instantaneous values of Headway and TTC observed in each clip were also used to analyse safety
conditions based on Vogel (2003), who proposed to combine the two parameters to determine instantaneous
safety conditions for drivers. In particular, four zones can be defined by setting two thresholds. The four zones
are depicted in Fig. 3 with respect to a value of six seconds for both the thresholds and for both active and
passive mode data; in this case the behaviour of the drivers is never considered safe but situations of “imminent
danger” occur very rarely (time frequency < 0.5%). However, it is worth noting that the width of the four zones
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Fig. 3. An analysis of safety conditions according to Vogel
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Fig. 4. Sensitivity analysis of safety conditions with respect to different values of TTC and H thresholds
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depends on the thresholds. Hence, in Fig. 4, a sensitivity analysis was applied with respect to different values of
the thresholds. In particular, three TTC threshold values were chosen (2, 4 and 6 seconds) and, for each the
headway threshold was varied (from 0.5 to 4 seconds). Given these thresholds, the percentages of time in which
the drivers were in safety, potential danger and imminent danger conditions were computed and plotted in the
figure for both the active and passive mode.

5. Discussion and conclusions

In this work we presented a large-scale survey aiming at the observation of driving behaviour. The data which
we collected were used for safety analysis. Observations show that the speeds are not dispersed across drivers
and along the road stretches concerned. Moreover, they are similar both in average and deviation for active and
passive observations. More heterogeneity between drivers is observed with respect to the headway the drivers
adopt, which is lower in passive mode.

Vogel’s analysis shows that more than 80% of the time potentially dangerous conditions are found if the H
threshold chosen for the analysis is 2 seconds, while an H threshold around 1 second has to be chosen in order to
obtain safety conditions for about 50% of the drivers. The safety condition seems to be independent of the
chosen TTC threshold. Observations in passive mode exhibit slightly more dangerous behaviour.

Driving behaviour during car following were investigated to verify whether active and passive experimental
conditions induce different driver performance. The tests concerned the mean speed and mean headway of each
clip. The resulting samples are not normally distributed. A non-parametric test, two-sample Kolmogorov-
Smirnov, was applied. The difference between headways in the two experimental conditions is statistically
significant (t=0.0022), whereas that between speeds is not (t=0.4955). Equal speeds for active and passive
observation are expected, given that overtaking is not allowed on the route under analysis. However, an influence
of the observation technique was evidenced. The drivers unaware of taking part in an experiment tended to
maintain a lower headway with respect to the active drivers. This confirms early findings in motorway studies of
McDonald et al. (1997).
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