1. Quick review of composite functions

1.1. Composite Function

A function is composite if you can write it as $f(g(x))$.
In other words, it is a function within a function, or a function of a function. For example, $\cos \left(x^{2}\right)$ is composite, because if we let $f(x)=\cos (x)$ and $g(x)=x^{2}$, then $\cos \left(x^{2}\right)=f(g(x))$.

Function g is the function within f, so we call g the „inner" function and f the „outer" fuction.

Common mistake: Not recognizing whether a function is composite or not

Usually, the only way to differentiate a composite function is using the chain rule. If we don't recognize that a function is composite and that the chain rule must be applied, we will not be able to differentiate correctly.

On the other hand, applying the chain rule on a function that isn't composite will also result in a wrong derivative.

Especially with transcendental functions (e.g., trigonometric and logarithmic functions), students often confuse compositions like $\ln (\sin (x))$ products like $\ln (x) \cdot \sin (x)$.

On the other hand, $\cos (x) \cdot x^{2}$ is not a composite function. It is the product of $f(x)=\cos (x)$ and $g(x)=x^{2}$, but neither of the functions is within the other one.

Example. Have a look at the function $f(x)=\left(x^{2}+1\right)^{17}$. We can think of this function as being the result of combining two functions. Another way of representing this would be with a diagram like

$$
x \stackrel{g}{\longmapsto} x^{2}+1 \stackrel{h}{\longmapsto}\left(x^{2}+1\right)^{17} .
$$

We start off with x. Te fuction g takes x to $x^{2}+1$, and the function h then takes $x^{2}+1$ to $\left(x^{2}+1\right)^{17}$.
Exercises. Work out $f(g(x))$ and $g(f(x))$ for the following pairs of functions:

1. $f(x)=3 x, g(x)=2 x^{2}+1$
2. $f(x)=e^{4 x}, g(x)=\sqrt{x}$
3. $f(x)=\sin x, g(x)=1 / x$

1.2. Order of composition

The order in which we compose functions makes a big difference to the result. You can see this if we change the order of the functions in the first example. We have taken $f(x)=x^{2}$ and $g(x)=x+3$. Then

$$
f(g(x))=f(x+3)=(x+3)^{2}=x^{2}+6 \mathrm{x}+9
$$

and

$$
g(f(x))=g\left(x^{2}\right)=x^{2}+3
$$

In general $g(f(x))$ is not equal to $f(g(x))$.

Exercises. Work out $g(f(x))$ for the following pairs of functions and compare the results to those you obtained for Exercises 1-3.
4. $f(x)=3 x, \quad g(x)=2 x^{2}+1$
5. $f(x)=e^{4 x}, \quad g(x)=\sqrt{x}$
6. $f(x)=\sin x, \quad g(x)=1 / x$

