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A B S T R A C T

Mobility models have a broad range of applications in areas related to human movements, such as urban
planning, transportation, and simulations of diseases spread. In the last decade, the extensive geolocated user
trajectories collected from mobile devices allowed for more realistic mobility modelling, improving its accuracy.
However, mobility data sharing raises privacy concerns, which in turn limits accessibility to the data.

In this paper, we propose a WHO-WHERE-WHEN (3W) model, an improved privacy-protective mobility
modelling method for synthetic mobility data generation. Based on real trajectories, it produces artificial user
mobility trajectories that simulate population fluctuations in a study area, and thus preserves the individual's
privacy. The model simulates the individual spatiotemporal aspects of lives accurately, representing real po-
pulation flows and distributions.

The proposed method was inspired by the Work and Home Extracted REgions (WHERE) algorithm, but we
have extended it by considering the activity space and circadian rhythm of people. Furthermore, we propose a
clustering approach to capture and reproduce the heterogeneous characteristic of mobility. We evaluate our
model and compare its performance to the WHERE algorithm on the synthetic and real data test cases. Use of the
3W model improved the accuracy of population distribution reproduction by 35% measured using Earth Mover's
Distance. The travel distances and the spatial distribution of the flows reproduced by the 3W model match input
data with high accuracy. We also evaluate the level of privacy protection by comparing synthesised and input
datasets. We find that no daily trajectory can be matched between input and synthesised datasets and the
average length of the matching sequence of visited locations to contain only two locations.

1. Introduction

Understanding population mobility and behaviour are the basis for
sustainable planning and resources management, which help to trans-
form cities into more cost- and time-effective places. Several different
data sources show potential for human mobility and behavioural stu-
dies. These are global navigation satellite system (GNSS) trackers,
credit card transactions and geolocated data from social media and
mobile phones.

Novel data sources can provide information about whereabouts of
single individuals in a form of movement trajectories collected for a
long period. This raised interest in analysing human mobility in the
most detail and completeness, mining the complete picture of in-
dividual mobility. For the purpose of this work, we refer to such type of
data as individual movement trajectories. These are time-ordered se-
quences of coordinates corresponding to the locations visited by single
individuals (Giannotti et al., 2011). Depending on the used tracking

technology, harvested datasets differ by size, sampling frequency,
spatial accuracy, bias and associated additional information (Fiore
et al., 2019). Recently, mobile phone data have reached high popularity
in mobility studies (Jiang et al., 2013). The main reason of their re-
putation is the ubiquitousness of mobile phones, hence the ability to
track the whole populations at large span of time and relatively high
spatial accuracy (Calabrese, Ferrari, & Blondel, 2014; Deville et al.,
2014). However, some researchers have pointed to the biases of these
data, caused by the even-triggered nature of mobile phone data (Zhao
et al., 2016).

Mobility data have been successfully applied to many studies re-
lating to human mobility at the collective and individual levels. The
collective level involves analyses of population flows, focusing on
groups of travelling individuals, their interactions and impact on local
environments, and includes studies of population distribution mapping
(Deville et al., 2014), land-use classification (Ros & Muñoz, 2017),
dynamic traffic analysis (Calabrese et al., 2014), analysis of mobility
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patterns (Siła-Nowicka et al., 2016), simulations of the spread of dis-
ease (Bengtsson et al., 2015) and community detection (Ratti et al.,
2010). The individual mobility level studies include behavioural pro-
filing (Furletti, Gabrielli, Rinzivillo, & Renso, 2012) and interaction
analysis (Calabrese, Smoreda, Blondel, & Ratti, 2011).

Access to individual movement trajectories raises serious privacy
concerns (Ahas, Silm, Järv, Saluveer, & Tiru, 2010). Therefore, data
availability, especially mobile phone trajectories, is regulated in many
countries by laws such as the European Union directive (European
Commision, 2016), state laws in the United States (Snape, 2016; State
of California, 2015) or China's Cybersecurity Law (Greenleaf &
Livingston, 2016). In the European Union, where strict rules are in
place, location data are considered personal even if they do not contain
any personal information.

In fact, removing personal data does not fully preserve privacy be-
cause individuals can be re-identified using the uniqueness of their
trajectories (De Montjoye, Hidalgo, Verleysen, & Blondel, 2013). It is
therefore likely that new laws will be introduced in the coming years
that will be even more restrictive, such as obligatory data processing
and giving mobile phone users the right to refuse to share their data,
including their trajectories (European Commision, 2017). Because
many privacy-protection methods require data to be highly aggregated,
or truncated to a short period, it limits their usefulness, often making it
impossible to infer human mobility patterns (Fiore et al., 2019; Zang &
Bolot, 2011). It also discourages researchers from conducting further
studies, thereby reducing the number of published works in this field
(Ahas et al., 2010).

We believe, however, that it is possible to retain the full potential of
individual movement trajectories for collective population flow analysis
without violating an individual's privacy. Our solution is to base a
single user's mobility patterns on real trajectories but to represent them
as artificial movement trajectories.

The complexity of such processing requires the development of a
consistent modelling framework. This work introduces a new WHO-
WHERE-WHEN (3W) mobility modelling method, which has two main
features:

1. The production of a synthetic population, reflecting real flows and
mobility statistics, and therefore protecting the individual's privacy;
and

2. The flexibility of feeding the model with freely available informa-
tion about a study area (census, taxi pick-ups and drop-offs) to de-
rive easy-to-use human mobility in a form of movement trajectories.

We evaluated the 3W model using two datasets. First, we applied
our algorithm to the large-scale synthetic data. Then, we used a set of
real individual movement trajectories from Global Positioning System
(GPS) trackers to verify the algorithm's ability to reproduce real-life
population flows.

The rest of the paper is organised as follows. In Section 2, relevant
research is described. The concept of the proposed model is presented
in Section 3. In Section 4 and 5, the prepared test cases and evaluation
methodology are introduced. Section 6 presents the results of the va-
lidation. A discussion of the potential of the 3W and future directions
are discussed in Section 7. Finally, in Section 8, we provide conclusions
from our work.

2. Relevant research

The goal of current studies on mobility data privacy is to satisfy the
principle of privacy-preserving data publishing (PPDP), that is to pro-
cess the trajectories before publishing in a way that they retain full
usefulness and protects individual's privacy at the same time (Fung,
Wang, Chen, & Yu, 2010). Many approaches to the privacy protection of
mobility data have been made but none of the research provided a
solution satisfying PPDP criteria (Fiore et al., 2019). It is clear that

simple processing, such as reducing the spatial and temporal resolution
of the data, does not preserve privacy and significantly affects data
utility as well. The most promising approach, proposed first by (Rui
Chen, Gergely Acs, and Claude Castelluccia, 2012), is to generate ar-
tificial trajectories using real individual movement trajectories. The
general idea behind synthetic trajectories generation is the creation of
some representation of original data, which is further used to generate
artificial trajectories. The main advantages of this approach are ease of
adoption of the most strict privacy criteria through noise introduction
into the representations and the form of output data which is almost
indistinguishable from real individual movement trajectories. Proposed
algorithms can be divided by the trajectories representation used,
which is either tree-based (Rui Chen, Gergely Acs, and Claude
Castelluccia, 2012) or comprise of a set of distributions (Gursoy, Liu,
Truex, & Yu, 2018; Roy, Kantarcioglu, & Sweeney, 2016). Privacy-
protection level of these methods is sufficient, as the presence of par-
ticular individuals cannot be inferred from the produced output, how-
ever, synthesised data retain only a limited set of global properties and
individual characteristics of movement are not replicated (Fiore et al.,
2019).

(Isaacman et al., 2012; Mir, Isaacman, Caceres, Martonosi, &
Wright, 2013) went a step further and proposed the Work Home Ex-
tracted REgions (WHERE), a privacy-protective human mobility model.
It is based on the idea of spatiotemporal trajectories generation through
the probability-distribution-based representation of original data.
WHERE is an agent-based model of mobility, based on human-related
aspects of mobility, such as home location and commuting distance.
With that, it can be classified as a human mobility model, attempting to
simulate human mobility and not only to replicate input data char-
acteristics, which distinguish it from other privacy-protection methods
proposed. However, WHERE can replicate only a limited set of collec-
tive mobility statistics, such as hourly population distributions and the
daily range of distance covered by each agent and was designed to
replicate mobile phone data only. Its practical realisation simulates
flows among a preset number of places. The two- and three-place var-
iants are named WHERE2 and WHERE3, respectively.

The task of human mobility models is to replicate and extrapolate
the spatiotemporal characteristics of mobility trajectories. Models are
used to simulate human mobility at various scales under imposed
conditions to study the impact of human movement on various phe-
nomena. Mobility models have many potential applications in areas
where it is crucial to understand mobility characteristics, such as dis-
ease spreading (Bengtsson et al., 2015), traffic analyses (Calabrese
et al., 2014) and utility demand forecasting (Smolak et al., 2020).

WHERE model is the only up-to-date attempt to the creation of a
privacy-preserving mobility model. In this work, we extend and modify
assumptions of WHERE model to increase its capability of spatio-
temporal mobility characteristics of replication. Importantly, we cap-
ture additional spatiotemporal features of mobility and extend its ap-
plication beyond mobile phone data. The 3W model is designed to
sample and synthesise any kind of individual movement trajectories.

3. Model concept

Three aspects of human mobility were used as the foundation for the
WHO-WHERE-WHEN algorithm. We refer to them as model compo-
nents:

• Working HOurs shift groups (WHO) extracts groups of people
having similar temporal mobility behaviour,

• Work Home Extracted REgions (WHERE) controls the spatial aspect
of mobility,

• Work-HomE circadiaN rhythm (WHEN) controls the temporal aspect
of mobility.

Below, we describe all of the model input data and parameters,
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including the data preprocessing steps. A general overview of the 3W
generation process is presented in Fig. 1. The model can be divided into
two phases - sampling, when all the distributions are calculated and
generating when trajectories are synthesised. The WHO component is
responsible for sampling, while the WHERE and WHEN are generating
trajectories.

3.1. Input data

Before the generation process begins, the input data are used to
estimate mobility-related probability distributions and parameters. In
this section, we describe the required data, along with the preproces-
sing algorithms. These are a temporal reference file, spatial aggregation
layer, input movement trajectories and home-work pairs detected for
each person.

The temporal reference consists of timestamps required by the al-
gorithm to embed data temporally. They determine dates and times
when the location of the currently synthesised person is generated. This
is an external file provided to the model. It also determines the gen-
eration time range and the temporal distribution of position logs.

Input mobility data files are individual movement trajectories which
are sampled to deliver probability distributions on human mobility. It is
possible to feed the model directly with probability distributions cal-
culated from other sources, such as census data or taxi trajectories.

Input mobility data are chosen with respect to the aggregation layer,
which is a spatial reference. This can be a regular grid of rectangles, but
can also vary in shape to form, for example, hexagons or administrative
units. The same aggregation layer has to be used in the sampling and
generation steps. The resolution of a layer should correspond to the
spatial accuracy of the input mobility data or the replacement data.

Meaningful locations for every human are known as regularly vis-
ited places that have a particular meaning for them, with a clear gra-
dual pattern of visitation frequency (Song, Koren, Wang, & Barabási,
2010). The 3W model ‘meaningful locations’ refer to the top two most
commonly visited places which are usually home and work locations
(Ahas et al., 2007; Siła-Nowicka et al., 2016). Although, there are many
methods to detect these locations (Ahas et al., 2010), none of them were
proved to perform infallibly. Their accuracy may vary depending on the
data and their scale. To eliminate the impact of home and work location
detection algorithm on the results, we decided not to incorporate this
algorithm into our model. The detected home and work pairs for each
person in the input mobility data are given explicitly to the model at the
beginning.

3.2. WHO component

Human movement patterns are associated with many variables such
as socioeconomic status, social relations and trip purpose (Gabrielli,
Furletti, Giannotti, & Nanni, 2015; Wesolowski, Eagle, Noor, Snow, &
Buckee, 2013; Xu, Belyi, Bojic, & Ratti, 2018). The idea of the WHO
component is to capture groups of similar mobility behaviour and their
share in the whole population. We extract these groups by finding
people having a similar circadian rhythm of movement.

The circadian rhythm is expressed by an empirical distribution
HWO, divided into three categories: Home (H), Work (W) and Other
place (O). Each of these three locations has an assigned probability of
user appearance for each time window during the day. To derive the
HWO distribution, input mobility data are analysed, as shown in
Algorithm 1. First, the three empty vectors for home, work and other
place are created. The length of each vector is determined by the preset
temporal resolution. Next, the home and work locations are read from
the provided information (see Section 3.1). The algorithm iterates
through the user's trajectory, checking the time and place of appearance
to account to a time slot in the one of the three vectors. When the end of
the trajectory is reached, the common vector's time slots are stacked
and normalised to represent the probability of appearance for each
aggregation period.

Algorithm 1. HW Ovectors calculation.
The HWO is calculated for each person in the dataset. Next, all the

distributions are fed to the K-means algorithm, which divides them into
groups of similar circadian rhythms. The number of clusters to be

Fig. 1. Scheme of the 3W generation process.
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produced is estimated using Silhouette Coefficient criterion. This ap-
proach was used to cluster temporal patterns of human mobility from
individual movement trajectories (Jiang, Ferreira, & González, 2012;
Thuillier, Moalic, Lamrous, & Caminada, 2017). With the a being the
mean intra-cluster distance and b being the mean nearest-cluster dis-
tance for each sample, the Silhouette Coefficient is (Rousseeuw, 1987).

∑=
−

=

SC
n

b i a i
max a i b i

1 ( ) ( )
( ( ), ( )

,
i

n

1 (1)

where n is the number of samples. Circadian rhythms are averaged in
each cluster. The size of each cluster expressed as the number of HWO
distributions in each of them is normalised and represents the share of
each cluster in the population.

After clustering, for each extracted group a pair of spatial prob-
ability distributions of important places HomeDistribution and
WorkDistribution is prepared. They determine the probability of finding
a home or work place of each cluster in a particular location. Home and
work locations of each person in each of the groups are aggregated into
the previously derived reference layer. Next, the home and work lo-
cation distributions are calculated and normalised across the entire
aggregation layer, which results in a pair of spatial probability dis-
tributions. Using the approach presented by (Isaacman et al., 2012), a
third spatial probability distribution of commuting distance is com-
puted. This expresses the median distance that people from a particular
home location are travelling to work. It is calculated and separately
assigned to a home location of each individual. The median of the
commuting distances is calculated for each aggregation cell, creating a
CommutingDistance distribution for each of the groups. For each person,
an ellipse is fitted to all the recorded activities. The length ratio of the
semi-axes is taken as a Spread parameter, which is averaged for each
cluster. It is required due to the adopted activity space simulation
methodology (see Section 3.3). The process is presented by Algorithm
2.

3.3. WHERE component

The WHERE component starts a generation process. It is responsible
for placing a person in the space of the aggregation layer. The total
number of persons to be synthesised has to be determined at this step
and is used to rescale the share of different mobility groups into the
number of people to be generated for each cluster. For each generated
person WHERE module assigns a pair of home and work locations and
an activity space. Meaningful places are set using previously created
distributions assigned to the currently synthesised group. First, the
home location is selected using the HomeDistribution. Then, the average
commuting distance, d, in the chosen location is taken from the
CommutingDistance. Potential work locations are selected from the
WorkDistribution, from inside a ring of a radius d with an origin in a
home location. The ring width is determined by the mean aggregation
cell size, creating an annulus. Chosen home and work locations are used
to construct the activity space.

Algorithm 2. Distributions calculation.
There are many possible approaches for computing activity spaces

presented in the literature (Patterson & Farber, 2015). They can be
divided into five categories: ellipses, minimum convex-hull geometries,
kernel density approaches, network-based approaches and activity lo-
cations (Siła-Nowicka, 2016). The activity space computation method
for a human mobility generation should be easily transferable and ap-
plicable to a common case. However, most of the methods are currently
based on non-parametric approaches fit to an individual's trajectories
(Patterson & Farber, 2015). In the 3W model, we decided to use the
ellipse approach because it is a parametric and easily scalable method.

In the 3W, an activity space is constructed as an ellipse with the
home location at its centre and the workplace at the edge (Schönfelder
& Axhausen, 2003). Apart from the important places, all the locations
inside the activity space are considered when predicting individual's
position. The major semi-axis of the ellipse connects the two most im-
portant places and represents the commuting distance. The minor semi-
axis length is set using a mean Spread ratio between the major and
minor semi-axes of the ellipses of the current cluster (see Section 3.2 for
explanation). The whole process is presented by Algorithm 3.
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Algorithm 3. Creating users and assigning activity spaces to them.

3.4. WHEN component

An activity space determines all the possible locations where a
generated user can appear. In this step, movement between those po-
sitions has to be simulated, therefore, information about people's mo-
bility routines is required. The entire generation process is represented
by Algorithm 4 and depicted in Fig. 2. The algorithm iterates through
the temporal reference (Fig. 2 at the top) and matches each given date

and time with a proper time slot in the HWO (Fig. 2 in the middle) of a
currently generated cluster, choosing a current position to be either
home, work or other (Fig. 2 at the bottom). When ‘other’ is selected, a
position is randomly chosen from the activity space. The random se-
lection of location supports privacy protection for the individual. Lastly,
the selected location is written down along with a current timestamp.
When the end of the temporal reference for one user is reached, the
algorithm moves to the next individual and repeats the process. At the
end of the generation process, the output file contains synthesised in-
dividual movement trajectories where each row contains a unique
identifier of a trajectory, a timestamp and assigned coordinates (see the
top of the Fig. 2 for an example of the output file).

Algorithm 4. The mobility simulation algorithm.

4. Evaluation methodology

To compare the similarity of population mobility, we use informa-
tion about the temporal and spatial distribution of the people. For that,
we extract and summarise hourly peoples' positions from synthesised
data and a reference dataset and convert them into hourly population
distributions. The similarity between the two distributions can be
quantified using one of the statistical distance measures. To maintain
consistency with previous findings, we used the Earth Mover's Distance
(EMD) method (Rubner, Tomasi, & Guibas, 2000).

Given two distributions, P, Q, with n and m clusters, respectively,
the EMD is based on the minimal cost of transformation between P and
Q on a given metric space. If dij is a ground distance and fij is a flow
between an ith element of P and a jth element of Q, then we want to find
the minimal cost:

∑ ∑=
= =

J min d f .
i

m

j

n

ij ij
1 1 (2)

When optimal flows (having minimal costs) are found, the EMD is
defined as:
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For the calculations, we use the Fast EMD from (Pele & Werman,
2009). Since we compare the distributions with the same distance
matrix, determined by an aggregation layer, the distributions are al-
ready normalised, and the results can be given directly in metres.

We also calculate the following collective mobility-related char-
acteristics: 1) travel distances P(d) distribution and 2) the pairwise
comparison of the predicted and observed flows between units of the
aggregation layer. These measures have been used as the mobility
model validation measures at the population level before (Wang, Kong,
Xia, & Sun, 2019; Yan, Wang, Gao, & Lai, 2017).

To calculate the distribution of travel distances, we extract a trip
length (step distance) between consecutive records for each person in

Fig. 2. Scheme of the 3W mobility simulation algorithm. The time from the
temporal reference file is used to select the time slot in the HWO for a currently
synthesised cluster. According to the selected probability, a current location is
chosen. Its coordinates are written to the output file.
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each dataset. The similarity of these distributions to the same statistics
drawn from the input mobility data demonstrates the ability of the
model to reproduce movement at various spatial scales, from small trips
to long journeys. To quantify the dissimilarity of the travel distances
distribution and to keep consistency with current research in the area
(Wang et al., 2019) we use Kullback-Leibler divergence measure. The
divergence of probability distributions P and Q is defined as (Kullback &
Leibler, 1951):

∑=
∈

D P Q P x log P x
Q x

( ) ( ) ( )
( )KL

x χ (4)

The second measure of mobility is the number of flows between
units of the aggregation layer. We compare the number of incoming or
outgoing trips with respect to geographic units. The similarity of these
values indicates the ability of a model to estimate flows properly.

We measure the individuals' privacy protection by comparing the
daily trajectories found in the original and synthesised data. We expect
that no trajectory match both datasets, which would mean that any real
movement trajectory is not included in the synthesised data. We con-
sider the trajectories to be identical when they have the same sequence
of consecutively visited locations in an individual's daily itinerary. We
verify the maximum lengths of the matching sequences that can be
found in both datasets. Furthermore, as a measure of similarity in ac-
tivity spaces, we calculated the number of people whose most fre-
quently visited locations are identical.

5. Empirical case studies

We evaluate our method by comparing its performance to the
WHERE algorithm in two test cases at different scales. Firstly, we use
the publicly available Census Tracks and New York Taxi Cab trajec-
tories to generate a large-scale human mobility dataset. Secondly, we
evaluate our algorithms using real individual movement trajectories,
originally collected for the work of (Siła-Nowicka et al., 2016) in the
form of GPS trajectories, and test the model's performance on a real and
small-scale dataset. To evaluate the impact of each modifications in-
troduced to the initial WHERE model, we apply three variants of the 3W
algorithm, as presented in Table 1. The 2W variant is the simplest and
extends WHERE model by the circadian rhythm (WHEN component)
and activity space. The 3W-NS variant adds WHO component but it
does not cluster spatial distributions. The 3W-Full variant additionally
clusters spatial distributions and therefore, includes all the algorithms
described in Section 3.

5.1. Synthetic data test case

Using publicly available data, we synthesise a dataset for the first
test case. This approach provides a few advantages over using real
mobility data for such tests: 1) knowledge of spatial and temporal
distributions, such as home and work locations and circadian rhythms,
originally hidden in the data; 2) an overview of the algorithm perfor-
mance in capturing and reproducing random movement, giving a clear
view of possible tendencies in the mobility imitation.

5.1.1. Generating mobility input from public data
We create an original dataset: home and work locations, commuting

distance, circadian rhythm, activity spread and aggregation layer. As an

aggregation layer for the test case and further calculations, we use
census tracts from the Census Bureau's geographic database (Census
Bureau, 2016). We select 1815 tracts in the area of the City of New
York. To preserve the real distribution of the New York City population,
we use census data to calculate the home and work locations. Also, we
sample New York City cab trajectories to determine the commuting
distances, which were used in the past to describe intra-urban mobility
(Liu, Kang, Gao, Xiao, & Tian, 2012). At this point, we assume the
commuting distance to be equal to a median trip length between the
origin and the destination for each aggregation cell. To evaluate model's
ability to capture and reproduce multiple mobility groups, we created
four clusters of circadian rhythms, representing four distinct mobility
behaviours. Each group of circadian rhythms is defined as a weighted
mixture of Gaussian distributions from which a rhythm for each person
is drawn. To increase the randomness of the synthetic dataset, we
randomly select a Spread parameter value for each user. These data are
used to generate synthetic dataset test case in a form of individual
movement trajectories. Every user is assigned a one-month-long tem-
poral reference with one record every hour.

5.1.2. Test case
Using the generated mobility dataset, we synthesise one month of

data with the 3W (see Table 1) and WHERE2 algorithms for the same
period and aggregation layer. We use the same temporal pattern for a
generation as it was used when generating input mobility dataset. Using
the same temporal pattern eliminates the impact of the temporal as-
pects on the results. Every generated test case contains 5000 users,
which is consistent with other works on mobility models (Calabrese, Di
Lorenzo, & Ratti, 2010; Isaacman et al., 2012).

5.2. Real data test case

In the absence of the real large-scale mobility data we use individual
GPS trajectories, collected from 173 people from the Kingdom of Fife in
Scotland, UK. In order to reduce potential bias, the participants were
selected randomly from the overall population. Data were collected
using i-Blue 747 ProS GPS loggers. The location of the individuals was
stored every 5 s and the data consist of ID, latitude, longitude, eleva-
tion, date and time. The sub-sample selected for this study comprised
3,867,918 records, collected during a one-week-long observation
campaign. We select a small subset of 28 people living in the area of
Dunfermline and Edinburgh having at least four consecutive days of
data. We down-sample the data to one-hour time-bins and fill the gaps
in the trajectories using the last observed location. The data include
trajectories of people living and travelling between towns in the area,
and therefore represent inter-urban mobility behaviour.

In order to model population mobility, we aggregate data into a
regular grid of 81 × 66 km to cover all the data we use in the study and
divided it into 1 × 1 km squares. Using GPS trajectories and the ag-
gregation layer, we synthesise four days worth of data for 28 people
using the 3W (see Table 1) and WHERE2 algorithms. We calculate home
and work location probability distributions, commuting distances, the
average spread of activity space and a circadian rhythms using each
participant's ‘important places’, as previously defined by (Siła-Nowicka
et al., 2016). We use the same temporal pattern as in the synthetic test
case to eliminate the impact of temporal aspects on the results.

Table 1
Capabilities of the tested 3W algorithm variants.

Variant Capabilities

3W-Full Uses WHERE and WHEN components, clusters circadian rhythms of population and spatial distributions
3W-NS Uses WHERE and WHEN components, clusters circadian rhythms of population
2W WHERE and WHEN components are used
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6. Results

In this section, we present the evaluation results based on the two
experimental test cases. For each, we compare four different datasets,
synthesised using three variants of the 3W (described in Table 1) and
the WHERE2 model. All of the datasets are verified against original data
by assessing the spatiotemporal distributions and descriptive statistics
for similarity, and the privacy protection level.

6.1. Results: synthetic data test case

In this subsection, we report the results obtained from the synthe-
sised data based on the synthetic test case. Due to the identical ag-
gregation layer and temporal reference used for each dataset, including
input data, the results can be compared directly.

6.1.1. Similarity of spatiotemporal distribution
We calculate the EMD to the population distribution of the input

mobility data according to Section 5 and Eqs. (2) and (3) for each of the
four synthesised datasets. Fig. 3 shows that, for the given test case, all
the variants of the 3W model outperform the WHERE2 method, pro-
viding a more than 35% improvement in average accuracy. The 3W-Full
dataset is almost one kilometre more accurate on mean position error,
which is 2593 m for the 3W-Full dataset and 3515 m for the WHERE2
dataset. The gain of the 3W-Full dataset over datasets generated with
3W-NS and 2W variants corresponds to the impact of mobility groups
extraction. Circadian rhythms and their share in the whole population
recovered by the 3W-Full variant is identical to the input data used for
artificial data generating. The datasets generated with 2W and 3W-NS
variants have similar EMD across all the hours, with the 3W-NS dataset
performing slightly better (average distances 2W: 2904 m, 3W-NS:
2857 m).

6.1.2. Similarity in collective mobility characteristics
Considering travel distances distribution P(d) similarity measured

with the Kullback-Leibler divergence, the data synthesised with the 3W-

Full (0.0020) model outperforms other models (3W-NS: 0.0025, 2W:
0.0024, WHERE2: 0.0087). Simplified variants of the 3W model are
only slightly worse than the 3W-Full model and significantly better than
the WHERE2. The values of Kullback-Leibler divergence are small
which can be seen in absolute differences ΔP(d) of travel distances
distributions of the input and synthesised data in Fig. 4. Trips shorter
than 5 km are better reflected by the 2W variant. Longer journeys are
better reflected in the 3W-Full dataset. All the models usually over-
estimate the number of short trips and underestimate the number of
long trips, however, the 3W-Full model is in the best agreement with
the input mobility data.

The 3W-Full model corresponds to the input mobility data in terms
of the number of incoming and outgoing flows to each unit of the ag-
gregation layer (Fig. 5 a). The model reproduces low flows well and
tends to slightly overestimate the high flows. The performance of
simplified variants of the 3W model is slightly worse because of the
larger overestimation of high flows present in these datasets (Fig. 5 b,
c). The WHERE2 is unable to synthesise flows in the same locations as
they are in the input data, resulting in a large underestimation of trips
(Fig. 5 d).

6.1.3. Evaluation of privacy protection of individuals
We compare each combination of individual users daily trajectories

between the input and the 3W-Full datasets. We find that the datasets
do not contain any identical daily trajectories. The median length of the
matching sequence appearing in the compared datasets contains two
locations, which stand for 8.3% of a daily trajectory.

Dissimilarity of trajectories results from variations in the most fre-
quently visited locations by the synthesised users. The number of users
having this same set of locations is presented in Table 2. When con-
sidering two locations, these are selected from home and work locations
distributions and hence, there is a higher probability of recurrence of
the same combinations in both datasets. Further locations are selected
at random and therefore, the number of the same most frequently vis-
ited locations drops significantly.

Fig. 3. Comparison of EMD distances for datasets synthesised using synthetic mobility data.
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6.2. Results: real data test case

In this subsection, we report the results based on the real GPS tra-
jectories. They have been preprocessed as described in Section 5.2 and
hence, synthesised datasets may be compared directly to the input
mobility data.

6.2.1. Similarity in spatiotemporal distribution
As in Section 6.1.1, we calculate the EMD to the original distribu-

tion, according to Section 5 and Eqs. (2) and (3) for each of the four
datasets. The EMD of the 3W-Full dataset varies from around 2 km for
the night hours, when most of the people are at home, up to 6 km in the
morning (see Fig. 6). Interestingly, the 3W-Full dataset has significantly

Fig. 4. The absolute difference between travel distances distribution of the input mobility data for the synthetic test case and four synthesised datasets.

Fig. 5. Pairwise comparison of the flows observed in the input mobility data and datasets synthesised by 3W-Full (a), 3W-NS (b), 2W (c), and WHERE2 (d). Each grey
point represents the number of flows calculated in the two datasets for a single location. The black line is x = y. The boxes depict the distribution of synthesised flows
and the marker shows the average value of synthesised flows in that aggregation bin. If the line lies outside the range of 9th and 91st percentile (To keep consistency
with recent research in the area we adopted the same criteria for model verification (Wang et al., 2019), the box is coloured red. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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lower EMD for afternoon and evening hours than datasets produced by
other 3W model variants and the WHERE2. All the variants of the 3W
model perform better than the WHERE2. The 3W-Full model yielded,
on average, more than 31% less position error than the WHERE2
(average errors: 3W-Full 3246 m, WHERE2: 4699 m). However, during
the night hours when most of the people are staying in the most fre-
quently visited location the performance of the WHERE2 is comparable
to the 3W models and sometimes even slightly better. On average EMD
of the 2W model (4512 m) and 3W-NS (4347 m) are only marginally
lower than EMD of the WHERE2 model.

6.2.2. Similarity in collective mobility characteristics
The Kullback-Leibler divergence values for mobility-related char-

acteristics confirm the superiority of the 3W-Full model (0.0855) in
travel distances distribution reproduction, being 89% less distant from
the target distribution than the WHERE2 (0.7375). According to this
measure, the 3W-NS (0.1368) is the second and the 2W (0.1478) is the
third-best performing model, which aligns with results obtained from
EMD metric.

The differences of travel distances distributions ΔP(d) are presented
in Fig. 7. The P(d) of the 3W-Full is the most similar to the original data,
very closely following the P(d) of input mobility data in a range of 0 km
to 30 km. The share of long-distance travels over 30 km is under-
estimated in the 3W-Full dataset, which results in the larger error. It is
caused mainly by the presence of the travels of distance larger than
50 km, which are not present in the input data.

The 3W-NS dataset contains trips made on larger distances than

those present in the input data and hence, the share of travels is un-
derestimated for all the distances. The travel distances of 2W have the
identical range as the input mobility data but underestimate the
number of trips for all distances. However, the P(d) of 3W-NS and 2W
diverge less from the input data for large distances over 30 km. The P(d)
of WHERE2 is substantially different from the target. Moreover, trips
longer than 45 km are not reproduced in this dataset.

According to (Fig. 8 a,b) the 3W-Full and 3W-NS variants are the
best in reproducing the number of flows observed in the input mobility
data. However, the number of flows in the locations with high flows in
the input data is underestimated in the both model variants. The 2W
model variant is performing slightly worse than other 3W variants
(Fig. 8 c). Similarly to the synthetic test case, the WHERE2 model is
unable to reproduce the flows in the same locations as they occur in the
input mobility data, which results in a large underestimation of flows in
the locations with medium and high numbers of flows (Fig. 8 d).

6.2.3. Evaluation of privacy protection of individuals
We find that no identical sequence of a minimum of two locations is

present in the 3W-Full dataset and input data in the real data test case.
We also calculate the number of users having the same set of most
frequently visited locations and find that even considering two loca-
tions, no people have the same sets.

7. Discussion and further works

We compare the performance of the WHERE2 and three variants of
the 3W model (3W-Full, 3W-NS, 2W) for synthetic (New York case) and
real data (the Kingdom of Fife case). Using the EMD metric for the
synthetic test case (Fig. 3), we find that the distance between the spa-
tiotemporal distribution of the original and synthesised data is much
smaller for all the variants of the 3W method throughout all the hours
of the day. We find that the 3W-full method consisting of all the pro-
posed components reaches 35% smaller mean position error than the
WHERE2 model. This is related to the use a different approach to mo-
bility simulation (Section 3). The 3W algorithm selects a current posi-
tion inside the individual activity space of a user using HWO (Fig. 2),
which simulates a circadian rhythm of the movement, while the

Table 2
The number of people having identical sets of the most frequently visited places
in the original and the 3W-Full datasets.

Places considered People having the same set of most frequently visited
locations (share of population)

2 264 (5.24%)
3 27 (0.54%)
4 4 (0.08%)
5 1 (0.02%)
6 0 (0%)

Fig. 6. Comparison of the EMD distances for datasets synthesised using real mobility data.
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WHERE2 picks locations from the global population densities. The
latter approach tends to choose places in more crowded areas that are
not necessarily realistic locations for particular individuals. It is im-
portant to note, that individual activity space is simulated as an ellipse.
This is a simple approach but it has limited flexibility, as it may cover

areas where sampled movement trajectories have never appeared and
on the other hand, may not cover areas where some positions were
recorded.

The gain of the 3W-Full model over other variants stems also from
applied clustering methodology. The EMD significantly drops when

Fig. 7. The absolute difference between travel distances distribution of the input data for the real test case and four synthesised datasets.

Fig. 8. Pairwise comparison of the flows observed in the input mobility data and datasets synthesised by 3W-Full (a), 3W-NS (b), 2W (c), and WHERE2 (d). Each grey
point represents the number of flows calculated in the two datasets for a single location. The black line is x = y. The boxes depict the distribution of synthesised flows
and the marker shows the average value of synthesised flows in that aggregation bin. If the line lies outside the range of 9th and 91st percentile (To keep consistency
with recent research in the area we adopted the same criteria for model verification (Wang et al., 2019), the box is coloured red. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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both, spatial and temporal data are clustered. Using only temporal
clustering provides very little improvement (compare 2W and 3W-NS in
Fig. 3). It is important to note that four groups of the similar movement
were created for the synthetic test case by providing only four different
circadian rhythms and no separate spatial distributions. Yet, the EMD
measure shows that spatial distributions are important in the modelling
process, even if in that case they were randomly generated.

In the case of real mobility data modelling (Fig. 6), we gain more
than 31% of improvement comparing 3W-Full and WHERE2. As ex-
pected for periods of lowest mobility, accuracy is highest during the
night hours. However, using the 3W-Full model variant we observe the
greatest accuracy gain for the middle daytime hours when people en-
gage in various activities, other than staying in their home and work
locations. Similarly to the synthetic test case, the importance of clus-
tering home and work distributions according to detected circadian
rhythms' groups is observable through the differences of EMD values of
the 3W-Full and 3W-NS models.

In general, the average EMD values of the model variants align well
with the incremental complexity of evaluated variants. The WHERE2
model can be considered the simplest and has the largest error. The 3W
is built upon the WHERE2 idea and raises its complexity through ad-
ditional components and so does the accuracy.

The EMD measure was used in (Isaacman et al., 2012; Mir et al.,
2013), where the WHERE model was evaluated based on the mobile
phone data dataset of 10,000 mobile phone users, using the WHERE2
and WHERE3 variations. The average EMD value for both models
varied between 2 and 3 miles (around 3.22 and 4.82 km, respectively),
which is similar to the result obtained in this work. An additional third
place considered in the WHERE3 model slightly improved the accuracy.
In this work, we extend the set of possible locations where a person can
move by considering the activity space idea (Section 3.3). With that, the
number of those places is not fixed and fluctuates depending on home
and work locations.

We find that the 3W method reproduce a population whose col-
lective mobility metrics are more similar to the original data than the
WHERE2 output. Similarly to the EMD metric, the 3W-Full model
reaches the highest similarity to the input mobility data distributions in
the synthetic and real data test case. The travel distances distribution
produced by the WHERE2 model highly differs from other distributions.
Presumably, considering fixed locations forces mobility to occur at a
limited set of distances imposed by the spatial distributions of home
and work locations. In the real data test case, it can be observed as a
significantly low share of medium distance travels. Adding an activity
space introduces movement between many locations, which leads to
many possible travel origin-destination combinations at a wide range of
distances. All the evaluated 3W variants use activity space, therefore
distributions reproduced by the 3W are significantly closer to the ori-
ginal one than the one obtained from WHERE2. The positive impact of
mobility clustering is observable.

The pairwise comparison of the flows verifies the models' ability to
synthesise the same amount of flows in the exact same location as in the
input mobility data. Again, the 3W-Full model is performing the best.
Other 3W variants are performing only slightly worse in all the test
cases, with the more complex variants performing better. The WHERE2
model is not able to reproduce these flows, resulting in poor perfor-
mance. This may be caused by the high number of self-transitions ob-
servable in the data (synthesised person stays in the same location for
the next time bin), which are not considered as a trip.

The studies of (Wang et al., 2019; Yan et al., 2017) also used travel
distances distributions and pairwise comparison of the flows to verify
the model performance at the collective level of mobility. However,
these works proposed a mobility modelling method based on a different
concept, where human mobility is driven by an exploration and pre-
ferential return mechanism (EPR), that is a person movement occurs to
a previously unvisited (exploration) or visited location (preferential
return) with certain probabilities. Both works used different datasets for

evaluation and while the Kullback-Leibler divergence values cannot be
directly compared to each other the abilities of the EPR-based and 3W
model to reproduce collective mobility characteristic can be compared.

In terms of travel distances distributions EPR-based models over-
estimate the number of short trips and long journeys. Similarly, the 3W
model slightly overestimates the number of short trips but under-
estimates the number of long journeys. Also, the number of flows in
locations where the low number of flows is observed in the input data is
overestimated in the EPR-based models. In the case of the 3W model,
these numbers are close (synthetic test case) or slightly overestimated
(real data test case).

We also verify the privacy protection for individuals. We find that
synthesised trajectories do not replicate the original data. Small parts of
sequences are found to be identical in both test cases, but these are
shorter than four consecutively visited locations. To compare the si-
milarity of activity spaces in the original and synthesised datasets, we
calculate the number of people having the same set of most frequently
visited places. In the case of the synthetic data simulation, where 5000
users are simulated, 264 people (5.24% of users in the dataset) have
two identical most frequently visited locations, and that number drops
to four people (0.08% of users in the dataset) when considering four
locations. Using the real invididual movement trajectories, we consider
only 28 people, and we do not find two people having the same set of
two most frequently visited places. Those values indicate a low simi-
larity of user activity spaces between both datasets. This is the result of
a random ‘other’ location selection, which introduce noise into the
synthesised mobility data.

The 3W is an important step in the creation of privacy-protective
mobility model. In comparison to previous works, its capabilities in
mobility simulation are significantly improved and privacy protection
abilities are retained.

The most important challenge for further development of the 3W
model is to reproduce also individual characteristics of human mobility,
which is necessary to truly retain the usefulness of reproduced data. To
satisfy the requirements of PPDP the privacy-preserving mobility model
should be able to replicate collective and individual mobility char-
acteristics at all spatial scales. The integration of mobility mechanisms
incorporated into recently presented unified mobility models (Wang
et al., 2019; Yan et al., 2017), able to model human mobility at diverse
spatial scales, may be a breakthrough in the pursue for mobility data
anonymisation solution satisfying the PPDP principle.

Although in this work we decided to exclude home and work lo-
cations extraction process from the 3W model, it can be integrated with
one of the known methods for detection of these locations. Such a
method has to be at least able to detect meaningful locations in the
trajectory and to rank them by their importance. There are many po-
tential algorithms which can be used, based on various assumptions,
such as statistical models (Ahas et al., 2010), machine-learning-based
algorithms, from which a large portion of algorithms uses clustering
methods (Isaacman et al., 2011; Nurmi & Koolwaaij, 2006), and mixed
models (Siła-Nowicka et al., 2016). The two most important locations
obtained from these algorithms can be considered home and work. The
chosen method would probably have an impact on the accuracy of the
model. In our work, home and work locations were already known in
the dataset and therefore no home-work location extraction algorithm
was used. It is important to note that some people have more than one
home and work locations (Ahas et al., 2010) and at this moment the
model is incapable of simulating such a scenario. Therefore, additional
experiments should be run in the future.

8. Conclusions

In this work, we have proposed the WHO-WHERE-WHEN method,
an improved privacy-protective population mobility model. Our model
can synthesise artificial trajectories, representing a population of very
similar movement behaviours to those of a real community. The
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algorithm is designed to sample and reproduce data on a large scale.
The proposed model is a modification of the WHERE method, in

which we mostly focused on the spatiotemporal aspect of urban-scale
human mobility modelling. We have proposed a different approach that
increases flexibility and improves the accuracy. It describes user mo-
bility spatially using their activity space and temporally by adding the
circadian rhythm. Furthermore, we cluster people by their mobility
behaviour relying on their everyday movement routine to capture
heterogeneous characteristics of the movement.

We validated our method using previously created test cases, with
large-scale synthetic and real individual movement trajectories. Our
results were compared to the results of the WHERE2 algorithm. We
noted that the 3W imitates spatiotemporal population densities and
flows with greater accuracy. Moreover, the results show that our al-
gorithm better preserves collective mobility statistics.

This method contributes to the research devoted to overcome
privacy issues, which limits the accessibility of mobility data. Its sim-
plicity and capability of working on large sets of data allow for the
synthesis of artificial user trajectories by imitating the mobility para-
meters of the real population. These can be further used in studies in
place of real data, thus protecting the privacy of mobile phone users.

The 3W model was implemented in the Python programming lan-
guage as a plugin for the QGIS platform. We have shared this tool in the
GitHub repository (10.5281/zenodo.1240952).

Acknowledgments

The authors wish to thank the Editor and Reviewer for their effort
and comments. This research did not receive any specific grant from
funding agencies in the public, commercial, or not-for-profit sectors.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.compenvurbsys.2020.101526.

References

Ahas, R., Aasa, A., Silm, S., Aunap, R., Kalle, H., & Mark, Ü. (2007). Mobile positioning in
space—Time behaviour studies: Social positioning method experiments in Estonia.
Cartography and Geographic Information Science, 34(4), 259–273.

Ahas, R., Silm, S., Järv, O., Saluveer, E., & Tiru, M. (2010). Using mobile positioning data
to model locations meaningful to users of mobile phones. Journal of Urban Technology,
17(1), 3–27.

Bengtsson, L., Gaudart, J., Lu, X., Moore, S., Wetter, E., Sallah, K., ... Piarroux, R. (2015).
Using mobile phone data to predict the spatial spread of cholera. Scientific Reports, 5.

Calabrese, F., Di Lorenzo, G., & Ratti, C. (2010). Human mobility prediction based on
individual and collective geographical preferences. 13th international IEEE conference
on intelligent transportation systems (pp. 312–317). IEEE.

Calabrese, F., Ferrari, L., & Blondel, V. D. (2014). Urban sensing using Mobile phone
network data: A survey of research. ACM Computing Surveys, 47(2), 1–20.

Calabrese, F., Smoreda, Z., Blondel, V. D., & Ratti, C. (2011). Interplay between tele-
communications and face-to- face interactions : A study using mobile phone data.
PLoS One, 6(7).

Census Bureau (2016). Census data.
De Montjoye, Y. A., Hidalgo, C. A., Verleysen, M., & Blondel, V. D. (2013). Unique in the

crowd: The privacy bounds of human mobility. Scientific Reports, 3, Article 1376.
Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F. R., Gaughan, A. E., ... Tatem, A.

J. (2014). Dynamic population mapping using mobile phone data. Proceedings of the
National Academy of Sciences, 111(45), 15888–15893.

European Commision (2016). Regulation (EU) 2016/679 of the European Parliament and of
the Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing directive
95/46/EC (general Da).

European Commision (2017). Proposal for a REGULATION OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL concerning the respect for private life and the
protection of personal data in electronic communications and repealing directive 2002/58/
EC (Regulation on privacy and electronic Commu).

Fiore, M., Katsikouli, P., Zavou, E., Cunche, M., Fessant, F., Le Hello, D., ... Stanica, R.
(2019). Privacy of trajectory micro-data: A survey. arXiv preprint arXiv:1903.12211.

Fung, B. C. M., Wang, K., Chen, R., & Yu, P. S. (2010). Privacy-preserving data publishing:
A survey of recent developments. ACM Computing Surveys (Csur), 42(4), 1–53.

Furletti, B., Gabrielli, L., Rinzivillo, S., & Renso, C. (2012). Identifying users profiles from
mobile calls habits. Proceedings of the ACM SIGKDD international workshop on urban
computing (pp. 17–24). ACM.

Gabrielli, L., Furletti, B., Giannotti, F., & Nanni, M. (2015). Use of mobile phone data to
estimate visitors mobility flows. International conference on software engineering and
formal methods (pp. 1–13). .

Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., & Trasarti, R.
(2011). Unveiling the complexity of human mobility by querying and mining massive
trajectory data. VLDB Journal, 20(5), 695–719.

Greenleaf, G., & Livingston, S. (2016). China’s new cybersecurity law {−} also a data
privacy law? Technical report 144. University of New South Wales.

Gursoy, M. E., Liu, L., Truex, S., & Yu, L. (2018). Differentially private and utility pre-
serving publication of trajectory data. IEEE Transactions on Mobile Computing, 18(10),
2315–2329.

Isaacman, S., Becker, R., Cáceres, R., Kobourov, S., Martonosi, M., Rowland, J., &
Varshavsky, A. (2011). Identifying important places in people’s lives from cellular
network data. Pervasive computing (pp. 133–151). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Isaacman, S., Becker, R., Cáceres, R., Martonosi, M., Rowland, J., Varshavsky, A., &
Willinger, W. (2012). Human mobility modeling at metropolitan scales. Proceedings of
the 10th international conference on mobile systems, applications, and services - MobiSys
‘12 (pp. 239). .

Jiang, S., Ferreira, J., & González, M. C. (2012). Clustering daily patterns of human ac-
tivities in the city. Data Mining and Knowledge Discovery, 25(3), 478–510.

Jiang, S., Fiore, G. A., Yang, Y., Ferreira, J., Frazzoli, E., & González, M. C. (2013). A
review of urban computing for mobile phone traces: Current methods, challenges and
opportunities. UrbComp ‘13 proceedings of the 2nd ACM SIGKDD international workshop
on urban computing (pp. 1–9). ACM.

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22(1), 79–86.

Liu, Y., Kang, C., Gao, S., Xiao, Y., & Tian, Y. (2012). Understanding intra-urban trip
patterns from taxi trajectory data. Journal of Geographical Systems, 14(4), 463–483.

Mir, D. J., Isaacman, S., Caceres, R., Martonosi, M., & Wright, R. N. (2013). DP-WHERE:
Differentially private modeling of human mobility. Proceedings - 2013 IEEE interna-
tional conference on Big Data, Big Data 2013 (pp. 580–588). .

Nurmi, P., & Koolwaaij, J. (2006). Identifying meaningful locations. 2006 3rd annual
international conference on Mobile and ubiquitous systems: Networking and
servicesMobiQuitous (May).

Patterson, Z., & Farber, S. (2015). Potential path areas and activity spaces in application:
A review. Transport Reviews, 35(6), 679–700.

Pele, O., & Werman, M. (2009). Fast and robust earth mover’s distances. 2009 IEEE 12th
international conference on computer vision (pp. 460–467). IEEE.

Ratti, C., Sobolevsky, S., Calabrese, F., Andris, C., Reades, J., Claxton, R., & Strogatz, S. H.
(2010). Redrawing the map of Great Britain from a network of human interactions.
PLoS One, 5(12).

Ros, S. A., & Muñoz, R. (2017). Land use detection with cell phone data using topic
models: Case Santiago, Chile. Computers, Environment and Urban Systems, 61, 39–48.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.

Roy, H., Kantarcioglu, M., & Sweeney, L. (2016). Practical differentially private modeling
of human movement data. IFIP annual conference on data and applications security and
privacy (pp. 170–178). Springer.

Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth Mover’s distance as a metric for
image retrieval. International Journal of Computer Vision, 40(2), 99–121.

Rui Chen, Gergely Acs, and Claude Castelluccia (2012). Differentially private sequential
data publication via variable-length n-grams. Proceedings of the 2012 ACM conference
on computer and communications security (pp. 638–649). .

Schönfelder, S., & Axhausen, K. W. (2003). Activity spaces: Measures of social exclusion?
Transport Policy, 10(4), 273–286.

Siła-Nowicka, K. (2016). Using GPS trajectories for further understanding of spatial beha-
viour. (Unpublished results).

Siła-Nowicka, K., Vandrol, J., Oshan, T., Long, J. A., Demšar, U., & Fotheringham, A. S.
(2016). Analysis of human mobility patterns from gps trajectories and contextual
information. International Journal of Geographical Information Science, 30(5), 881–906.

Smolak, K., Kasieczka, B., Fialkiewicz, W., Rohm, W., Siła-Nowicka, K., & Kopańczyk, K.
(2020). Applying human mobility and water consumption data for short-term water
demand forecasting using classical and machine learning models. Urban Water
Journal, 1–11.

Snape, J. (2016). California penal code 2016 book 1 of 2. Lulu Press.
Song, C., Koren, T., Wang, P., & Barabási, A.-L. (2010). Modelling the scaling properties of

human mobility. Nature Physics, 6(10), 818–823.
State of California (2015). An act to add Chapter 3.6 (commencing with Section 1546) to Title

12 of Part 2 of the Penal Code, relating to privacy.
Thuillier, E., Moalic, L., Lamrous, S., & Caminada, A. (2017). Clustering weekly patterns

of human mobility through mobile phone data. IEEE Transactions on Mobile
Computing, 17(4), 817–830.

Wang, J., Kong, X., Xia, F., & Sun, L. (2019). Urban Human Mobility. ACM SIGKDD
Explorations Newsletter, 21(1), 1–19.

Wesolowski, A., Eagle, N., Noor, A. M., Snow, R. W., & Buckee, C. O. (2013). The impact
of biases in mobile phone ownership on estimates of human mobility. Journal of the
Royal Society Interface, 10.

Xu, Y., Belyi, A., Bojic, I., & Ratti, C. (2018). Human mobility and socioeconomic status:
Analysis of Singapore and Boston. Computers, Environment and Urban Systems, 72,
51–67.

Yan, X. Y., Wang, W. X., Gao, Z. Y., & Lai, Y. C. (2017). Universal model of individual and
population mobility on diverse spatial scales. Nature Communications, 8(1), 1–9.

Zang, H., & Bolot, J. (2011). Anonymization of location data does not work: A large-scale
measurement study. Proceedings of the 17th annual international conference on mobile
computing and networking (pp. 145–156). ACM.

Zhao, Z., Shaw, S. L., Xu, Y., Lu, F., Chen, J., & Yin, L. (2016). Understanding the bias of
call detail records in human mobility research. International Journal of Geographical
Information Science, 30(9), 1738–1762.

K. Smolak, et al. Computers, Environment and Urban Systems 84 (2020) 101526

12

https://doi.org/10.5281/zenodo.1240952
https://doi.org/10.1016/j.compenvurbsys.2020.101526
https://doi.org/10.1016/j.compenvurbsys.2020.101526
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0005
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0005
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0005
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0010
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0010
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0010
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0015
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0015
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0020
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0020
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0020
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0025
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0025
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0030
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0030
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0030
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0035
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0040
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0040
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0045
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0045
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0045
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0050
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0050
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0050
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0050
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0055
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0055
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0055
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0055
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0060
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0060
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0065
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0065
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0070
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0070
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0070
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0075
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0075
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0075
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0080
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0080
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0080
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0085
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0085
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0090
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0090
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0090
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0095
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0095
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0095
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0095
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0100
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0100
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0100
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0100
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0105
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0105
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0110
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0110
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0110
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0110
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0115
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0115
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0120
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0120
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0125
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0125
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0125
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0130
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0130
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0130
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0135
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0135
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0140
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0140
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0145
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0145
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0145
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0150
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0150
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0155
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0155
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0160
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0160
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0160
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0165
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0165
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0170
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0170
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0170
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0175
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0175
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0180
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0180
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0185
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0185
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0185
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0190
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0190
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0190
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0190
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0195
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0200
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0200
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0205
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0205
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0210
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0210
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0210
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0215
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0215
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0220
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0220
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0220
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0225
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0225
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0225
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0230
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0230
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0235
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0235
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0235
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0240
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0240
http://refhub.elsevier.com/S0198-9715(20)30259-3/rf0240

	Population mobility modelling for mobility data simulation
	Introduction
	Relevant research
	Model concept
	Input data
	WHO component
	WHERE component
	WHEN component

	Evaluation methodology
	Empirical case studies
	Synthetic data test case
	Generating mobility input from public data
	Test case

	Real data test case

	Results
	Results: synthetic data test case
	Similarity of spatiotemporal distribution
	Similarity in collective mobility characteristics
	Evaluation of privacy protection of individuals

	Results: real data test case
	Similarity in spatiotemporal distribution
	Similarity in collective mobility characteristics
	Evaluation of privacy protection of individuals


	Discussion and further works
	Conclusions
	Acknowledgments
	Supplementary data
	References




